

Learning for exploration/exploitation in reinforcement learning

Castronovo Michael

University of Liège, Belgium

26th of June 2012
Master Thesis Presentation

Introduction

Classical RL problem:

- Single trajectory
- Discounted rewards
- Infinite horizon
- Discrete state/action spaces

This problem is known to be difficult to address, except with a **high** discount factor or rather **small** state/action spaces.

How to improve the efficiency of actual techniques ?

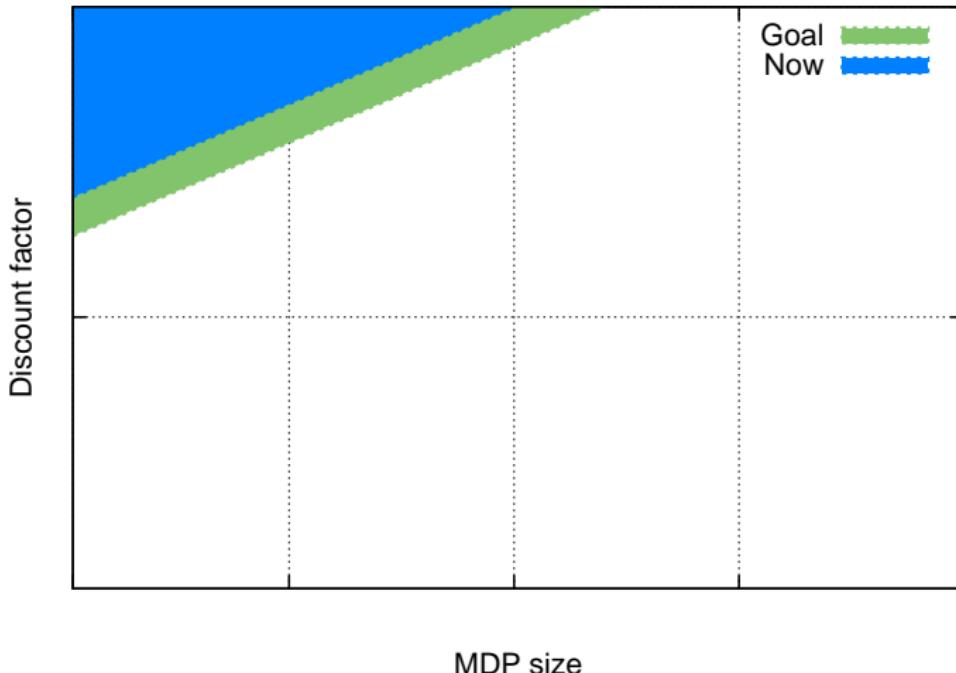
Adding the **prior knowledge** on the MDP to be played.

- Not actually used
- Available for most applications
- Specific to each type of problem

This can be represented by the knowledge of the distribution from which the MDP to be played will be drawn.

Goal: Discovering **new E/E strategies** which works **better** than usual techniques on this distribution.

E/E strategies significantly better than Random:



How?

Defining a **rich** set of E/E strategies, and searching for the best one **in average** according to the given MDP distribution.

The chosen approach consists in defining E/E strategies based on **short formulas**.

Why?

- Simple to define very large spaces of strategies
- Good interpretability
- Easy to use

Background

Let be

- $M = (\mathcal{S}, \mathcal{A}, p_{M,f}(\cdot), \rho_M, p_{M,0}(\cdot), \gamma)$, a MDP
- $\mathcal{S} = \{s^{(1)}, \dots, s^{(n_S)}\}$, its state space
- $\mathcal{A} = \{a^{(1)}, \dots, a^{(n_A)}\}$, its action space
- $s_{t+1} \sim p_{M,f}(\cdot | s_t, a_t)$, the transition law (stochastic)
- $r_t = \rho_M(s_t, a_t, s_{t+1})$, the reward distribution
(deterministic)

An **history** $H_t = [s_0, a_0, r_0, \dots, s_t, a_t, r_t]$ is a vector that gathers the history over the first t steps.

An E/E strategy π :

$$a_t \in \mathcal{A} : a_t \sim \pi(H_{t-1}, s_t)$$

The stochastic discounted return of π :

$$\mathcal{R}_M^\pi(s_0) = \sum_{t=0}^{\infty} \gamma^t r_t ,$$

The **average** stochastic discounted return of π :

$$J_M^\pi = \mathbb{E}_{p_{M,0}(\cdot), p_{M,f}(\cdot)} [\mathcal{R}_M^\pi(s_0)]$$

The best E/E strategy π , given the prior $p_{\mathcal{M}}(\cdot)$ is the one maximizing:

$$J^\pi = \mathbb{E}_{M' \sim p_{\mathcal{M}}(\cdot)} [J_{M'}^\pi] .$$

Formula-based E/E strategies

A formula-based E/E strategy is using a function, **ranking** each action (like an index-based strategy), in order to choose the next action to perform:

$$\pi^F(H_{t-1}, s_t) \in \arg \max_{a \in \mathcal{A}} F\left(\hat{\rho}(s_t, a), N(s_t, a), \hat{Q}(s_t, a), \hat{V}(s_t), t, \gamma^t\right)$$

The set of all formulas of size K or less is denoted by $\mathbb{F}_{\mathcal{M}}^K$ (discrete set).

Finding a high-performance formula-based E/E strategy for a given class of MDPs

Reducing $\mathbb{F}_{\mathcal{M}}^K$

Several formulas can lead to the **same policy**

⇒ Reduction of $\mathbb{F}_{\mathcal{M}}^K$ is necessary.

We **partition** the set $\mathbb{F}_{\mathcal{M}}^K$ into **equivalence classes**, two formulas being equivalent if and only if they lead to the **same policy**.

For each equivalence class, we then consider **one** member of minimal length, and we gather all those minimal members into a set $\bar{\mathbb{F}}_{\mathcal{M}}^K$.

Since such a set is **difficult** to compute. Let $\tilde{\mathbb{F}}_{\mathcal{M}}^K$ be an **approximation** of $\bar{\mathbb{F}}_{\mathcal{M}}^K$.

Finding a high-performance formula-based E/E strategy for a given class of MDPs

Finding a high-performance formula

Using Monte-Carlo simulations for each formula could reveal itself to be **time-inefficient** in case of spaces $\tilde{\mathbb{F}}_M^K$ of large cardinality.

⇒ Formalizing this research as a **N –armed bandit problem**.

To each formula $F_n \in \tilde{\mathbb{F}}_{\mathcal{M}}^K$ ($n \in \{1, \dots, N\}$), we associate an arm.

Pulling the arm n consists first in **randomly drawing** a MDP M according to $p_{\mathcal{M}}(\cdot)$ and an initial state s_0 for this MDP according to $p_{M,0}(\cdot)$.

The reward associated to arm n is the **empirical** discounted return $\mathcal{R}_M^{\pi}(s_0)$.

The bandit problem is used to **identify** high-quality formula(s).

Experimental results

Random MDPs:

- $|\mathcal{S}| = 20, |\mathcal{A}| = 5, \gamma = 0.995$
- For each state-action pair, there is $0.1 |\mathcal{S}|$ reachable states (2 for $|\mathcal{S}| = 20$).
- Each transition provides a constant reward, randomly chosen in $]0; 1]$ at the MDP generation.

Formula space ($K = 5$):

- Variables:
 $\hat{\rho}(s_t, a), N(s_t, a), \hat{Q}(s_t, a), \hat{V}(s_t), t, \gamma^t$
- Constants:
1, 2, 3, 5, 7
- Operators:
+, -, \times , $/$, $| \cdot |$, $\log(\cdot)$, $\sqrt{\cdot}$, $\min(\cdot, \cdot)$, $\max(\cdot, \cdot)$

Baselines		Learned strategies	
Name	J^π	Formula	J^π
OPTIMAL	65.3	$(N(s, a) \times \hat{Q}(s, a)) - N(s, a)$	30.3
RANDOM	10.1	$\max(1, (N(s, a) \times \hat{Q}(s, a)))$	22.6
GREEDY	20.0	$\hat{Q}(s, a) (= \text{GREEDY})$	20.0
ϵ -GREEDY($\epsilon = 0$)	20.0	$\min(\gamma^t, (\hat{Q}(s, a) - \hat{V}(s)))$	19.4
R-MAX ($m = 1$)	27.7	$\min(\hat{\rho}(s, a), (\hat{Q}(s, a) - \hat{V}(s)))$	19.4

Table: Performance of the top-5 learned strategies with respect to baseline strategies.

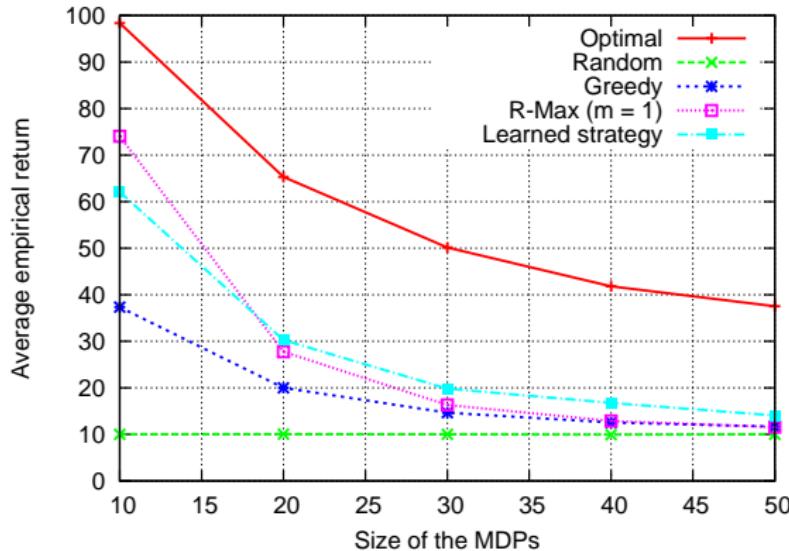


Figure: Performances of the learned and the baseline strategies for different distributions of MDPs that differ by the size of the MDPs belonging to their support.

Conclusions

- We outperformed usual approaches
- ... even on larger MDPs (good robustness)

Further improvements:

- Approximating $\bar{\mathbb{F}}_{\mathcal{M}}^K$ more precisely
- Considering larger and/or continuous formula spaces
- Generalizing the approach to continuous state/action spaces

References I

- J. Asmuth, L. Li, M.L. Littman, A. Nouri, and D. Wingate.
A Bayesian sampling approach to exploration in reinforcement learning.
In *Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence*, pages 19–26. AUAI Press, 2009.
- J.Y. Audibert, R. Munos, and C. Szepesvári.
Tuning bandit algorithms in stochastic environments.
In *Algorithmic Learning Theory*, pages 150–165. Springer, 2007.
- P. Auer and R. Ortner.
Logarithmic online regret bounds for undiscounted reinforcement learning.
In *Advances in Neural Information Processing Systems 19: Proceedings of the 2006 Conference*, volume 19, page 49. The MIT Press, 2007.
- P. Auer, N. Cesa-Bianchi, and P. Fischer.
Finite-time analysis of the multiarmed bandit problem.
Machine learning, 47(2):235–256, 2002.
- R.I. Brafman and M. Tennenholtz.
R-max – a general polynomial time algorithm for near-optimal reinforcement learning.
The Journal of Machine Learning Research, 3:213–231, 2002.
- T. Jaksch, R. Ortner, and P. Auer.
Near-optimal regret bounds for reinforcement learning.
The Journal of Machine Learning Research, 11:1563–1600, 2010.

References II

- M. Kearn and S. Singh.
Near-optimal reinforcement learning in polynomial time.
Machine Learning, 49:209–232, 2002.
- F. Maes, L. Wehenkel, and D. Ernst.
Automatic discovery of ranking formulas for playing with multi-armed bandits.
In *9th European workshop on reinforcement learning*, Athens, Greece, September 2011.
- F. Maes, L. Wehenkel, and D. Ernst.
Learning to play K-armed bandit problems.
In *International Conference on Agents and Artificial Intelligence*, Vilamoura, Algarve, Portugal, February 2012.
- P. Poupart, N. Vlassis, J. Hoey, and K. Regan.
An analytic solution to discrete Bayesian reinforcement learning.
In *Proceedings of the 23rd international conference on Machine learning*, pages 697–704. ACM, 2006.
- C.J. Watkins and P. Dayan.
Q-learning.
Machine Learning, 8(3-4):179–192, 1992.