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LA REPRESENTATION D’UNE MATRICE PAR BIPLOT

R. PALM*, C. CHARLES ' et J. J. CLAUSTRIAUX *

RESUME

La factorisation d’une matrice par décomposition par valeurs singuliéres est
examinée et utilisée pour la représentation d’une matrice par biplot. Le lien entre
cette représentation et les représentations habituelles des variables et des indi-
vidus réalisées lors des analyses en composantes principales est ensuite examiné
et illustré par un exemple numérique.

SUMMARY

Matrix factorization by means of singular value decomposition is examined
and used to produce a graphical representation of a data matrix called biplot.
The link between this biplot and the plots of the variables and of the individuals
usually given in principal component analysis is discussed and applied to an
example.

1. INTRODUCTION

Un biplot est une représentation graphique d’une matrice, généralement
dans un espace & deux dimensions, chaque ligne et chaque colonne étant repré-
sentée par un point.

Le préfixe bi fait allusion aux deux types de points et non a la dimension de
I’espace servant & la représentation. D’un point de vue théorique, la dimension
de D’espace peut étre augmentée sans difficulté, mais au-dela de la dimension
3, la visualisation ne peut se faire que par des projections des points dans des
sous-espaces.

La matrice qui fait ’objet de la représentation n’est généralement pas la
matrice des observations brutes. Les variables sont en effet le plus souvent cen-
trées, par soustraction de la moyenne, et standardisées d’une maniére ou d’une
autre.
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TChargée de cours a 1'Université de Liége, Gembloux Agro-Bio Tech.
TProfesseur ordinaire & ’Université de Liége, Gembloux Agro-Bio Tech.



Le biplot repose sur la factorisation des matrices. La technique générale est
présentée au paragraphe 2 et une factorisation particuliére, la décomposition par
valeurs propres, est décrite au paragraphe 3. Les propriétés de trois formes de
biplot, basées sur cette décomposition par valeurs singuliéres, sont examinées au
paragraphe 4. La relation entre les biplots et I'analyse en composantes principales
fait 'objet du paragraphe 5. Enfin, quelques informations complémentaires sont
données au paragraphe 6.

La représentation par biplot a été proposée par GABRIEL [1971]. Le lecteur
y trouvera une description approfondie de la méthode. Des informations peuvent
également étre trouvées dans plusieurs livres consacrés a l'analyse statistique
multivariée, en particulier dans les ouvrages de JACKSON [1991], KHATTREE et
NAIK [1995], RENCHER [2002] et SEBER [1984], ainsi que dans les monographies
consacrées entiérement aux biplots de GOWER et HAND [1996] et de GOWER et
al. [2011].

2. FACTORISATION, POINTS-LIGNES ET
POINTS-COLONNES

2.1. Factorisation d’une matrice

Soit Y une matrice de dimensions n X p et de rang r. Il pourrait s’agir, par
exemple, d’une matrice d’observations réalisées sur n individus pour p variables.
Cette matrice Y peut étre exprimée sous la forme d’un produit de deux matrices :

Y=AB,

A étant une matrice de dimensions n X r et de rang r et B une matrice de dimen-
sions p X 7 et de rang r également. Ces matrices A et B qui interviennent dans
la factorisation de Y ne sont pas uniques et nous examinerons, au paragraphe 3,
comment elles peuvent étre déterminées.

Chaque élément y;; de Y est égal au produit de deux vecteurs :

/

y'LJ = a; b] (Z = 1,...771; .7 = ]-7"'7p)7
a; étant la 7°™° ligne de A et b; la j°™° ligne de B.

Cette relation peut encore s’écrire :

Yij = ;1 bj1 + a2 bjo + ... + aip by

A titre d’illustration, considérons la matrice quelconque suivante :

15 5 11

8§ 1 6
Y= 10 6 8|’

19 14 14



qui peut étre factorisée par les matrices suivantes :

3,11 -1,31 0,21
1,56 —1,37 —0,05
2,31 0,10 —0,63
4,46 1,34 0,20

4,47 —0,76 0,41
et B=|250 212 0,00
3,33 —0,57 —0,56

A:

On notera que les éléments des matrices A et B ont été arrondis & deux
décimales. Les calculs ultérieurs ont toutefois été réalisés avec un plus grand
nombre de décimales. Le lecteur qui referait les calculs de fagon manuelle pourrait
donc obtenir des résultats légérement différents de ceux reproduits ici.

On peut vérifier que, par exemple, I’élément y35 est bien égal aux produits
des vecteurs ag et b}, avec :

as=(2,31 0,10 —0,63) et by=(2,50 2,12 0,00).

En effet :

ys2 = (2,31)(2,50) + (0,10)(2,12) — (0,63)(0,00) ~ 6.

Des calculs similaires pourraient étre réalisés pour les douze éléments de

Y.

2.2. Points-lignes et points-colonnes pour une matrice de rang deux

Nous considérons d’abord la représentation graphique d’une matrice de
rang deux. Les matrices A et B n’ont alors que deux colonnes et les vecteurs a;
et b; n’ont que deux éléments. Les n vecteurs a; et les p vecteurs b; peuvent étre
représentés dans un espace de dimension 2. Et pour distinguer les vecteurs a; des
vecteurs b; dans ce graphique, on représente une série de vecteurs, par exemple
les a;, par des points situant I'extrémité des vecteurs et I’autre série de vecteurs,
les b;, par des fleches rejoignant l'origine des axes aux extrémités des vecteurs.
Ces vecteurs seront appelés par la suite, respectivement les points-lignes et les
points-colonnes, car les lignes de A sont associées aux lignes de Y et les lignes
de B sont associées aux colonnes de Y.

Les vecteurs a; et b; présentent trois propriétés qui seront utilisées par la
suite et que nous énongons ci-dessous.

1. La longueur d’un vecteur (longueur du segment rejoignant lorigine au

point pour un vecteur a; ou longueur de la fléche pour un vecteur b;),
appelée aussi norme, est égale a la racine carrée du produit du vecteur par

sa transposée :
laill = (a; 02)1/2 = a? +ah

B[ = (b, b})'/> = | /b2, + b2,

et



2. Le produit scalaire (ou produit interne) des vecteurs a; et b; est égal a y;; :
< i, b5 >= |lai| [[bj]| cos 0 = ain bj1 + a2 bjz = yij,

6;; ¢tant I'angle formé par les deux vecteurs. L’observation y;; est donc
égale & la longueur du vecteur b;, multipliée par la longueur de la projection
du vecteur a; sur le vecteur b; ou encore & la longueur du vecteur a;,
multipliée par la longueur de la projection du vecteur b; sur le vecteur a;.
Il en résulte que l'angle 6;; entre les deux vecteurs a; et b; est donné par
la relation :

M

Ajs bjs
1

2
2 2: 2
Q5s bjs
s=1

V)
Il

(< a;, bj )
0;j = arccos | ———=—— | = arccos
[|ail[[[bs ]

M

s=1

Deux vecteurs a; et b; forment par conséquent un angle droit lorsque
yi; = 0, puisque, dans ce cas, le produit scalaire est nul. Ils forment un
angle aigu lorsque y;; > 0 et ils forment un angle obtus si y;; < 0.

3. L’angle formé par les deux vecteurs a; et ay (i’ # i) ou bj et bjr (j' # j)
est égal & :

2

2
> ais ais > bjs bjrs
s=1 s=1

et 0;;, = arccos

[ 2 2
Z azzs Z a“zz’s Z b?s Z b?/s
s=1 s=1 s=1 s=1

2.3. Points-lignes et points-colonnes pour une matrice de rang quelconque

0;;, = arccos

Si la matrice est de rang r (r > 2), les vecteurs a; et b; doivent &tre
représentés dans un espace de dimension r et les propriétés vues ci-dessus restent
valables lorsque les différentes sommes qui interviennent dans les relations sont
étendues aux r termes.

Si une telle extension ne pose pas de problémes théoriques, elle ne permet
cependant plus une représentation graphique simple. Pour se limiter, par la suite,
4 une représentation graphique & deux dimensions, il peut se justifier de ne
retenir que deux colonnes de A et de B et de négliger les r — 2 autres colonnes.
Les propriétés relatives aux vecteurs rappelées ci-dessus restent valables, sauf en
ce qui concerne le produit scalaire des vecteurs a; et b;. Celui-ci n’est, en effet,
plus égal & y;;, mais & une approximation de y;;, 7 — 2 termes ayant été négligés.
Comme nous le verrons ci-dessous, dans la pratique on retiendra souvent les deux
premiéres colonnes de A et de B et on négligera les r — 2 derniéres colonnes,
mais la factorisation de Y sera optimisée, de maniére a ce que l'approximation
des y;; soit aussi bonne que possible.

Pour ne pas alourdir inutilement les notations, nous ne ferons plus, par
la suite la distinction entre le cas ou Y est de rang 2 et le cas ou Y est de



rang supérieur & 2. Nous donnerons les formules générales pour les matrices de
rang 7, étant entendu que, dans la pratique, on se limitera le plus souvent aux
deux premiéres colonnes de A et de B, ce qui revient a dire qu’on n’étudie pas
la matrice Y, mais une approximation de celle-ci, notée Y () ou encore, plus

simplement, Y, qui est une matrice de rang 2.
Si, pour 'exemple examiné précédemment, on élimine la derniére colonne

des matrices A et B, le produit matriciel ne redonne pas la matrice Y mais une
approximation de Y :

3,11 —1,31 14,92 5,00 11,11
v | 156 —1,37 [ 4,47 2,50 3,33]: 8,02 1,00 5,97
2,31 0,10 || —0,76 2,12 —0,57 10,26 6,00 7,65
4,46 1,34 18,92 14,00 14,11

qui, compte tenu du choix de A et B, est excellente, la somme des carrés des
écarts entre les valeurs initiales et les valeurs approchées étant égale a :

4 3
Z Z(yij —9i;)% =0,23.

i=1 j=1

La figure 1 donne la représentation des lignes de A et de B aprés suppression
de la derniére colonne de chacune de ces matrices. Les points représentant les
lignes de A (points-lignes) sont désignés par les symboles L; a Ly et les points
représentant les lignes de B (points-colonnes) sont représentés par les symboles
Ci a Cs.

Dim 2

Cs Dim 1

Figure 1 — Biplot de la matrice Y (Ly a Ly : points-lignes; C; a Cs : points-
colonnes).

Ce graphique montre immédiatement que les vecteurs C; et C3 ont prati-
quement la méme direction : la premiére et la troisiéme ligne de B (limitées aux
deux premicres colonnes) sont donc & peu prés proportionnelles. On constate
aussi que le produit scalaire de Ly et C; est le plus grand, ce qui signifie que



Iélément y41 de Y est le plus grand. On note encore que tous les produits sca-
laires d’un point-ligne avec un point-colonne sont positifs, chaque angle étant
inférieur a 90 ©; la matrice Y ne contient donc que des éléments positifs. L’angle
formé par les vecteurs Ly et Co est proche de 90°; la valeur g2 est donc trés
faible par rapport aux autres valeurs. Dans la mesure ot Y est proche de Y, les
commentaires faits a propos des valeurs g;; restent valables pour les y;;.

3. DECOMPOSITION PAR VALEURS SINGULIERES

3.1. Optimisation de la factorisation

Au paragraphe 2.1, nous avons vu qu’une matrice de rang 2 peut étre
représentée sous la forme d’un biplot, qui est une représentation simultanée
d’un "effet ligne" et d’un "effet colonne". Ce biplot est réalisé a partir de la
factorisation de Y sous la forme d’un produit de deux matrices. Lorsque la
matrice est de rang r (r > 2), le biplot construit a partir des deux premiéres
colonnes de A et de B est la représentation d’une matrice de rang 2, notée Y(g)

ou Y, qui est une approximation de Y. Puisque la factorisation de Y par le
produit de deux matrices A et B’ n’est pas unique, il y a évidemment intérét a
choisir, parmi I’ensemble des solutions possibles, celle qui, lorsqu’on ne retient
que les deux premiéres colonnes de A et de B, donne la meilleure approximation
de Y. La décomposition par valeurs singuliéres de la matrice Y donne la solution
a ce probléme.

La décomposition par valeurs singuliéres' d’une matrice Y, de dimension
n x p et de rang r consiste en la factorisation suivante [ECKART et YOUNG,
1936] :
Y =ULV’,

ou U est une matrice de dimensions n x r, L une matrice de dimensions r x r
et V' une matrice de dimensions p x r. U et V sont des matrices orthonormeées,
c’est-a-dire telles que :

UU=TIetV'V=I

De plus, U est la matrice dont les colonnes sont les vecteurs propres, normés
a I'unité, associés aux valeurs propres non nulles de YY” ; V est la matrice dont les
colonnes sont les vecteurs propres normés a l'unité, associés aux valeurs propres
non nulles de Y'Y ; L est la matrice diagonale dont les éléments diagonaux sont
les valeurs singuliéres de Y, c’est-a-dire les racines carrées des valeurs propres non
nulles de Y'Y ou de YY”, ces deux matrices ayant des valeurs propres identiques.

La décomposition par valeurs singuliéres factorise Y sous la forme d’un
produit de trois matrices et nous verrons, au paragraphe suivant, comment celles-
ci peuvent étre utilisées pour une représentation par biplot.

1. En anglais : singular-value decomposition.



Pour la matrice Y présentée au paragraphe précédent, la décomposition
conduit aux résultats suivants :

0,51 —0,56 0,30
0,26 —0,59 —0,07
0,33 0,04 —0,91 |’
0,73 0,58 0,29

0,73 —0,33 0,60
V=104 0091 000
0,55 —0,24 —0,80

U:

37,36 0 0
L= 0 5,40 0
0 0 0,48
Les matrices U et V sont liées par les relations suivantes :

U=YVL! et V=Y'UL',

ou encore, pour une colonne k particuliére :

1 1
u, = —Yvy et v = fY”U,k (k’ =1, ...,’I’).
lk lk

Les matrices U, L et V ont encore les propriétés suivantes :
(UL)UL) =ULL'U' =UL*U' =YY’
(VL)(VL)Y =VLL'V' =VL*V' =Y'Y,
L? étant la matrice diagonale des valeurs propres non nulles de Y'Y et de YY”.

3.2. Reconstitution deY

La factorisation de Y peut s’écrire sous la forme d’une somme de produits
de vecteurs :

Y=ULV' =) hu's =Y +Yo+..+Y,.
k=1

Ainsi, pour 'exemple, on a :

13,91 7,78 10,37 1,00 —2,78 0,74
y_ | 697 390 520 | 105 -29 077
10,34 5,78 7,71 —0,08 0,22 —0,06
19,94 11,16 14,87 ~1,03 2,84 —0,76

0,09 0,00 —0,11
—0,02 0,00 0,03
~0,26 0,00 0,35
0,08 0,00 —0,11

+



Chaque matrice Y, (k =1,...,r) est une matrice de rang 1 et la somme
de ¢ (¢ < r) de ces matrices donne une matrice de rang g. L’importance de
chacune de ces matrices dans la reconstitution de Y est décroissante : Y1 est la
matrice de rang 1 qui donne la meilleure approximation de Y;Y; +Y 5 est la
matrice de rang 2 qui donne la meilleure approximation de Y et ainsi de suite, la
qualité de I’approximation se mesurant par la somme des carrés des écarts entre
les y;; et les y;; approchés, notés §;;, pour I’ensemble des couples 5.

La qualité relative de la reconstitution de Y & partirde Y1 +Y>+...4+Y,
est mesurée par le rapport :

G+B+ . +2)/ G+ + ... +12),

qui est égal & :
n

P n p
.2 2
ZZ%J‘/ZZ%;‘-
i=1 j=1 i=1 j=1
Plus ce rapport est proche de 'unité, plus 'approximation de Y est bonne.

Ainsi, pour 'exemple ci-dessus, si on néglige la derniére colonne des ma-
trices U et V, on a : .
Yo =Y1+Y,

et approximation de Y par 17(2) est excellente car le rapport :
(37,362 + 5,40%) /(37,362 + 5,402 + 0,48%) = 0, 9998

est pratiquement égal & I'unité.

4. COORDONNEES DES POINTS DANS LE BIPLOT

4.1. Différentes solutions

La décomposition par valeurs singuliéres factorise la matrice Y en un pro-
duit de trois matrices.

D’autre part, nous avons vu, au paragraphe 2, que le biplot repose sur la
factorisation de Y en deux matrices A et B. Ces deux matrices vont étre définies
a partir de la décomposition par valeurs singuliéres.

On a:
Y =ULV' = AB’,

et la détermination de A et B A partir de U, L et V peut se faire de plusieurs
maniéres. En fonction d’'un paramétre a, on peut écrire la décomposition sous
la forme suivante :

Y = (ULY) (L' °V) = AB' (0<a<1),

L~ étant la matrice diagonale dont les éléments sont les valeurs Af.



Dans la pratique, on considére le plus souvent 'une des trois solutions
suivantes, qui correspondent respectivement a a = 1,a=0et a =1/2:

(UL)(V) = AB} avec A =ULetB, =V

(U)(LV) = A2B, avec Ay =Uet B, =VL

et
(ULY?)(L'?V) = A3sB} avec As=ULY?et By =VL'Y?

4.2. Respect des distances et des angles

Considérons d’abord le cas d’une matrice Y de rang 2 et examinons la
factorisation pour o = 1. D’apreés les propriétés données au paragraphe 3.1, on
a:

AA, =UL(UL) =YY"

Les éléments diagonaux des matrices A1 A} et YY’ correspondent aux
sommes des carrés des éléments des lignes des matrices A; et Y. On a donc :

P
! ! 2
Y.y, = aia; = E Yij-
=1

La longueur du vecteur correspondant & un point-ligne du biplot est donc
égale a la longueur du vecteur correspondant a la méme ligne de la matrice Y,
si on représente les lignes de Y dans I’espace des colonnes de Y.

D’autre part, pour un élément hors de la diagonale de A1 A et de YY’, on
a aussi :
Yy =a;a’y (i #1').

Il en résulte que I'angle formé par deux points-lignes du biplot est égal a
I'angle formé par les deux vecteurs y; et y;; si on représente ces deux vecteurs
dans 'espace des p colonnes :

0 <<yi, yi’>) (<ai, ai/>)
;i = arccos | ———— | = arccos | ———— |,

i || 1 | @il
ou encore :
P 2
> Yij Yt > s airs
;i = arccos 1= = arccos s=1

p 9 p 9 2 9 5
Z yl] Z yi/j E Qs Z a’i’s
Jj=1 j=1 s=1 s=1

Le respect des longueurs et des angles entraine le respect des distances eu-
clidiennes entre les points-lignes du biplot par rapport aux distances euclidiennes
entre les lignes de Y.



Cette propriété du respect des distances euclidiennes et des angles n’est,
par contre, pas vérifiée pour les points-colonnes, pour lesquels :

BB, =1#Y'Y.
Par symétrie, la factorisation avec a@ = 0 conduit au résultat suivant :

B.B), = (VL)(VL) =Y'Y.

Pour cette factorisation, le biplot conserve les angles et les longueurs des
vecteurs relatifs aux points-colonnes, mais pas des vecteurs relatifs aux points-
lignes.

Enfin, la factorisation avec o = 1/2 ne respecte les longueurs et les angles,
ni pour les vecteurs relatifs aux points-lignes, ni pour les vecteurs relatifs aux
points-colonnes.

En conclusion, la factorisation avec a = 1 privilégie les lignes, la factorisa-
tion avec o = 0 privilégie les colonnes et la factorisation avec a = 1/2 donne un
poids égal aux lignes et aux colonnes. Ces factorisations sont parfois appelées
factorisation JK ou RMP (row metric preserving), GH ou CMP (column metric
preserving) et SYM (Symetric).

Lorsque Y n’est pas une matrice de rang 2, nous avons vu que les biplots ne
sont plus des représentations de Y mais des représentations d’une approximation
de rang 2 de Y. Dans ces conditions, les longueurs et les angles ne sont plus
exactement conservés pour les points-lignes de Y lorsque o« = 1, ni pour les
points-colonnes de Y lorsque o = 0.

Pour ’exemple considéré précédemment, et en négligeant la troisiéme valeur
propre, on obtient pour a =1 :

13’23 :g’(l)g 0,73 —0,33
A1 = ’ ’ et B1 = 0,41 0,91

14,13 0,24 0.55 —0 94

27,26 3,11 ’ ’

et pour a=0:

8’% :8‘28 27,33 —1,78
Ay =| ’ et By=| 15,29 4,93

0,38 0,04 20,37 —1,31

0,73 0,58 ’ ’

Pour a = 1/2, on obtient la factorisation donnée au paragraphe 2.1.

Les représentations sous forme de biplots pour les factorisations avec o = 1
et @ = 0 sont données aux figures 2 et 3 et, pour a = 1/2, a la figure 1, examinée
au paragraphe 2.3.

On constate que, dans la figure 2, qui privilégie la représentation des lignes,
les points-colonnes ont des coordonnées trés faibles, ce qui rend le graphique peu
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101
Dim 2
5_
[ )
c H
oy 2 .Lls .
0 5 10 15 20 25 .
CSC1 |_2 |_1 Dim 1
[ ) [ )
-51
_10_

Figure 2 — Biplot de la matrice Y, factorisation avec o = 1 (Ly a Ly : points-
lignes; C; a Cs : points-colonnes).

Dim 2
101
5 c,
Lyls
T 0 T T T T T T
-5 L5 T0  —t5—e0 25_ 30 35
Lot Cy c, Dim1

-10

Figure 3 — Biplot de la matrice f’, factorisation avec &« = 0 (L; a Ly : points-
lignes; C; & C3 : points-colonnes) .

lisible pour les points-colonnes. On a, par contre, la situation inverse pour la
figure 3, les points-lignes étant alors peu visibles. Enfin, dans la figure 1, qui
consiste en un compromis, les deux types de points sont visibles simultanément.
Cette discordance d’échelle pour les points-lignes et les points-colonnes lorsque
a = 1 ou a = 0 sera systématique, dés que le valeurs singuliéres de Y seront
différentes de 'unité.

L’examen de la figure 2, qui respecte les longueurs et les angles pour les
points-lignes, montre par exemple que le vecteur pour L4 est & peu prés deux fois
plus long que le vecteur pour Lj. Cela signifie donc que la moyenne quadratique
des données de la ligne 4 de Y est approximativement le double de la moyenne
quadratique des données de la ligne 3 de Y.

Effectivement, les racines carrées des sommes des carrés des éléments des

11



lignes 3 et 4 de Y sont respectivement égales a (paragraphe 2.3) :

/10,262 + 6,002 + 7,652 = 14,13

et

/18,922 + 14,002 + 14,112 = 27, 44,

ces valeurs étant égales aux longueurs des vecteurs des points-lignes, pour les
lignes 3 et 4 de la matrice A :

V14,132 + 0,242 = 14,13

et

V27,262 + 3,112 = 27, 44.

On voit immédiatement aussi que les moyennes quadratiques des observa-
tions des lignes s’ordonnent de la maniére croissante suivante : 2, 3, 1 et 4.

La figure 3, qui respecte les longueurs et les distances pour les points-
colonnes, montre par exemple que la colonne 2 présente des valeurs globalement
plus faibles que la colonne 1 et que la colonne 3 présente des valeurs intermé-
diaires, les carrés des longueurs des vecteurs dans la figure 3 étant égaux aux
sommes des carrés des éléments des colonnes de Y. Par exemple, pour la premiére
colonne de ¥ (paragraphe 2.3) et la premiére ligne de Bs, on a :

14,922 4 8,022 + 10, 26% 4 18,92% = 27,332 + (—1,78%) = 750, 1.

Cette valeur est aussi trés proche de la somme des carrés de la premiére
colonne de Y, puisque Y est trés proche de Y (paragraphe 3.2).

5. BIPLOT ET ANALYSE EN COMPOSANTES PRINCIPALES

5.1. Présentation classique de I’analyse en composantes principales

L’analyse en composantes principales repose sur le calcul des valeurs et des
vecteurs propres de la matrice des variances et covariances S ou de la matrice de
corrélation R des variables. Les deux méthodes se différencient par la standardi-
sation préliminaire des variables de départ. Ainsi, pour ’analyse en composantes
principales basée sur la matrice des variances et covariances, on considére que
la matrice de départ, que nous notons X, est la matrice des observations cen-
trées obtenues en retranchant de chaque observation d’une colonne, c’est-a-dire
d’une variable, la moyenne de la colonne. Pour une analyse sur la matrice de
corrélation, on considére que la matrice X est constituée de variables centrées
et réduites : on retranche des observations d’une colonne la moyenne de la co-
lonne et on divise le résultat par ’écart-type de la colonne. Par la suite, nous
considérons essentiellement le cas de la matrice de corrélation, qui correspond a
la situation la plus fréquente en pratique.
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Soit ﬂi et ¢ les valeurs propres et les vecteurs propres de la matrice R. Soit
C la matrice obtenue par la juxtaposition des vecteurs propres. Les composantes
principales sont obtenues par la relation :

Z =XC,

et le graphique des individus dans les différents plans factoriels correspond au
diagramme de dispersion de z;, et z;xr (k£ k).

Pour la représentation des variables dans les cercles de corrélation, on cal-
cule la matrice de corrélation W entre les variables initiales et les composantes
principales, en multipliant les vecteurs propres ¢ par la racine carrée de la valeur
propre correspondante piy, soit :

W =CM,

M étant la matrice diagonale dont les éléments diagonaux sont les uy. Dans le
plan factoriel (k, k'), la variable j a comme coordonnées les valeurs w;x et w, g .

A titre d’illustration, nous reprenons l’exemple proposé par HARTIGAN
(1975), concernant les teneurs en protéines, graisse et lactose du lait de 16 mam-
miféres. [’analyse en composantes principales de ces données a été détaillée
antérieurement (PALM, 1998). Le lecteur y trouvera les données et ’ensemble
des résultats de ’analyse, ainsi que des éléments d’interprétation. Nous n’envi-
sageons ici que les aspects plus directement en relation avec les biplots.

Le tableau 1 reprend les données centrées et réduites notées x;1, T2 et x;3.
La juxtaposition de ces trois colonnes donne la matrice X. Le tableau reprend
également les valeurs des composantes principales, notées z;1, z;2 et ;3.

La matrice de corrélation des trois variables est égale & :

1,000 0,897 —0,938
R=| 0,87 1,000 —0,865
~0,938 —0,865 1,000

Les valeurs propres de cette matrice valent :
2 _ 2 _ 2 _
uy = 2,800 us =0,142 et pz = 0,058,
et la matrice des vecteurs propres s’écrit :

~0,585 —0,233 0,777
C=| -0569 0,81 -0,188
0,578 0,552 0,601

Les valeurs des composantes principales du tableau 1 s’obtiennent par le
produit XC et le graphique des individus dans le premier plan factoriel est sim-
plement le diagramme de dispersion de z;;1 et z;s.
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Tableau 1 — Teneurs en protéines, graisse et lactose du lait de 16 mammiféres :
données centrées et réduites et valeurs des composantes principales.

Code Nom i1 ZTi2 i3 Zil Zi2 Zi3
a | anesse | —1,3564 —1,024 1,263 | 2,106 0,193 —0,100
b | baleine 1,332 1,858 —1,615| —2,770 0,285 —0,285
¢ | biche 1,132 1,639 —0,990 | —2,167 0,502 —0,023
d | brebis —0,239 —0,297 0,325 | 0,496 —0,002 0,065
e | buffle 0,154 —0,078 0,325 | 0,322 0,152 0,090
f | chamelle | —0,839 —0,733 0,387 | 1,132 —0,177 —0,282
g | cobaye 0,275 —0,180 —0,927 | —0,594 —0,720 —0,310
h jument —1,096 —1,083 1,701 2,241 0,328 0,374
i lama —-0,725 —0,762 0,888 1,371 0,049 0,113
i | lapine 1,675 0,679 —1,428 | —2,191 —0,636 0,316
k mule —1,268 —0,966 0,825 1,768 —0,022 —0,308
1| rate 0,789 0,606 —0,551 | —1,125 —0,004 0,168
m renarde 0,046 —0,369 0,450 0,443 —0,058 0,376
n renne 1,218 1,727 —1,052 | —2,303 0,517 —0,010
o | truie 0,189 —0,486 —0,301 | —0,008 —0,599 0,057
p | zébre —0,982 —0,529 0,700 | 1,280 0,192 —0,243

En multipliant C' par la matrice diagonale dont les éléments sont les fiy, on
obtient les corrélations des variables initiales et des composantes principales :

—0,585 —0,233 0,777 /2,800 0 0
W=| -0,569 0,801 -0,188 0 0,142 0
0,578 0,552 0,601 0 0 /0,058

~0,979 —0,08% 0,186
=] —0,952 0,301 —0,045
0,968 0,208 0,144

Dans le premier plan factoriel, les variables protéines, graisse et lactose
auront donc comme coordonnées les valeurs suivantes :

(=0,979, —0,088), (—0,952, 0,301) et (0,968, 0,208).

5.2. Relations avec les représentations par biplots

Selon que X est la matrice des variables centrées ou des variables centrées
réduites, la quantité :
(X'X)/(n—1)

représente la matrice de variances et covariances ou la matrice de corrélation.
C’est donc la matrice dont on calcule les valeurs propres et les vecteurs propres.
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Si on divise par v/n — 1 tous les éléments de X :
Y=X/Vn-1,

alors la matrice Y'Y est directement la matrice de variances et covariances ou
la matrice de corrélation, selon la définition de X.

Dés lors, si on effectue la décomposition par valeurs singuliéres de Y :
Y =ULV’,

la matrice L est identique a la matrice M et la matrice V est identique a la
matrice C.

Il en résulte que le produit YV est égal, & une constante preés, a la matrice

YV =Z/Vn—1.

En remplacant Y par sa décomposition par valeurs singuliéres et en tenant
compte du fait que V' est une matrice orthonormée, on a :

Z/\n—-1=ULV'V =UL.

Z :

Les coordonnées des individus dans les graphiques établis en analyse en
composantes principales sont donc identiques, & une constante prés, égale pour
toutes les dimensions, aux coordonnées du biplot lors de la factorisation de Y
avec o« = 1 (paragraphe 4.1).

Du fait de I’égalité des matrices C et V d’une part, et M et L d’autre part,

la matrice W qui donne les coordonnées des variables est égale a :

W =VL=CM.

Les coordonnées des variables dans I'analyse en composantes principales
sont donc égales aux coordonnées des points-colonnes du biplot obtenu par fac-
torisation de Y avec a = 0 (paragraphe 4.1).

Pour les données relatives aux mammiféres, la matrice Y s’écrit :

—0,350 —0,264 0,326
y_ | 0314 0480 0,417

-0,254 -0,137 0,181

Elle comporte 16 lignes, mais seules les deux premiéres et la derniére lignes
ont été reprises.

La décomposition par valeurs singuliéres de cette matrice donne les résul-

tats suivants :
0,325 —0,133 0,108

v | 0427 —0,195 0,307 |

0,198 —0,132 0,262
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1,674 0 0
L= 0 0,376 0
0 0 0,239
et
—0,585 0,233 —0,777
V=1 -0,569 —0,801 0,188
0,578 —0,552 —0,601

On constate tout d’abord que la matrice V' est bien égale a la matrice
des vecteurs propres de R, notée C' au paragraphe 5.1, & condition toutefois de
changer le signe des deux derniéres colonnes. Cette inversion de signe résulte du
fait qu’en analyse en composantes principales le signe des vecteurs propres est
arbitraire et on peut toujours multiplier par —1 tous les éléments d’un vecteur
propre. Si les signes n’ont pas été changés au paragraphe 5.1, c’est pour respecter
les résultats donnés dans 'étude antérieure [PALM, 1998]. On constate aussi que
si on éléve au carré les éléments diagonaux de L on retrouve les valeurs propres
pz de la matrice R (paragraphe 5.1).

D’autre part, si on multiplie la premiére colonne de U par 1,674, la deuxiéme
colonne de U par 0,376 et la troisiéme colonne de U par 0,239, on retrouve, au
facteur v/15 prés, les valeurs des composantes principales. Ainsi, pour le premier
animal, on a :

(0,325)(1,674)(V15) = 2,107
(—0,133)(0,376)(v/15) = —0,194
(0,108)(0,239)(v15) = 0,100.

Ces valeurs sont, aux erreurs d’arrondis preés, égales aux valeurs des com-
posantes principales données dans le tableau 1, si on modifie le signe des deux
derniéres composantes.

Enfin, si on multiplie la matrice V par L, c’est-a-dire si on multiplie la
premiére colonne de V par 1,674, la deuxiéme colonne de V' par 0,376 et la
troisiéme colonne de V par 0,239, on retrouve la matrice de corrélation W du
paragraphe 5.1, si on inverse les signes des deux derniéres colonnes.

5.3. Distances euclidiennes et distances de MAHALANOBIS

Nous avons vu, au paragraphe 4.2, que la factorisation de Y aprés décompo-
sition par valeurs singuliéres avec o = 1 conduit & une représentation graphique
qui respecte les longueurs pour les points-lignes et les distances euclidiennes
entre les points-lignes. Ainsi, pour le premier individu, la somme des carrés des
éléments de la premiére ligne de Y est égale a :

(—0,350)% + (—0,264)? +0,326% = 0, 298,
et la somme des différences entre les deux premiéres lignes vaut :

(—0,350 — 0,344)% + (—0,264 — 0,480)2 + (0,326 + 0,417)* = 1, 587.
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La premiére valeur est égale & la somme des carrés des éléments de la
premiére ligne de UL, soit :

[(0,325)(1, 674)] + [(—0, 133)(0, 376)] + [(0, 108)(0, 239)] = 0, 299.

La deuxiéme valeur est égale & la somme des carrés des différences entre
les deux premiéres lignes de UL :

[(0,325 + 0,427)(1,674))> 4 [(—0, 133 + 0, 195)(0, 376)]?
+[(0,108 — 0, 307)(0, 239)]> = 1, 588.

Ces résultats montrent bien que, lorsque toutes les composantes principales
sont, retenues, les longueurs et les distances euclidiennes entre individus sont
préservées. Bien entendu, si on néglige une ou plusieurs composantes, ce sont les
distances pour le tableau approché Y qui sont conservées.

Si, pour la représentation des individus, on avait retenu la factorisation
avec a = 0, les longueurs et les distances euclidiennes entre individus n’auraient
pas été respectées. Par contre, on peut montrer que les carrés des longueurs
des vecteurs relatifs aux points-lignes sont, au facteur n — 1 prés, les carrés des
distances au sens de MAHALANOBIS des individus au centre de gravité. On peut
démontrer en effet que, pour un individu ¢ donné :

1
' Q-1,/
uiu; = UiS Y
S étant la matrice de variances et covariances des données. Contrairement aux
distances euclidiennes, les distances de MAHALANOBIS tiennent compte des va-
riances et covariances entre variables. Elles sont largement utilisées en analyse
multivariée, en relation avec I’hypothése de multinormalité des populations.

De méme, les distances euclidiennes entre deux points-lignes u; et u;» dans le
biplot établi pour a = 0 sont, & une constante prés, égales au carré des distances
au sens de MAHALANOBIS entre les individus ; et y;r :

1

PR Y] —1 PR— = /.
n—1 (yz Yi )S (.% Yi )

(ui — i) (u — u) =

Pour les données relatives aux mammiféres, le carré de la longueur du
vecteur-ligne pour le premier individu est égal a :

0,325% + (—0,133)2 + (0, 108)% = 0, 135,
et le carré de la distance euclidienne entre les deux premiers individus vaut :

(0,325 + 0,427)2 + (—0, 133 + 0, 195)% + (0, 108 — 0, 307)% = 0, 609.

Si on calcule le carré de la distance de MAHALANOBIS pour le premier
individu et le carré de la distance de MAHALANOBIS entre les deux premiers
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individus, on trouve respectivement 2,020 et 9,137. En divisant par 15 ces deux
valeurs, on retrouve bien 0,135 et 0,609.

Considérons maintenant la représentation des variables réalisée lors de
I’analyse en composantes principales. Nous avons vu que cette représentation
correspond a la représentation des points-colonnes du biplot pour o = 0 (para-
graphe 5.2). Dans Pespace factoriel complet, le carré de la distance d’un point-
colonne j a lorigine des axes correspond a 1’élément j; de la matrice (paragraphe
4.2) :

WW' =VL(VL) =Y'Y.

Si I’analyse en composantes principales est réalisée sur la matrice de corré-
lation, alors (paragraphe 5.2) :

Y'Y =R,

et les éléments diagonaux sont égaux & I'unité. Dans I’espace factoriel complet,
les points représentant les variables se trouvent donc sur une hypersphére de
rayon unitaire. Dans un sous-espace factoriel de dimension 2, ils se trouvent sur
ou a l'intérieur du cercle de rayon unitaire, appelé cercle de corrélation.

Si on examine I'angle formé par deux vecteurs-colonnes j et j’, on a (para-
graphe 2) :
.
D Wjs Wrs r
0 _ s=1 _
COSUj 45 = = Wis Wjls-

T
2 2 s=1
sz Zl wj’s
s=

M=

s=1

puisque, comme on vient de le signaler, la longueur des vecteurs relatifs aux
points-colonnes est égale a I'unité. Il en résulte que cos@;;: est 1'élément jj’
de la matrice WW’ et donc de R, c’est-a-dire aussi la corrélation des variables
j et j’. Deux points sont confondus si les variables correspondantes ont une
corrélation égale & I'unité : ils forment un angle droit si la corrélation est nulle
et ils forment un angle de 180 degrés si la corrélation est égale & —1. L’égalité
entre le cosinus de ’angle et la corrélation des variables n’est cependant vérifiée
que pour ’espace factoriel complet.

Les propriétés énoncées ci-dessus peuvent étre appliquées aux données re-
latives aux mammiféres. Pour les deux premiéres variables, c’est-a-dire pour les
deux premiéres lignes de VL prises comme exemple, on a bien :

(—0,979)% + 0,088 + (—0,186)% ~ 1,

(—0,952)? 4 (—0,301)% 4+ 0,045% ~ 1,

et
(—0,979)(—0,952) + (0,088)(—0,301) + (-0, 186)(0,045) = 0, 897,

cette derniére valeur étant la corrélation entre les deux premiéres variables, c¢’est-
a-dire entre les teneurs en protéines et en graisse.
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5.4. Représentation simultanée des variables et des individus.

En analyse en composantes principales, les individus et les variables font le
plus souvent I'objet de représentations graphiques séparées. Et nous avons vu, au
paragraphe 5.2, que le graphique des individus est équivalent a la représentation
des lignes dans le biplot avec o = 1 et que le cercle de corrélation correspond a
la représentation des colonnes dans le biplot avec o = 0.

Une représentation simultanée des individus et des variables par le biplot
avec a = 1 peut cependant présenter un intérét pratique, si on calibre les axes
correspondant aux variables.

La figure 4 donne le biplot pour I'exemple des mammiféres. Les individus
sont identifiés par leur code (tableau 1) et les variables par les symboles P pour
protéines, G pour graisse et L pour lactose.

Dim 2
0.6 1
0.4 1
P
. Je 0-2;0
! f
. T . =I T m‘.d. ° I. & T .
-0.8 ° -0.6 -04 -0.2 ®- 02 e 04 302.6 0.8
b eec P h Dim1
n 021
0.4
L
-0.6
G
-0.8 1

Figure 4 — Biplot de la matrice des données relatives aux mammiféres, factori-
sation de Y avec a =1 (a, b, ..., p : code des animaux; P : protéines, G : graisse
et L : lactose).

A la figure 5, les vecteurs représentant les variables ont été remplacés par
des axes gradués et, pour ne pas alourdir le graphique, seule ’dnesse, prise a
titre d’exemple, a été identifiée par le symbole a. Si on projette un individu
perpendiculairement sur un de ces axes , on obtient, comme coordonnée sur cet
axe, la valeur approchée de la variable pour cet individu, que nous avons notée
précédemment ¢;;. Ainsi par exemple, pour 'dnesse, on a respectivement pour
I’axe "Protéines", "Graisse" et "Lactose", les valeurs suivantes :

g11 = —0,329, ¢10 = —0,269 et g3 =0,342.
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Dim 2
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Figure 5 — Biplot de la matrice des données relatives aux mammiféres, avec
graduation des axes relatifs aux variables (a : &nesse; a; : projection de a sur
P; as : projection de a sur G; a3 : projection de a sur L).

Ces projections ont été matérialisées par les symboles a1, as et ag. Les
valeurs des projections sont trés proches des valeurs de la premiére ligne de la
matrice Y donnée au paragraphe 5.2 :

Y11 = —07350’ Y12 = —O7 264 et Y13 = 0, 3267

car, pour cet exemple, les deux premiéres composantes expliquent 98 % de la
variabilité et la matrice Y est proche de Y (o).

La figure 5 peut donc étre interprétée comme une extension multivariée d’un
diagramme de dispersion : au lieu de deux axes perpendiculaires, on a plusieurs
axes, nécessairement non perpendiculaires. Un tel graphique n’est cependant
utile que si la matrice Y(Q) est suffisamment proche de Y, comme c’est le cas
pour cet exemple.

Des informations concernant la détermination des graduations sur les axes
sont données par GOWER et al. (2011).

6. INFORMATIONS COMPLEMENTAIRES

Dans cette note, nous avons présenté un outil permettant la visualisation
graphique d’une matrice, généralement dans un espace de dimension réduite. La
particularité de ’outil est de donner une représentation simultanée des lignes et
des colonnes de la matrice, ce qui justifie le nom de biplot donné au graphique. La
méthode repose sur la factorisation de la matrice sous la forme de deux matrices.
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Cette factorisation est optimisée, de maniére a ce que le sous-espace de
dimension réduite donne la meilleure approximation de la matrice. L’objectif est
atteint par l'utilisation de la décomposition par valeurs singuliéres :

Y =ULV'.

Les lignes et les colonnes de la matrice initiale Y sont alors représentées
par des points dont les coordonnées sont les éléments des lignes et des matrices :

UL® et VLS.

Pour que le produit scalaire d’un vecteur correspondant a un point-ligne
et & un point-colonne j soit égal & 1’élément ij de Y, il faut que la somme des
exposants de L dans les deux matrices ci-dessus soit égal a I'unité, c’est-a-dire
que [ soit égal a 1 — a.

Dans la pratique cependant, des représentations graphiques & partir de
matrices pour lesquelles o + 8 # 1 sont aussi utilisées, comme nous ’avons vu
pour 'analyse en composantes principales, ot = 3 = 1.

Une généralisation du biplot aux situations pour lesquelles o + 5 # 1 est
étudiée par GOWER [2004] et la qualité de la représentation du biplot pour
différents choix de a et 8 a été examinée par GABRIEL [2002].

Dans cette note, nous nous sommes volontairement limités & une introduc-
tion aux biplots et & leur relation avec l’analyse en composantes principales.
Il existe cependant aussi des relations entre les représentations par biplots et
d’autres méthodes statistiques multivariées. Le lecteur trouvera des informa-
tions complémentaires dans les livres de GOWER et HAND [1996] et de GOWER
et al. [2011].
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