Cardiovascular modelling and the Intensive Care Unit clinician

T. Desaive*, B. Lambermont*, P. Kolh*, G.M. Shaw**, J.G. Chase***
*Cardiovascular Research Center, University of Liege, Liege, Belgium
**Christchurch Hospital Intensive Care Unit, Christchurch, New Zealand
*#* Department of mechanical engineering, University of Canterbury, Christchurch, New Zealand

Abstract: Critically ill patients are highly variable in their response to care and treatment. This variability
and the search for improved outcomes have led to a significant rise in the use of protocolised care to
reduce variability in care. However, protocolised care does not address the variability in outcome due to
inter- and intra- patient variability. This lack of patient-specificity defines the opportunity for patient-
specific approaches to diagnosis, care and patient-management that are complementary to, and fit within,
protocolised approaches.

Computational models of human physiology offer the potential, with clinical data, to create patient-
specific models that capture a patient’s physiological status. Such models can provide new insights into
patient condition by turning a series of sometimes confusing clinical data into a clear physiological
picture. More directly, they can track patient-specific condition and thus provide new means of diagnosis
and opportunities for optimising therapy.

This article presents the concept of model-based therapeutics and the use of computational models in
cardiovascular critical care in specific. This concept is illustrated by means of examples in monitoring

disease states and defining new clinically relevant metrics.
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1. INTRODUCTION

Critically ill patients exhibit a high variability in response to
care and treatment. In particular, variability in outcome arises
from variability in care and variability in the patient-specific
response to care (Chase et al., 2011). The greater the
variability, the more difficult the patient’s management and
the more likely a lesser outcome becomes. Hence, the recent
rise in importance of protocolised care to minimise the
iatrogenic component due to variability in care. Recent
studies (Wendon, 2010, Kavanagh and Meyer, 2005) have
shown that protocols are potentially most applicable to
groups with well-known clinical pathways and limited co-
morbidities, where a “one size fits all” approach can be
effective. Those outside this group may thus receive lesser
care and outcomes compared to the greater number receiving
benefit.

In a recent review paper (Chase et al., 2011), we summarized
this problem with a plot (Fig. 1). This figure emphasizes the
role of variability in care that protocolised care can reduce,
and the role of a different, potentially less reducible,
component due to inter- and intra-patient variability in
response to treatment. The larger the area, the more difficult
the patient can be to manage.
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Thus, protocolised care reduces only the non-patient portion
of this diagram. Equally, those whose clinical pathway is
“straightforward” and can benefit most from protocolised
care, are likely to have limited inter- and intra-patient
variability in response to treatment. Hence, the smallest, least
variable case is one in which intra-patient response is either
reduced or managed in a patient-specific fashion, thus
separating the final area into several smaller ones.
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Figure 1 : Variability in outcome of the critically ill patient
defined by variability in response to therapy and variability in
care. Shaded area defines the target zone for patient-specific
care (Chase et al., 2011).

The aim of this paper is to show that model-based methods
can provide patient-specific care that is therefore robust to



these intra- and inter- patient variabilities. We examine and
review a new, emerging therapeutic approach that provides
for individualised care that accounts for intra- and inter-
patient variability within an overall protocolised and
evidence-based framework. We will focus on cardiovascular
monitoring and diagnosis in Intensive Care Unit (ICU)
patients, but the overall approach is readily generalizable to
other areas of intensive care medicine.

Cardiovascular monitoring is essential in intensive care,
enabling hemodynamic disturbances to be recognized, and
thus leading to specific treatments. However, it is unclear
whether more invasive monitoring actually improves patient
outcome. Many different sensors and therapeutic instruments
are available, but a major problem is to take this diverse set
of clinical data and transform it into a clear and simple
physiological context. Moreover, complex interactions
between these wvariables and the body’s natural reflex
response can hide the underlying hemodynamic instability.

The randomised controlled trial (RCT) is often regarded as
the most reliable instrument on which to base treatment
selection. Nevertheless, a problem with deriving protocols
from large RCT’s is that they are often developed based on
empirical evidence and in a “one size fits all” context. These
protocols are therefore not well suited to the highly dynamic
and variable needs of ICU patients (Vincent, 2010). For
example, in terms of patient outcome, there is little evidence
to guide the choice of inotropic drugs, although there is a lot
of knowledge on the hemodynamic effects of the drugs.

Thus, when an intensive care clinician is looking at an
individual patient, the reality is that they must consider many
combinations of different disease scenarios based on
frequently conflicting data on a patient’s condition. In
addition, there are no specific guidelines for treatment even
once a diagnosis has been made. Therefore, successful
diagnosis and treatment often relies on experience and
intuition of clinical staff, increasing the likelihood for clinical
errors.

Hence, the major features that are lacking in current
cardiovascular system (CVS) management are the means to
identify and track meaningful physiological parameters of
individual patients, and the flexibility to change therapy
dynamically in response to patient specific dynamics. It is
these two conclusions that define the overall problem, and
demonstrate the need for a unified and more consistent
approach to managing hemodynamics in the critically ill.
This problem illustrates the potential for developing a robust
cardiovascular system model that describes the essential
dynamics of the circulation as a whole, and can thus improve
monitoring, diagnostics and prediction. Most importantly, the
model must be able to adapt to an individual patient and be
identifiable within a reasonable time period (<5 minutes)
using standard ICU measurements. To create such a model,
needs an understanding of the major physiological processes
involved in the hemodynamic responses to both disease states
and therapy, while the validation requires “in-silico” testing,
animal trials and finally human trials.

We will review hereafter the unique work done jointly by the
Cardiovascular Research Center at the University of Liege

(Belgium) and the Mechanical Engineering department at the
University of Canterbury (New Zealand).

2. METHODS
2.1 Cardiovascular system model

Approaches to modelling the human circulation can be
grouped into either Finite Element (FE) or Pressure Volume
(PV) approaches. The advantage of FE techniques is that they
offer accurate results, but require immensely detailed inputs
such as muscle fibre orientations, structures and mechanical
properties (Kerckhoffs et al., 2007, Legrice et al., 1997).
Limitations on the availability of detailed clinical patient
specific data mean that FE methods are not well suited as
rapid diagnostic tools. In contrast, PV methods divide the
circulation into a series of elastic chambers separated by
resistances, and inductors simulating inertial effects where
required. Each elastic chamber models a section such as the
ventricles, or the atria, each with their own pressure-volume
relationship. Only a minimal number of parameters are thus
needed, allowing these models to be solved in very
reasonable times suitable for immediate clinical feedback.

Wentilation

CO2 T O3
Rpulin ! \ Rpul out
umonary | AN
qu\ out

\93

AN I PI
J GP“"” \lean

o )

| Pulmonary | r Pulmonary |

\Anerv/

%va

Rpv E; Qpv T

| Pericardium___

>
%Lmt

RmtZ ith

\

i
|
I
|
I
|
|
|
I
[ Rigt | :’ Left | |
I
I
|
I
|
I
|
|

i Septum 2
‘Qentncle/i \\’enmcle//
ng Qtc /|\ Ra

[ \
2 2

o

<

? Lte

<
R A

) |

Thnraclc Cavity

r/ A
; Aol rla |

N e N

< ¢
Qur \Bf’d?/ Qsys
co:T LOZ

Figure 2: Minimal model of the CVS (Starfinger et al.,
2008d, Starfinger et al., 2008c).




We developed such a minimal CVS model, which is a
lumped parameter model of 6-8 elastic chambers. The
original model has been extended (Chase et al., 2010, Smith
et al,, 2004, Smith et al., 2006, Starfinger et al., 2008b,
Starfinger et al., 2008d, Starfinger et al., 2008c, Starfinger et
al., 2007) and an overview of the 8 chamber version used in
this research is given in Figure 2. Each chamber is
characterised by the flow in and out of the chamber, the
pressure up- and downstream, the resistances of the heart
valves, and inertia of the blood. The model also accounts for
ventricular interaction by means of the septum displacement.

This CVS model uses the classical concept of time varying
elastance proposed by Suga et al. (Suga et al., 1973) to
simulate the cardiac muscle activation. More specifically, the
upper and lower limits of the elastance are defined by the
end-systolic pressure—volume relationship (ESPVR) and end-
diastolic pressure—volume relationship (EDPVR) (Burkhoff
et al,, 1988). By combining the ESPVR and EDPVR an
equation relating the ventricular pressure (P) to the
ventricular volume (V):

P = e()E oy (V = V) + (1 — e(t))Po (e — 1) (1)

where Py, Vo and A are respectively, the pressure gradient and
the volume at zero pressure and the curvature, while Eeg.r is
the RV end-systolic elastance and e(t) is the activation
function (Figure 3) that accounts for ventricular activation
(Smith et al., 2004, Smith et al., 2006).
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Figure 3. Plot of the activation function e(t).

2.2 Parameter identification method

Once we have defined a CVS mathematical model, we need
to develop a parameter identification method in order to
obtain a patient-specific model. A lot of effort has been done
to obtain efficient, fast and reliable identification methods.
The original parameter identification method used in this
research has already been shown to rapidly and accurately
identify virtually the entire parameter set in the presence of
significant measurement noise (Desaive et al., 2008, Hann et
al., 2006, Starfinger et al., 2008a, Starfinger et al., 2008d,
Starfinger et al., 2008c) and limited measurements (Hann et
al., 2009, Hann et al., 2010).

Recent improvements of the identification method (Revie et
al., 2011a, Revie et al., 2011b) have led to a more clinically

applicable method. The new method only requires a minimal
set of discrete measurements, such as stroke volume and
mean aortic pressure, that are easily obtainable in the ICU.
Whereas the previous method required measurements of
continuous waveforms, including the highly invasive (or
expensive) measures of the time varying ventricular volume
traces, which require a lot of computation processing. The
measurements used by the new approach are far fewer and far
less intensive to obtain and utilize.

It is important to note that in this model-based approach, it is
not intended to perfectly match the pressure and volume
waveform shapes, but only the minimum (diastolic) and
maximum (systolic) values. Hence, it seeks to capture the
primary, clinically relevant dynamics for decision support at
the bedside, rather than a potentially more perfect
physiological picture.

3. RESULTS AND DISCUSSION

The model-based approach summarized in Figure 4 (Revie et
al., 2011a) has been successfully tested on experimental
animal models of pulmonary embolism (Starfinger et al.,
2007), PEEP titrations and volume therapy decision support
(Starfinger et al., 2008d, Starfinger et al., 2008c), and septic
shock experiments (Desaive et al., 2008, Starfinger et al.,
2008b).
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Figure 4. Flow chart of the model-based approach (Revie et
al., 2011a).

Hereafter, we will briefly review some of the latest results
obtained by our groups in cardiovascular monitoring and
diagnosis.

3.1 Monitoring of acute pulmonary embolism

In a recent study by Revie et al. (Revie et al., 2011a), the
subject-specific computer models accurately captured the
increase in pulmonary resistance (R,,), the main
cardiovascular consequence of acute pulmonary embolism
(Figure 5), in all five pigs trials, which related well (R2 =
0.81) with the experimentally derived pulmonary vascular
resistance.  Figure 5 also shows that Ry, systemically
overestimates the experimentally derived pulmonary vascular
resistance (PVR) (Ghuysen et al., 2008), but importantly, the
modelled value tracks the large increases in PVR at t120 and



t240 after pulmonary embolization.
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Figure 5: Identified subject-specific pulmonary resistance
during an acute pulmonary embolism pig trial.
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Figure 6. Identified right ventricular expansion index (RVEI)
during acute pulmonary embolism.

A direct cause of the increase of PVR during pulmonary
embolism is pulmonary hypertension and the right ventricle
compensates this pressure increase by dilation, as it is a
compliant chamber. This results in a leftward shift in the
intraventricular septum, which can be measured by the right

ventricle expansion index (RVEI), namely the ratio of the
right and left end diastolic volumes. Averaged across all five
pigs, the identified RVEI compared well with the true RVEI
with a correlation coefficient of R2 = 0.92 (Revie et al.,
2011a).

Figure 6 shows that the modelled RVEI increases in all the
trials, with sharp increases noticed for pigs 1 and 2 near the
end of their trials, indicating that they are in a near-death
state. Whereas only minor increases (< 25%) are noticed for
pigs 3, 4, and 5, which survive the trials. Hence, the modelled
RVEI provides a good indication of how well the pigs are
coping with acute pulmonary embolism.

3.2 Defining ventriculo-arterial coupling metric

Blood flow creates a continuous interaction between the
cardiac ventricle and the arterial tree. This interaction, known
as ventriculo-arterial coupling, is the main determinant of
stroke volume and ejection pressure because it relates effort
or force capacity to output resistance or afterload.
Theoretically, acute assessment of the ventriculo-arterial
coupling should lead to optimal hemodynamic therapy
(Lambermont and D'Orio, 2006).

In a recent study, Desaive et al (Desaive et al., 2012) have
shown that model-based approach offers potentially a new
reliable procedure to assess the right ventricle contractility, as
well as the right ventricular-arterial coupling. They also
defined a new model-based metric (Eqspyr/Rpuiin) that, with
adequate calibration, can effectively monitor coupling in
clinical real-time and thus be used to guide therapy.
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Figure 7: Mean experimental ( E fsxp / Efxp) and identified
(Eesrvf/Rpuiin) Tight ventricular-arterial coupling as a

function of time for all pigs.

Figure 7 presents the RV-vascular coupling using Eggppr/
Rpyin during an endotoxic shock experiment as a further
marker of the impact of sepsis. It shows a good correlation
between the identified coupling metric and the experimental



coupling. The overall trends over time, beginning with a
sharp fall to a value approaching 1.0 and uncoupling,
followed by a recovery due to hemofiltration treatment.

4. CONCLUSIONS

The Cardiovascular Research Center at the University of
Liege and the Department of Mechanical Engineering at the
University of Canterbury have developed a unique
collaboration on model-based therapeutics. This collaboration
has led to the development of clinically validated models of
physiological systems for diagnosis and decision support. In
cardiovascular critical care, they designed minimal models
allowing for rapid and efficient identification using clinical
measurements easily obtained in the ICU. Validation has
been performed using animal data, showing the applicability
of the model-based patient-specific approach to diagnose and
track disease states but also to design new clinically relevant
metrics that could be followed in real-time.
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