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Introduction

Classical RL problem:

e Single trajectory

e Discounted rewards

e Infinite horizon

e Discrete state/action spaces

This problem is known to be difficult to address, except with
a high discount factor or rather small state/action spaces.



How to improve the efficiency of actual techniques ?

Adding the prior knowledge on the MDP to be played.
e Not actually used
e Available for most applications

e Specific to each type of problem

This can be represented by the knowledge of the distribution
from which the MDP to be played will be drawn.

Goal: Discovering new E/E strategies which works better
than usual techniques on this distribution.



E/E strategies significantly better than Random:
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How?
Defining a rich set of E/E strategies, and searching for the
best one in average according to the given MDP distribution.

The chosen approach consists in defining E/E strategies
based on short formulas.

Why?
e Simple to define very large spaces of strategies
e Good interpretability

e Easy to use



Background

Let be
o M=(S,A pms(-), pm, Pmo(-),7), @ MDP
o S={sM ... sns)} its state space
o A= {a(l), ceey a(”A)}, its action space
e sii1 ~ pm,r(+|St, ar), the transition law (stochastic)

re = pm(st, at, St+1), the reward distribution
(deterministic)



An history Hy = [so, a0, fo, - - - , St, at, ] is a vector that
gathers the history over the first t steps.

An E/E strategy =
ar € A: ay ~ 7T(Ht71,5t)

The stochastic discounted return of 7:

(o]
7/\T/I(SO) = nytrt )
t=0



The average stochastic discounted return of =:

I = E [Rm(s0)]
pm,o(-)Pm,e(+)

The best E/E strategy m, given the prior py(-) is the one
maximizing:

Jr = [JM’] :

M’NPM



Formula-based E/E strategies

A formula-based E/E strategy is using a function, ranking
each action (like an index-based strategy), in order to choose
the next action to perform:

7P (He_1,s¢) € argmaxF< p(st, a), N(s¢, a), Q(st, a), \A/(st),t,’yt>
acA

The set of all formulas of size K or less is denoted by IFj’f,l
(discrete set).



Finding a high-performance formula-based
E/E strategy for a given class of MDPs

Reducing ij/l

Several formulas can lead to the same policy
= Reduction of Fﬁ\(/t is necessary.

We partition the set F5\</1 into equivalence classes, two
formulas being equivalent if and only if they lead to the
same policy.



For each equivalence class, we then consider one member of
minimal length, and we gather all those minimal members

- =K
into a set IF‘M.

Since such a set is difficult to compute. Let ]F'/’f/l be an
approximation of IF‘KA.
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Finding a high-performance formula-based
E/E strategy for a given class of MDPs

Finding a high-performance formula

Using Monte-Carlo simulations for each formula could reveal
itself to be time-inefficient in case of spaces Fj’f,l of large
cardinality.

= Formalizing this research as a N—armed bandit problem.
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To each formula F, € INF/’f/l (ne{1,...,N}), we associate an
arm.

Pulling the arm n consists first in randomly drawing a MDP
M according to pa(+) and an initial state s for this MDP
according to ppo(-).

The reward associated to arm n is the empirical discounted
return R7,(so).

The bandit problem is used to identify high-quality
formula(s).
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Experimental results

Random MDPs:
e |S| =20, |A] =5, v =0.995
e For each state-action pair, there is 0.1 |S| reachable
states (2 for |S| = 20).
e Each transition provides a constant reward, randomly
chosen in ]0; 1] at the MDP generation.
Formula space (K = 5):
e Variables:
p(se,a), N(st,a), Qs a), V(se), t, 7*
e Constants:
1,2,3,5,7
e Operators:
+, = %, /, -], log(.), /- min(., .), max(., .)
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Baselines

Learned strategies

Name JT Formula Jr
OPTIMAL 65.3 (N(s a) x Q(s,a)) — N(s,a) | 30.3
RANDOM 10.1 ax(1, (N(s,a) x Q(s,a))) | 22.6
GREEDY 20.0 Q(s, ) (= GREEDY) 20.0

e-GREEDY(e = 0) | 20.0 min(~*, ( ( s,a) — (5))) 19.4
R-mMAX (m=1) | 27.7 | min(4(s, a), (Q(s,a) — V(s))) | 19.4

Table: Performance of the top-5 learned strategies with respect to

baseline strategies.
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Figure: Performances of the learned and the baseline strategies for
different distributions of MDPs that differ by the size of the MDPs
belonging to their support.
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Conclusions

e We outperformed usual approaches

e ... even on larger MDPs (good robustness)

Further improvements:
e Approximating FX; more precisely
e Considering larger and/or continuous formula spaces

e Generalizing the approach to continuous state/action
spaces
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