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Abstract: Critically ill patients are highly variable in their response to care and treatment. This variability 
and the search for improved outcomes have led to a significant rise in the use of protocolised care to 
reduce variability in care. However, protocolised care does not address the variability in outcome due to 
inter- and intra- patient variability. This lack of patient-specificity defines the opportunity for patient-
specific approaches to diagnosis, care and patient-management that are complementary to, and fit within, 
protocolised approaches. 
Computational models of human physiology offer the potential, with clinical data, to create patient-
specific models that capture a patient’s physiological status. Such models can provide new insights into 
patient condition by turning a series of sometimes confusing clinical data into a clear physiological 
picture. More directly, they can track patient-specific condition and thus provide new means of diagnosis 
and opportunities for optimising therapy.  
This article presents the concept of model-based therapeutics and the use of computational models in 
cardiovascular critical care in specific. This concept is illustrated by means of examples in monitoring 
disease states and defining new clinically relevant metrics. 
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1. INTRODUCTION 

Critically ill patients exhibit a high variability in response to 
care and treatment. In particular, variability in outcome arises 
from variability in care and variability in the patient-specific 
response to care (Chase et al., 2011). The greater the 
variability, the more difficult the patient’s management and 
the more likely a lesser outcome becomes. Hence, the recent 
rise in importance of protocolised care to minimise the 
iatrogenic component due to variability in care. Recent 
studies (Wendon, 2010, Kavanagh and Meyer, 2005) have 
shown that protocols are potentially most applicable to 
groups with well-known clinical pathways and limited co-
morbidities, where a “one size fits all” approach can be 
effective. Those outside this group may thus receive lesser 
care and outcomes compared to the greater number receiving 
benefit. 

In a recent review paper (Chase et al., 2011), we summarized 
this problem with a plot (Fig. 1). This figure emphasizes the 
role of variability in care that protocolised care can reduce, 
and the role of a different, potentially less reducible, 
component due to inter- and intra-patient variability in 
response to treatment. The larger the area, the more difficult 
the patient can be to manage.  
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Thus, protocolised care reduces only the non-patient portion 
of this diagram. Equally, those whose clinical pathway is 
“straightforward” and can benefit most from protocolised 
care, are likely to have limited inter- and intra-patient 
variability in response to treatment. Hence, the smallest, least 
variable case is one in which intra-patient response is either 
reduced or managed in a patient-specific fashion, thus 
separating the final area into several smaller ones.  

  

 

 

 

Figure 1 : Variability in outcome of the critically ill patient 
defined by variability in response to therapy and variability in 
care. Shaded area defines the target zone for patient-specific 
care (Chase et al., 2011). 

 

The aim of this paper is to show that model-based methods 
can provide patient-specific care that is therefore robust to 
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these intra- and inter- patient variabilities. We examine and 
review a new, emerging therapeutic approach that provides 
for individualised care that accounts for intra- and inter- 
patient variability within an overall protocolised and 
evidence-based framework. We will focus on cardiovascular 
monitoring and diagnosis in Intensive Care Unit (ICU) 
patients, but the overall approach is readily generalizable to 
other areas of intensive care medicine. 

Cardiovascular monitoring is essential in intensive care, 
enabling hemodynamic disturbances to be recognized, and 
thus leading to specific treatments. However, it is unclear 
whether more invasive monitoring actually improves patient 
outcome. Many different sensors and therapeutic instruments 
are available, but a major problem is to take this diverse set 
of clinical data and transform it into a clear and simple 
physiological context. Moreover, complex interactions 
between these variables and the body’s natural reflex 
response can hide the underlying hemodynamic instability.  

The randomised controlled trial (RCT) is often regarded as 
the most reliable instrument on which to base treatment 
selection. Nevertheless, a problem with deriving protocols 
from large RCT’s is that they are often developed based on 
empirical evidence and in a “one size fits all” context. These 
protocols are therefore not well suited to the highly dynamic 
and variable needs of ICU patients (Vincent, 2010). For 
example, in terms of patient outcome, there is little evidence 
to guide the choice of inotropic drugs, although there is a lot 
of knowledge on the hemodynamic effects of the drugs.  

Thus, when an intensive care clinician is looking at an 
individual patient, the reality is that they must consider many 
combinations of different disease scenarios based on 
frequently conflicting data on a patient’s condition. In 
addition, there are no specific guidelines for treatment even 
once a diagnosis has been made. Therefore, successful 
diagnosis and treatment often relies on experience and 
intuition of clinical staff, increasing the likelihood for clinical 
errors.  

Hence, the major features that are lacking in current 
cardiovascular system (CVS) management are the means to 
identify and track meaningful physiological parameters of 
individual patients, and the flexibility to change therapy 
dynamically in response to patient specific dynamics. It is 
these two conclusions that define the overall problem, and 
demonstrate the need for a unified and more consistent 
approach to managing hemodynamics in the critically ill. 
This problem illustrates the potential for developing a robust 
cardiovascular system model that describes the essential 
dynamics of the circulation as a whole, and can thus improve 
monitoring, diagnostics and prediction. Most importantly, the 
model must be able to adapt to an individual patient and be 
identifiable within a reasonable time period (<5 minutes) 
using standard ICU measurements. To create such a model, 
needs an understanding of the major physiological processes 
involved in the hemodynamic responses to both disease states 
and therapy, while the validation requires “in-silico” testing, 
animal trials and finally human trials. 

We will review hereafter the unique work done jointly by the 
Cardiovascular Research Center at the University of Liege 

(Belgium) and the Mechanical Engineering department at the 
University of Canterbury (New Zealand). 

 

2. METHODS 

2.1 Cardiovascular system model 

Approaches to modelling the human circulation can be 
grouped into either Finite Element (FE) or Pressure Volume 
(PV) approaches. The advantage of FE techniques is that they 
offer accurate results, but require immensely detailed inputs 
such as muscle fibre orientations, structures and mechanical 
properties (Kerckhoffs et al., 2007, Legrice et al., 1997). 
Limitations on the availability of detailed clinical patient 
specific data mean that FE methods are not well suited as 
rapid diagnostic tools. In contrast, PV methods divide the 
circulation into a series of elastic chambers separated by 
resistances, and inductors simulating inertial effects where 
required. Each elastic chamber models a section such as the 
ventricles, or the atria, each with their own pressure-volume 
relationship. Only a minimal number of parameters are thus 
needed, allowing these models to be solved in very 
reasonable times suitable for immediate clinical feedback.  

 

 
Figure 2: Minimal model of the CVS (Starfinger et al., 
2008d, Starfinger et al., 2008c). 



 
 

     

 

We developed such a minimal CVS model, which is a 
lumped parameter model of 6-8 elastic chambers. The 
original model has been extended (Chase et al., 2010, Smith 
et al., 2004, Smith et al., 2006, Starfinger et al., 2008b, 
Starfinger et al., 2008d, Starfinger et al., 2008c, Starfinger et 
al., 2007) and an overview of the 8 chamber version used in 
this research is given in Figure 2. Each chamber is 
characterised by the flow in and out of the chamber, the 
pressure up- and downstream, the resistances of the heart 
valves, and inertia of the blood. The model also accounts for 
ventricular interaction by means of the septum displacement. 

This CVS model uses the classical concept of time varying 
elastance proposed by Suga et al. (Suga et al., 1973) to 
simulate the cardiac muscle activation. More specifically, the 
upper and lower limits of the elastance are defined by the 
end-systolic pressure–volume relationship (ESPVR) and end-
diastolic pressure–volume relationship (EDPVR) (Burkhoff 
et al., 1988). By combining the ESPVR and EDPVR an 
equation relating the ventricular pressure (P) to the 
ventricular volume (V):  
 
𝑃 = 𝑒 𝑡 𝐸!"#$% 𝑉 − 𝑉! + 1 − 𝑒 𝑡 𝑃!(𝑒! !!!! − 1) (1) 
 
where P0, V0 and λ are respectively, the pressure gradient and 
the volume at zero pressure and the curvature, while Eesrvf is 
the RV end-systolic elastance and e(t) is the activation 
function (Figure 3) that accounts for ventricular activation 
(Smith et al., 2004, Smith et al., 2006). 
 

 
Figure 3. Plot of the activation function e(t). 

 

2.2  Parameter identification method 

Once we have defined a CVS mathematical model, we need 
to develop a parameter identification method in order to 
obtain a patient-specific model. A lot of effort has been done 
to obtain efficient, fast and reliable identification methods. 
The original parameter identification method used in this 
research has already been shown to rapidly and accurately 
identify virtually the entire parameter set in the presence of 
significant measurement noise (Desaive et al., 2008, Hann et 
al., 2006, Starfinger et al., 2008a, Starfinger et al., 2008d, 
Starfinger et al., 2008c) and limited measurements (Hann et 
al., 2009, Hann et al., 2010).  

Recent improvements of the identification method (Revie et 
al., 2011a, Revie et al., 2011b) have led to a more clinically 

applicable method. The new method only requires a minimal 
set of discrete measurements, such as stroke volume and 
mean aortic pressure, that are easily obtainable in the ICU. 
Whereas the previous method required measurements of 
continuous waveforms, including the highly invasive (or 
expensive) measures of the time varying ventricular volume 
traces, which require a lot of computation processing. The 
measurements used by the new approach are far fewer and far 
less intensive to obtain and utilize.  

It is important to note that in this model-based approach, it is 
not intended to perfectly match the pressure and volume 
waveform shapes, but only the minimum (diastolic) and 
maximum (systolic) values. Hence, it seeks to capture the 
primary, clinically relevant dynamics for decision support at 
the bedside, rather than a potentially more perfect 
physiological picture.  

 

3.  RESULTS AND DISCUSSION  

The model-based approach summarized in Figure 4 (Revie et 
al., 2011a) has been successfully tested on experimental 
animal models of pulmonary embolism (Starfinger et al., 
2007), PEEP titrations and volume therapy decision support 
(Starfinger et al., 2008d, Starfinger et al., 2008c), and septic 
shock experiments (Desaive et al., 2008, Starfinger et al., 
2008b).  

 
Figure 4. Flow chart of the model-based approach (Revie et 
al., 2011a). 

 

Hereafter, we will briefly review some of the latest results 
obtained by our groups in cardiovascular monitoring and 
diagnosis. 

 

3.1 Monitoring of acute pulmonary embolism  

In a recent study by Revie et al. (Revie et al., 2011a), the  
subject-specific computer models accurately captured the 
increase in pulmonary resistance (Rpul), the main 
cardiovascular consequence of acute pulmonary embolism 
(Figure 5), in all five pigs trials, which related well (R2  = 
0.81) with the experimentally derived pulmonary vascular 
resistance.  Figure 5 also shows that Rpul systemically 
overestimates the experimentally derived pulmonary vascular 
resistance (PVR) (Ghuysen et al., 2008), but importantly, the 
modelled value tracks the large increases in PVR at t120 and 



 
 

     

 

t240 after pulmonary embolization. 
 

 
Figure 5: Identified subject-specific pulmonary resistance 
during an acute pulmonary embolism pig trial. 
 

 
Figure 6. Identified right ventricular expansion index (RVEI) 
during acute pulmonary embolism. 
 
A direct cause of the increase of PVR during pulmonary 
embolism is pulmonary hypertension and the right ventricle 
compensates this pressure increase by dilation, as it is a 
compliant chamber. This results in a leftward shift in the 
intraventricular septum, which can be measured by the right 

ventricle expansion index (RVEI), namely the ratio of the 
right and left end diastolic volumes. Averaged across all five 
pigs, the identified RVEI compared well with the true RVEI 
with a correlation coefficient of R2  = 0.92 (Revie et al., 
2011a).  
 
Figure 6 shows that the modelled RVEI increases in all the 
trials, with sharp increases noticed for pigs 1 and 2 near the 
end of their trials, indicating that they are in a near-death 
state. Whereas only minor increases (< 25%) are noticed for 
pigs 3, 4, and 5, which survive the trials. Hence, the modelled 
RVEI provides a good indication of how well the pigs are 
coping with acute pulmonary embolism. 
 
 
3.2 Defining ventriculo-arterial coupling metric 

Blood flow creates a continuous interaction between the 
cardiac ventricle and the arterial tree. This interaction, known 
as ventriculo-arterial coupling, is the main determinant of 
stroke volume and ejection pressure because it relates effort 
or force capacity to output resistance or afterload. 
Theoretically, acute assessment of the ventriculo-arterial 
coupling should lead to optimal hemodynamic therapy 
(Lambermont and D'Orio, 2006). 

In a recent study, Desaive et al (Desaive et al., 2012) have 
shown that model-based approach offers potentially a new 
reliable procedure to assess the right ventricle contractility, as 
well as the right ventricular-arterial coupling. They also 
defined a new model-based metric (𝐸!"#$%/𝑅!"#$%) that, with 
adequate calibration, can effectively monitor coupling in 
clinical real-time and thus be used to guide therapy.  

 

Figure 7:  Mean experimental ( 𝐸!"
!"#/𝐸!

!"#) and identified 
(𝐸!"#$%/𝑅!"#$%) right ventricular-arterial coupling as a 
function of time for all pigs. 

 

Figure 7 presents the RV-vascular coupling using 𝐸!"#$%/
𝑅!"#$% during an endotoxic shock experiment as a further 
marker of the impact of sepsis. It shows a good correlation 
between the identified coupling metric and the experimental 



 
 

     

 

coupling. The overall trends over time, beginning with a 
sharp fall to a value approaching 1.0 and uncoupling, 
followed by a recovery due to hemofiltration treatment. 

 

4. CONCLUSIONS 

The Cardiovascular Research Center at the University of 
Liege and the Department of Mechanical Engineering at the 
University of Canterbury have developed a unique 
collaboration on model-based therapeutics. This collaboration 
has led to the development of clinically validated models of 
physiological systems for diagnosis and decision support. In 
cardiovascular critical care, they designed minimal models 
allowing for rapid and efficient identification using clinical 
measurements easily obtained in the ICU. Validation has 
been performed using animal data, showing the applicability 
of the model-based patient-specific approach to diagnose and 
track disease states but also to design new clinically relevant 
metrics that could be followed in real-time.  
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