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Introduction

Classical RL problem:

• Single trajectory

• Discounted rewards

• Infinite horizon

• Discrete state/action spaces

This problem is known to be difficult to address, except with

a high discount factor or rather small state/action spaces.
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How to improve the efficiency of actual techniques ?

Adding the prior knowledge on the MDP to be played.

• Not actually used

• Available for most applications

• Specific to each type of problem

This can be represented by the knowledge of the distribution

from which the MDP to be played will be drawn.

Goal: Discovering new E/E strategies which works better

than usual techniques on this distribution.
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E/E strategies significantly better than Random:
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How?

Defining a rich set of E/E strategies, and searching for the

best one in average according to the given MDP distribution.

The chosen approach consists in defining E/E strategies

based on short formulas.

Why?

• Simple to define very large spaces of strategies

• Good interpretability

• Easy to use
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Background

Let be

• M = (S,A, pM,f (·), ρM , pM,0(·), γ), a MDP

• S =
{
s(1), . . . , s(nS)

}
, its state space

• A =
{
a(1), . . . , a(nA)

}
, its action space

• st+1 ∼ pM,f (·|st , at), the transition law (stochastic)

• rt = ρM(st , at , st+1), the reward distribution

(deterministic)
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An history Ht = [s0, a0, r0, . . . , st , at , rt ] is a vector that

gathers the history over the first t steps.

An E/E strategy π:

at ∈ A : at ∼ π(Ht−1, st)

The stochastic discounted return of π:

RπM(s0) =
∞∑

t=0

γtrt ,
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The average stochastic discounted return of π:

JπM = E
pM,0(·),pM,f (·)

[RπM(s0)]

The best E/E strategy π, given the prior pM(·) is the one

maximizing:

Jπ = E
M′∼pM(·)

[JπM′ ] .
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Formula-based E/E strategies

A formula-based E/E strategy is using a function, ranking

each action (like an index-based strategy), in order to choose

the next action to perform:

πF (Ht−1, st) ∈ arg max
a∈A

F

(
ρ̂(st , a),N(st , a), Q̂(st , a), V̂ (st), t, γt

)
The set of all formulas of size K or less is denoted by FK

M
(discrete set).
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Finding a high-performance formula-based

E/E strategy for a given class of MDPs

Reducing FK
M

Several formulas can lead to the same policy

⇒ Reduction of FK
M is necessary.

We partition the set FK
M into equivalence classes, two

formulas being equivalent if and only if they lead to the

same policy.
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For each equivalence class, we then consider one member of

minimal length, and we gather all those minimal members

into a set F̄K
M.

Since such a set is difficult to compute. Let F̃K
M be an

approximation of F̄K
M.
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Finding a high-performance formula-based

E/E strategy for a given class of MDPs

Finding a high-performance formula

Using Monte-Carlo simulations for each formula could reveal

itself to be time-inefficient in case of spaces F̃K
M of large

cardinality.

⇒ Formalizing this research as a N−armed bandit problem.
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To each formula Fn ∈ F̃K
M (n ∈ {1, . . . ,N}), we associate an

arm.

Pulling the arm n consists first in randomly drawing a MDP

M according to pM(·) and an initial state s0 for this MDP

according to pM,0(·).

The reward associated to arm n is the empirical discounted

return RπM(s0).

The bandit problem is used to identify high-quality

formula(s).
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Experimental results

Random MDPs:

• |S| = 20, |A| = 5, γ = 0.995

• For each state-action pair, there is 0.1 |S| reachable

states (2 for |S| = 20).

• Each transition provides a constant reward, randomly

chosen in ]0; 1] at the MDP generation.

Formula space (K = 5):

• Variables:

ρ̂(st , a), N(st , a), Q̂(st , a), V̂ (st), t, γt

• Constants:

1, 2, 3, 5, 7

• Operators:

+, −, ×, /, | . |, log(.),
√
., min(., .), max(., .)
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Baselines Learned strategies

Name Jπ Formula Jπ

Optimal 65.3 (N(s, a) × Q̂(s, a)) − N(s, a) 30.3

Random 10.1 max(1, (N(s, a) × Q̂(s, a))) 22.6

Greedy 20.0 Q̂(s, a) (= Greedy) 20.0

ε-Greedy(ε = 0) 20.0 min(γt , (Q̂(s, a) − V̂ (s))) 19.4

R-max (m = 1) 27.7 min(ρ̂(s, a), (Q̂(s, a) − V̂ (s))) 19.4

Table: Performance of the top-5 learned strategies with respect to

baseline strategies.
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Figure: Performances of the learned and the baseline strategies for

different distributions of MDPs that differ by the size of the MDPs

belonging to their support.
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Conclusions

• We outperformed usual approaches

• ... even on larger MDPs (good robustness)

Further improvements:

• Approximating F̄K
M more precisely

• Considering larger and/or continuous formula spaces

• Generalizing the approach to continuous state/action

spaces
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