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Abstract— This paper investigates the impact of fast 

parameter identification methods, which do not require any 

forward simulations, on model-based glucose control, using 

retrospective data in the Christchurch Hospital Intensive Care 

Unit. The integral-based identification method has been 

previously clinically validated and extensively applied in a 

number of biomedical applications; and is a crucial element in 

the presented model-based therapeutics approach. Common 

non-linear regression and gradient descent approaches are too 

computationally intense and not suitable for the glucose 

control applications presented. The main focus in this paper is 

on better characterizing and understanding the importance of 

the integral in the formulation and the effect it has on model-

based drug therapy control. As a comparison, a potentially 

more natural derivative formulation which has the same 

computation speed advantages is investigated, and is shown to 

go unstable with respect to modelling error which is always 

present clinically. The integral method remains robust. 
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identification, model-based therapeutics, Intensive Care Unit 

I. INTRODUCTION  

Therapy guidance using physiological models is a 

growing trend in bio-engineering [1, 2]. Glucose control in 

the intensive care unit (ICU), has been dramatically 

improved by using a glucose-insulin model to optimize 

insulin doses and changes of nutrition [2-4, 9-11]. A 

glucose control protocol SPRINT (specialized reduced 

insulin nutrition table) has changed clinical practice in the 

Christchurch Intensive Care Unit [5]. The result is tight 

control of blood glucose with a 32% hospital mortality 

reduction. Parameter identification is an important part of 

the overall process, as the identified parameters affect the 

overall therapy prediction.  

An integral-based parameter identification method has 

been developed [6] and extended to other physiological 

systems that avoids the need for any forward simulations. It 

can thus dramatically reduce the computation required. 

These integral methods are therefore well suited to model-

based control applications requiring real-time parameter 

identification or large Monte Carlo analyses off-line. This 

paper investigates different computationally fast 

formulations that don’t require forward simulations. 

The glucose-insulin model and methods are tested using 

retrospective clinical data. Several practical issues that arise 

in clinical implementation are addressed, to highlight issues 

of performance and stability. 

Finally, a new model-based control method for metabolic 

control is presented, that combines a non-invasive 

continuous glucose sensor (CGMS) [7] with current 

standard glucometer sensors [8]. This method is shown to 

provide a potentially significant improvement in glucose 

control in simulation that warrants further clinical 

investigation in the future. 

II. METHODOLOGY 

A. Glucose-insulin model 

 The glucose-insulin model is defined [6, 9-11]: 
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where G(t) is the plasma glucose concentration (mmol/L); 

GE the equilibrium level of plasma glucose concentration 

(mmol/L); Q(t) the interstitial insulin; I(t) the concentration 

of the plasma insulin above basal level (mU/L); P(t) the 

exogenous glucose infusion rate (mmol/(L min)); u(t) the 

insulin infusion rate (mU/min); V the assumed insulin 

distribution volume (L); n the delay in interstitial transfer of 

insulin (min
-1

); pG the fractional clearance of plasma 

glucose at basal insulin (min
-1

); SI the time-varying insulin 

sensitivity (L/mU min); k the parameter controlling the 

effective half life of insulin (min
-1

); and
Gα the Michaelis-

Menten parameter for glucose clearance saturation. For 
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more details on the construction and physiological 

interpretation of the model Equations (1)-(2) see [6, 9-11]. 

 

B. Parameter identification 

 For the glucose-insulin Equations (1)-(2), a similar 

integral-based parameter identification method to [6] is 

applied. The parameters Gα , k, n and pG in Equations (1)-

(2) are held constant at the population values based on prior 

studies and sensitivity analysis [6]: 

01.0,16.0,0099.0,
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Similarly, the parameter GE is held at the mean glucose 

of each patient. The carbohydrate input, P(t) in Equations 

(1) and (2) is also held constant, but may change with 

respect to time for different patients. The exogenous insulin 

u(t)=uI is assumed to be a constant infusion over the hour. 

The parameter SI is insulin sensitivity and is assumed 

unknown.  

Integrating Equation (1) from 0 to t yields and choosing 

n values of time, ],60,0[,,,1 ∈= nttt …  (
ntt <<< ⋯10 ), a 

set of n equations are formulated: 
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where ( ) / (1 )GQ t Q Q= + α . To avoid any error in G(0) 

potentially propagating through the equations, G0 = G(0) is 

assumed unknown and is identified along with SI. Equations 

(4) can be written as a matrix system:  
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where G is a continuous approximation to the measured 

glucose [6] and the integrals are evaluated by the trapezium 

rule. Equation (5) can be solved by linear least squares to 

determine SI as a constant over any period. Thus, 
IS  may 

be identified as piecewise constant. 

 For glucose control in the Intensive Care Unit (ICU), 

Equation (1) is utilized over periods of 1 hour [9, 11] and 

glucose is measured on the hour. For two glucose 

measurements )0(0 GG =  and )60(60 GG = , the function 

G(t) in Equation (5) can be approximated by a straight line 

[6]. For a given infusion uI, nutritional input P(t) and 

glucose measurements G0 and G60, the solution to Equation 

(5) determines the required insulin sensitivity. However, 

note that a similar approach could be used if glucose is 

measured more frequently. 

 

A similar, potentially simpler, approach to the parameter 

identification of Equations (4)-(5) is to use the original 

differential Equations (1)-(2), rather than an integral 

formulation. For a given set of values, 
nttt ,,0 …= , n+1 

equations can be formulated: 
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where t0=0. The analogous matrix system to Equation (5) is 

defined: 
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where )( itGɺ are determined by standard finite differences. 

Equation (7) can be solved by linear least squares to 

determine SI. 

 This method applies gradients which is similar in 

concept to typical gradient descent methods. The major 

difference is that no forward simulations are required so like 

the integral method [6] it is a computationally fast way of 

identifying large numbers of 
IS  or other time-varying 

parameters. 

C. Controlling Drug Delivery 

For the control of blood glucose G(t) in Equation (1), 

measurements are assumed to be taken every hour with a 

normally distributed absolute error of 7%, which is typical 

for a commercial glucometer [8]. Model-based control of 

glucose typically starts by taking two measurements G0 and 

G60 at the times 0 and 60 minutes and computing the insulin 

sensitivity SI from Equation (5). The goal is to determine the 

required insulin infusion u=uI in Equation (2) that will bring 

glucose down to a target value Gtarget in the next hour. This 

process is performed numerically at each intervention 

period. 

III. RESULTS AND DISCUSSION 

A. Glucose control in the Christchurch ICU 

The glucose control protocol SPRINT [3-5] is used 

extensively in the Christchurch ICU. One of the keys to the 

success of SPRINT is the significant testing of model-based 

glucose control algorithms on “virtual” patients prior to 

implementation. The major physiological variable that is 

used to represent a “virtual” patient profile is the time 

varying insulin sensitivity profile in Equation (1) that can be 

identified from retrospective data. 
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 The insulin sensitivity profiles provide a means to 

simulate physiologically realistic time varying glucose 

response to different insulin and nutrition regimes. This 

approach thus provides a repeatable cohort for easy 

comparison of various protocols. It also gives insight into 

long term clinical performance, and, importantly, lets 

algorithms and methods be tested safely before clinical 

implementation. 

B. Parameter identification – Integral versus Derivative 

Several numerical studies have been done using data from 

the retrospective cohort of [6]. For brevity, the results are 

summarized: 

 

(1)  Patients with quite high average insulin infusion, have 

glucose response close to a straight line between hourly 

measurements. In this case both the integral and derivative 

methods perform similarly. 

 

(2) Clinically, periods where the glucose response is 

significantly different from a straight line can occur when 

there is an increase in feed from a period of low insulin 

infusion. During these periods the derivative method greatly 

underestimates the insulin sensitivity, and in some cases 

goes negative, even without measurement noise. The result 

of an underestimated SI value, is an overestimated infusion 

or bolus which can be dangerous as hyperglycemia may 

result. This scenario can happen reasonably frequently, so 

the method of choice is the integral method. 

C. Model-based glucose control 

To demonstrate the practical aspects of model-based 

glucose control, the integral method is applied to an insulin 

sensitivity profile from [6]. The patient is Patient 519, who 

was a male aged 69; type 2 diabetic; medical subgroup - 

General Surgical; APACHE II score - 29. The nutritional 

input was initially held constant at 0.049 mmol/(Lmin), GE 

was held constant at the mean measured glucose value of 

5.84 mmol/L and the maximum infusion allowed was 6 

units. 

 Fig 1 (a) shows the result of simulated glucose control 

using the integral method for parameter identification and 

with 7% noise placed on the measurements. The mean 

glucose and standard deviation of 5.58 ± 1.03 mmol/L with 

67.57% of glucose values lying in the 4.0 to 6.1 mmol/L 

band. The reason for this decrease in performance is that 

there are significant periods in Figure 14 where the insulin 

has reached the maximum of 6 Units/hour so effectively no 

added, but necessary, control is being applied in these 

periods and insulin effect is saturated [1, 12]. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

            (a)     (b) 

 

Fig. 1 (a) Model-based glucose control with the time varying   of Figure 12 

and a fixed nutritional input given in Equation (22). (b) Model-based 

glucose control with the time varying SI and a simply varying nutritional 

input. 

 

The solution to this problem has been to vary the nutrition, 

as well as the insulin [10, 11]. A fully developed and 

validated method for modulating both the nutrition and 

insulin in a model-based glycemic control system is detailed 

in [11]. 

 To demonstrate the essential concept the nutrition is 

dropped to 40% of the original value, whenever the insulin 

hits the upper limit of 6 units. This simple rule results in a 

significant improvement in glucose control as shown in Fig 

1 (b). The mean glucose is 5.32 ± 0.67 mmol/L with 

76.14% of values lying between 4 and 6.1 mmol/L. 

D. Combining CGMS with glucocard measurements 

To demonstrate a new clinical application of the methods 

presented and to further investigate the comparison of the 

integral versus derivative approaches, a CGMS sensor is 

included in the model-based glucose control algorithm. The 

CGMS sensor measures glucose every 5 minutes with a 

measurement error that can be approximated by the 

formula: 

 

(1 0.18 ) ,
noise true

GG = + δ  ( 0, 1)µ σ= =  (8) 

 

where δ is the normal distribution. Equation (8) gives a 

mean absolute error of 14%, which is typical for CGMS 

sensors [7]. Blood glucose is still assumed to be measured 

hourly with a glucocard and 7% uniformly distributed noise 

in addition to the CGMS for comparison. To account for the 

extra noise in the CGMS and to give the greatest chance for 

an averaging effect on the errors, insulin sensitivity SI is 

fitted over the prior 1½ hours rather than 1 hour. The 

intervention period is also shortened to ½ hour to take 

advantage of the extra measurements from CGMS. The 1½ 

hour periods ensure that 2 glucocard measurements will 

always be available to fit SI when stepping along each 

interval of ½ hour. 
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A further change that is made is that 7% low 

frequency modelling error is added to the glucose 

measurements, as well as the normally distributed error in 

Equation (8). The final expression for noise is thus defined: 

 

2
(1 0.18 ) 1 0.07cos

82
noise true

t GG
π

δ
  

= + −   
  
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Equation (9) reflects the fact that a higher resolution in 

measurements, trades off with both a higher amount of 

sensor error and importantly, modelling error.  

 Fig 2(a) shows the resulting glucose control for Patient 

519 using the same parameters as used for Fig 1. A 

significant improvement can be seen with a mean glucose of 

5.03 ± 0.42 mmol/L and 98.55% of glucose  values lying 

between 4 and 6.1 mmol/L.  

 However, for the derivative method, even with 

smoothing to remove most of the local noise, a significantly 

worse result is seen in Fig 2(b). The mean glucose is 

5.5 ± 1.1 mmol/L with only 64.86% of glucose values lying 

between 4.0 and 6.1 mmol/L. Thus, the derivative method is 

unable to take advantage of the extra CGMS data, where the 

integral method gives significantly better outcomes on 

glucose control despite the larger noise distribution for these 

sensors. 

 

 

 

 

 

 

 

 

 
         (a)               (b) 
 

Fig. 2 (a) Model-based glucose control using the integral method with  

the combination of a CGMS sensor and glucocard. (b) Model-based 

glucose control using the derivative method and with a CGMS sensor and 

glucocard. 

IV. CONCLUSIONS  

 

The main results are summarized: 

                                  

• The integral formulation in parameter identification 

is very important for robust and reliable results, 

particularly with respect to modelling error which 

is always present in clinical applications. 

 

• The derivative method is very sensitive to 

modelling error and only works in situations where 

model response is close to a straight line.  

• The combination of the integral method and model-

based drug control is very effective for designing 

and testing new protocols.  

 

The integral method is thus an important research tool in the 

model-based therapeutics approach. For example the 

addition of simulated CGMS shows that a potentially 

significant clinical gain could be achieved with this 

continuous sensor. However, further investigation with real 

CGMS data is required to validate these results.  The 

derivative method, went unstable and failed to realize this 

possible clinical gain, further emphasizing the importance 

of integrals in the formulation. 
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