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Learning for exploration/exploitation in reinforcement learning

Abstract

We address in this thesis the original problem of reinforcement learning, where
an agent interacts with a Markov Decision Process so as to collect, over an
infinite length episode, the largest sum of discounted rewards. The agent is
assumed to know nothing about the MDP at the beginning of the interaction.

The main difficulty of this problem is that the agent faces two opposite goals.
On one side, he must take decisions to ensure that he rapidly explores the
MDP in order to identify rapidly a near-optimal policy. On the other side,
he must also exploit its current knowledge of the MDP at best to get high
rewards as quickly as possible.

Current strategies for tackling this exploration/exploitation dilemma often
give poor performances as soon as the size of the MDP starts growing and/or
when dealing with MDPs with a relatively small discount factor. This is
mainly due to the fact that the problem is difficult since when dealing with
discounted rewards as performance criterion, an agent cannot easily recover
from early mistakes.

In this thesis, we have assumed, as we believe it is the case for many practical
cases, that prior information on the MDP to be played is also available. In
such a context, we have proposed a strategy that exploits this prior informa-
tion for tackling the original problem of RL.

The results reported in this thesis show that our strategy works very well.
In particular, it outperforms by far other well-known strategies such as ε-
Greedy and R-max.

Castronovo Michael
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Chapter 1

Introduction

Learning is the basic process of all living beings. Many forms of learning
inspired popular learning paradigms (e.g. Evolutionary Computation or Re-
inforcement Learning). One of the most frequently used and spontaneous
learning process in the nature is mimicry: the ability to acquire new skills by
observing and reproducing others’ actions.

The main application of mimicry in computer sciences is to elaborate au-
tomatically good solutions to difficult problems. The reason why one wants
such a procedure is generally because the problem is too hard to be analysed,
or because it would cost too much resources and/or time to find a satisfy-
ing solution. Automatic approaches are attractive. Our ideal is to provide a
description of the problem, and let the computer solve it on its own. From
this point of view, Constraint Programming is very close to this: it consists
to solve a problem by describing it through a list of mathematical constraints.
However, this approach is difficult to apply to complex problems, since in such
cases elaborating a convenient list of constraints can be a very difficult task.

The Reinforcement Learning field is probably the closest to mimicry. The
computer is directly confronted to the problem, and has the ability to interact
with it in order to learn the best way to proceed. The only thing needed
by the system is a reproduction of the real problem. Reinforcement learning
techniques are based on a non-optimal model, from which a better approach is
inducted. An agent can either choose to exploit it at best or try to improve the
current model. By repeating this process several times, one hopes to obtain a
good solving procedure: it consists to learn the decisions to take and not to
take.
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CHAPTER 1. INTRODUCTION

Formally, one considers two components: an agent, representing the com-
puter, and an environment, representing the problem. An agent chooses ac-
tions to perform, while the environment grants him with some rewards, know-
ing that each action modifies the state in which the agent stands. The only
piece of information known by an agent is his current situation. The objective
shared by all Reinforcement Learning techniques is to determine which is the
best action to perform for each possible situation. Usually, an environment is
called a Markov Decision Process.

Figure 1.1: Interaction between an agent and its environment.

The process of mimicry is natural. A child learns in which situation say-
ing “Hello” is appropriate, and when it is not, thanks to his parents. They
act as the environment for an agent, granting the child with their approval (or
disapproval) according to the pertinence of the performed action.

One great challenge in copying mimicry is to transcribe this feedback and
interpret it in the best possible way. This is not trivial since from environ-
ment to another, the feedback is more less explicit. Sometimes, the agent
wastes a lot of time before finding the best sequence of actions. Generally, it
happens when an agent has to take several bad decisions in order to land in a
state from which he can make a really good one.

It is a common situation in board games like chess, when the optimal se-
quence of actions consists in sacrificing two or three pawns in order to place
the opponent’s king in check. The sacrifice is not considered immediately as a
good decision, but it can lead to a situation where the agent can take a great
advantage on his opponent.
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CHAPTER 1. INTRODUCTION

Notice that the feedback provided by the environment is very critical in
the learning process. Think about a man learning to play guitar by himself.
For example, without any supervisor, he is likely to learn wrong things about
how to put his fingers on the strings, until he encounters a song that he is
not able to play. At this point, he will probably consider another stance for
his fingers. A supervisor would have told him earlier which stance is optimal.
Notice that having a bad professor teaching an incorrect stance is dangerous
as well.

This example shows us that the environment is only a representation of a
concrete problem, and the choice of the feedback signal is critical, just like
the choice of the supervisor for the young guitarist. An expert can provide
a signal, led by a concrete representation of the feedbacks (e.g. money). If
such an expert does not exist, it is hard-coded within the environment. In
that case, the choice of the feedback signal is a problem itself. However, this
master thesis is not focusing on the transcription of a problem, but rather on
the building of an agent that can learn well from a given feedback signal.

One more critical point about Reinforcement Learning is the exploration/ex-
ploitation dilemma. Consider a chess player, facing a given specific situation.
He will make a choice and proceed until the end of the game. At this point, he
is wondering if the decision he took earlier was optimal. If the answer is yes, he
will associate this action to this situation. If not, he will try another one if the
situation occurs again. By playing more and more, he will encounter this par-
ticular situation many times. But when can he be convinced that a particular
action is the optimal choice? When does he need to stop testing other actions?

This is the exploration/exploitation dilemma. If he explores too much, he
will rarely win, or miss promising areas of the state space. If he does not
explore, he will make bad conclusions, leading him to a suboptimal behaviour.
A trade-off between the two is therefore needed.

Another thing to consider is the case when the environment does not pro-
vide the same feedback in the same conditions. This is a common situation in
real life. A child is doing something wrong. The first time, the parents will
not be too harsh with him. If he repeats the same mistake again and again,
the parents will punish him. Sometimes, his parents will not see him and the
child will receive no punishment.

Current strategies for tackling this exploration/exploitation dilemma often
give poor performances as soon as the size of the MDP starts growing and/or
when dealing with MDPs with a relatively small discount factor. This is
mainly due to the fact that the problem is difficult since when dealing with
discounted rewards as performance criterion, an agent cannot easily recover
from early mistakes.
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CHAPTER 1. INTRODUCTION

In this thesis, we have assumed, as we believe it is the case for many practi-
cal cases, that prior information on the MDP to be played is also available. In
such a context, the objective is to clearly outperform classical Reinforcement
Learning techniques.

The structure of this master thesis is as follows: Chapter 2 presents the general
Reinforcement Learning problem, and details formally the agent and the en-
vironment. Chapter 3 describes classical Reinforcement Learning techniques.
Chapter 4 concerns a specific type of problem not well solved by usual ap-
proaches, and shows a general approach to address it. Chapter 5 exposes an
application of it on a specific class of random MDPs. Chapter 6 concludes.

The work presented in this thesis has led to a scientific publication [3]. This
publication is given in Appendix A and can also be downloaded from my
website:

http://www.student.montefiore.ulg.ac.be/~s070130
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Chapter 2

Problem statement

The system is composed of an agent and an environment. Let S be the set of
states, and A be the set of actions. At each time-step t ∈ {0, 1, · · · }, the agent
stands in a state st ∈ S. He has to choose an action at ∈ A to perform. The
environment m gives him in return a feedback called a reward rt, and moves
the agent on a new state st+1 ∈ S. He collects the corresponding transition
T tm = (st, at, st+1, rt) ∈ Tm, where Tm is the set of all possible transitions over
m. Initially, the agent is placed in an initial state s0 ∈ S, which is imposed
by the environment.

The collected transitions represent his knowledge of the system. The transi-
tions can be collected over one or several episodes. This thesis is only focussing
on the single trajectory problem. We denote byHt = {T 0

m, T
1
m, · · · , T t−1m } ∈ H,

the set of transitions collected by the agent in time-step t, where H is the set
of all possible sets of transitions.

H0 = ∅
Ht = Ht−1 ∪ {T t−1m }

2.1 Agent

An agent takes decisions based on a function called a policy. It is a mapping
between the information available to the agent and an action. When the
agent is confronted to a given situation st ∈ S, he chooses to perform the
action at ∈ A given by π1:

π(., .) : H× S → A
at = π(Ht, st), Ht ∈ H, st ∈ S

1The actual knowledge of the system obviously includes the current state. However, we
thought it is more convenient to include it explicitly in the definition of π.
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CHAPTER 2. PROBLEM STATEMENT

2.2 Environment

The environment m is defined by:

• a reward function ρm(., .) : S ×A → R;

Used to determine the feedback to return (rt), depending on the cur-
rent state (st) and the action chosen by the agent (at). If the rewards
are stochastic, this function is replaced by a reward distribution.

– Deterministic case:

rt = ρm(st, at)

– Stochastic case:

rt ∼ ρm(st, at)

It can also depends on the next state st+1 according to the considered
environment. In such a case, we have in the deterministic case:

rt = ρm(st, at, st+1)

and in the stochastic case:

rt ∼ ρm(st, at, st+1)

• and a transition law τm(., .) : S ×A → S.

Used to determine the state in which the agent has to be moved on
(st+1), depending on the current state (st) and the action chosen by the
agent (at). It can be either deterministic or stochastic.

– Deterministic case:

st+1 = τm(st, at)

– Stochastic case:

st+1 ∼ τm(st, at)

The environment is told stochastic if either the reward or the transition
law is stochastic; it is called deterministic in the other case. In this thesis, we
will assume that S and A are discrete sets.
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CHAPTER 2. PROBLEM STATEMENT

2.3 Quality criterion

In order to produce a well-performing agent, there is a necessity to define
precisely how to determine whether an agent is good or not. In reinforcement
learning, this quality criterion is a function of the rewards collected over an
optimization horizon n:

quality criterion ≡ Rπm(r0, r1, · · · , rn−1)

Moreover, in reinforcement learning, it is often assumed that this quality cri-
terion has an additive nature such as:

Rπm(r0, r1, · · · , rn−1) =
n∑

t=0

rt

It is also convenient to use a discounted sum of rewards:

Rπm(r0, r1, · · · , rn−1) =

n∑

t=0

γt rt, γ ∈ [0; 1[

so that, when dealing with an infinite or large horizon (n→ +∞), no conver-
gence problem occurs.

Actually, we decided to focus on this latter criterion in the infinite case
(n → +∞), which is one of the most studied in reinforcement learning. One
of the reason that may explain why this criterion is so popular is certainly re-
lated to the fact that, for such a criterion, there exists in the set of all possible
polices, a stationary one, which is optimal.

This criterion penalizes strongly early mistakes, forcing the agent to converge
to an optimal policy as fast as possible. To approximate at best its value, one
usually truncates the infinite discounted sum of rewards such as the desired
accuracy ∆ is obtained, assuming that the infinite sum is bounded:

∃C ∈ R+
0 :

+∞∑

t=0

γt rt < C

This can be ensured if the rewards are themselves bounded, since 0 ≤ γ < 1:

∃B ∈ R+
0 : 0 ≤ rt < B

9



CHAPTER 2. PROBLEM STATEMENT

In order to get the precision ∆, the horizon limit n, used to truncate the
infinite sum, has to be chosen so that:

∣∣∣∣∣

(
n∑

t=0

γt rt

)
−
(

+∞∑

t=0

γt rt

)∣∣∣∣∣ ≤ ∆

⇐⇒
(

+∞∑

t=0

γt rt

)
−
(

n∑

t=0

γt rt

)
≤ ∆ (because γt ≥ 0, rt ≥ 0, ∀t)

⇐=

(
+∞∑

t=0

γt B

)
−
(

n∑

t=0

γt B

)
≤ ∆ (because ∃B ∈ R+

0 : 0 ≤ rt < B, ∀t)

⇐⇒
(

B

1− γ

)
−
(
B −B γn

1− γ

)
≤ ∆

⇐⇒ B γn

1− γ ≤ ∆

⇐⇒ γn ≤ 1− γ
B

∆

⇐⇒ n ≤ logγ

(
1− γ
B

∆

)

Which is true if the horizon limit n is greater or equal to:

n ≥
⌈

logγ

(
1− γ
B

∆

)⌉

2.3.1 Optimality

Let Π be the set of all possible policies on problem m. Let Jπm be the expected
sum of rewards obtained by an agent following a policy π ∈ Π on m:

Jπm = E
m

(Rπm)

The policy π∗ ∈ Π is optimal on m if:

Jπ
∗

m ≥ Jπm, ∀π ∈ Π

Formally, assuming a perfect knowledge of m, and knowing both the reward
function/distribution ρm and the transition law τm, one can compute an opti-
mal stationary policy π∗ by first computing a value function, according to the
Value Iteration algorithm [?] that works as follows:
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CHAPTER 2. PROBLEM STATEMENT

Algorithm 1 V ∗m(.) computation

i← 0

for all s ∈ S do

V
(0)
m (s)← 0

end for

repeat

for all s ∈ S do

V
(i+1)
m (s)← ∑

s′∈S
P (τm(s, a) = s′) (E[ρm(s, a, s′)] + γ V

(i)
m (s′))

end for

i← (i+ 1)

until “Stopping conditions are reached”

We will come back on these stopping conditions in Chapter 3. The policy
π∗ is inferred from V ∗ according to:

π∗(s) = arg max
a∈A

[∑

s′∈S
P (τm(s, a) = s′) (E[ρm(s, a, s′)] + γ V ∗(s′))

]
, ∀s ∈ S

A variant of the Value Iteration algorithm is the Q-Iteration algo-
rithm:

Algorithm 2 Q∗m(., .) computation

i← 0

for all (s, a) ∈ S ×A do

Q
(0)
m (s, a)← 0

end for

repeat

for all (s, a) ∈ S ×A do

Q
(i+1)
m (s, a)← ∑

s′∈S
P (τm(s, a) = s′) (E[ρm(s, a, s′)] + γ max

a′∈A
Q

(i)
m (s′, a′))

end for

i← (i+ 1)

until “Stopping conditions are reached”

11



CHAPTER 2. PROBLEM STATEMENT

The main advantage of the Q-function over the value function is that the
optimal policy can be deduced from it, without knowing m:

π∗(s) = arg max
a∈A

Q∗(s, a)

This Q-function was first introduced by Watkins [8]. Many works in reinforce-
ment learning have sought to compute this function from H. That is also a
strategy we will adopt here to find a good exploration/exploitation strategy.

The next chapter concerns the general techniques of reinforcement learning
used to compute an optimal policy.

12



Chapter 3

RL techniques

By taking decisions, an agent builds an historic H by accumulating the tran-
sitions provided by the environment. A common approach consists to use a
batch mode tool, a method allowing to compute an estimation of a utility func-
tion from a given historic. First, we will describe some popular batch mode
approaches. Then, we will discuss about how to use them efficiently to deal
with the exploration/exploitation dilemma.

3.1 Batch mode

There are two main families of batch mode methods: model-free and model-
learning. The first one consists to improve the current estimation of a utility
function, by using directly the provided transition. The second one builds a
model, through the estimation of both the reward and the transition law of
the system, from which a utility function is computed.

A Q-function is the utility function generally used for the model-free methods.
In a model-learning setting, it is also common to use dynamic programming,
principally to extract from the model a Q-function or a value function from
which a policy, which is optimal with respect to the learned model, can be
extracted in a straightforward way.

However, in such a setting, other techniques, such as direct policy search
techniques could also be considered. This thesis is focusing on the case where
both S and A are finite.

3.1.1 Model-free approaches

This approach has many advantages. By defining an update procedure, one
can improve a previous policy by simply providing a new transition. This
means that there is no need to keep in memory any already used transition,
leading to a memory-effective approach. However, these techniques are known
to be slower than model-learning approaches [4].

13



CHAPTER 3. RL TECHNIQUES

One starts to compute aQ-function. Its role is to evaluate each state-action
pair, which is basically a way to evaluate the quality of an action according to
a state. Let Qm be this function over problem m. A policy πQm is computed
as follows:

πQm(s) = arg max
a∈A

Qm(s, a), ∀s ∈ S

The Q-function evaluates the quality of each action, according to the state
from which this action is taken. Model-free approaches updates incrementally
this function, whenever a new transition is provided, in order to improve the
current estimation of Q∗. Many algorithms follow this scheme. They only
differ by the choice of the update procedure f .

Formally, let Q
(i)
m be the ith Q-function computed over problem m. Let T im

be the ith transition provided by the exploration component. The Q
(i+1)
m Q-

function is obtained by applying f , the update procedure, to every state-action
pair:

f(., ., ., .) : S ×A× R× Tm → R
T im = (s′, a′, s′′, r), s′, s′′ ∈ S, a′ ∈ A, r ∈ R

Q(i+1)
m (s, a) = f(s, a,Q(i)

m (s, a), T im),∀s ∈ S, a ∈ A

One has to be careful about how he chooses f , Q
(0)
m and how he produces

the T im. Besides, f can also depends on i, and there is a necessity to ensure
the convergence to the optimal policy π∗:

π
Q

(i→+∞)
m

≡ π∗

This is achieved when:
Q(i→+∞)
m ≡ Q∗

Moreover, one can decide to apply the update procedure to all state-action
pairs, or only on a few of them. The well-known Q-Learning approach is
presented below to illustrate it.

3.1.1.1 Q-Learning [7]

Q-Learning consists to update the state-action pair corresponding to the

given transition. Let Q
(i)
m the current Q-function over problem m, T iM be the

provided transition and fi, the update procedure to use for the ith update.

Q
(i+1)
m is computed as follows:

T im = (s, a, s′, r), s, s′ ∈ S, a ∈ A, r ∈ R

Q(i+1)
m (s, a) = fi(s, a,Q

(i)
m (s, a), T im)

= Q(i)
m (s, a) + α(i)[r + γ max

a′
Q(i)
m (s′, a′)−Q(i)

m (s, a)], α(i) ∈]0; 1]

Q(i+1)
m (s̄, ā) = Q(i)

m (s̄, ā), ∀(s̄, ā) 6= (s, a)

where α(0), α(1), · · · is a decreasing arithmetic series, γ is the discount factor.

14



CHAPTER 3. RL TECHNIQUES

There is only one state-action pair updated for each transition provided (the
(s, a) pair).

Algorithm 3 Q-Learning algorithm (model-free)

{Initialize Q
(0)
m }

{Process}
for all t = 0, 1, · · · do

{Retrieve transition T tm = (st, at, st+1, rt)}
Q

(t+1)
m (st, at)← Q

(t)
m (st, at) + α(t)[rt + γ max

a′
Q

(t)
m (st+1, a

′)−Q(t)
m (st, at)]

end for

3.1.2 Model-learning approaches

A model-learning approach consists in the computation of an abstract object
called a model. A model is a representation of an environment. It is computed
by incrementally improving a previous model, whenever a new transition is
provided.

Formally, let Ψ, the set of all possible models, ψ
(i)
m be the current model

of environment m. Let T im be the ith transition provided by the exploration

component and g, the model update procedure. The computation of ψ
(i+1)
m is

performed as follows:

g(., .) : Ψ× Tm → Ψ

T im = (s′, a′, s′′, r), s′, s′′ ∈ S, a′ ∈ A, r ∈ R

ψ(i+1)
m = g(ψ(i)

m , T im)

The second step consists in computing a V -function, evaluating a utility value
for each state. It measures the utility to be in a given a state. Let h be a

function computing a V -function from a model. Let ψ
(i)
m be the ith model

computed. V
ψ
(i)
m

is defined by:

h(.) : S ×Ψ→ R

V
ψ
(i)
m

(s) = h(s, ψ(i)
m ),∀s ∈ S

The final step consists on defining a policy based on a V -function. A model is
an estimation of an environment m. Let ρm and τm be respectively the reward
distribution and the transition law of the environment m. Given a ψ model of
m, one can compute an estimation of them, called respectively ρψ and τψ. A
policy πVψ defined by Vψ, the estimation of V ∗ based on model ψ, is defined
as follows:

15



CHAPTER 3. RL TECHNIQUES

πVψ(s) = arg max
a∈A

[∑

s′∈S
P (τψ(s, a) = s′) (E[ρψ(s, a, s′)] + γ Vψ(s′))

]
,∀s ∈ S

where P (τψ(s, a) = s′) is the probability that an agent choosing to perform
action a in state s leads him to state s′.

It consists in choosing the action that leads to the most useful state (esti-
mated by the V -function), without forgetting the immediate expected reward,
balanced by the probability that such a transition occurs.

One has to ensure the convergence to the optimal policy π∗. It implies three
elements:

• Considering the perfect model ψ∗ of the environment m, the elements of

sequence ψ
(0)
m , ψ

(1)
m , · · · of ψ

(i)
m , computed by the model update procedure

g, have to converge to the perfect model when i→ +∞:

ψ(i→+∞)
m ≡ ψ∗

Implying that:

ρ
ψ
(i→+∞)
m

≡ ρm
τ
ψ
(i→+∞)
m

≡ τm

• The estimation of V ∗, based on a model ψm converging to ψ∗m, is equiv-
alent to V ∗

V ∗(ψm→ψ∗m) ≡ V ∗

• The policy defined by a V -function, computed using the induction pro-
cedure h, has to converge to the optimal policy π∗ over environment m
when the model ψ → ψ∗:

πV ∗
(ψm→ψ∗m)

≡ π∗
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3.1.2.1 Value Iteration [7]

A model is learned through the computation of three functions. Let n
(i)
a (., .)

and n
(i)
b (., ., .) be functions counting the number of times a state-action pair or

a state-action-state triplet has been observed before the ith transition T im has
been provided, and c(i)(., ., .) be the sum of rewards observed for this triplet.
The update of these functions is performed as follows:

T im = (si, ai, si+1, ri)

n(i+1)
a (si, ai) = n(i)a (si, ai) + 1

n(i+1)
a (s, a) = n(i)a (s, a), ∀(s, a) 6= (si, ai)

n
(i+1)
b (si, ai, si+1) = n

(i)
b (si, ai, si+1) + 1

n
(i+1)
b (s, a, s′) = n

(i)
b (s, a, s′), ∀(s, a, s′) 6= (si, ai, si+1)

c(i+1)(si, ai, si+1) = c(i)(si, ai, si+1) + ri

c(i+1)(s, a, s′) = c(i)(s, a, s′), ∀(s, a, s′) 6= (si, ai, si+1)

From these functions, one can compute an estimation of P (τm(s, a) = s′), the
probability to observe the transition (s, a, s′) and E[ρm(s, a, s′)], the mean re-
ward observed for the transition (s, a, s′), referred by P̃ (i)(s, a, s′) and R̃(i)(s, a, s′),
respectively:

P̃ (i)(s, a, s′) =
n
(i)
b (s, a, s′)

n
(i)
a (s, a)

, ∀s, s′ ∈ S, a ∈ A

R̃(i)(s, a, s′) =
c(i)(s, a, s′)

n
(i)
b (s, a, s′)

, ∀s, s′ ∈ S, a ∈ A

The Value Iteration algorithm is used to compute a V -function according
to the current model ψ(t).
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Algorithm 4 Value Iteration algorithm (model-learning)

{Initialize n
(0)
a , n

(0)
b , c(0) and V ∗

ψ
(0)
m

}

{Process}
for all t = 0, 1, · · · do
{Retrieve transition T tm = (st, at, st+1, rt)}

{Compute ψ
(t+1)
m }

n
(t+1)
a (st, at)← n

(t)
a (st, at) + 1

n
(t+1)
b (st, at, st+1)← n

(t)
b (st, at, st+1) + 1

c(t+1)(st, at, st+1)← c(t)(st, at, st+1) + rt
for all (s, a, s′) ∈ S ×A× S do

P̃ (t+1)(s, a, s′)← n
(t+1)
b (s,a,s′)

n
(t+1)
a (s,a)

R̃(t+1)(s, a, s′)← c(t+1)(s,a,s′)

n
(t+1)
b (s,a,s′)

end for

{’Compute V ∗
ψ
(t+1)
m

’}
for all s ∈ S do
V

(0)

ψ
(t+1)
m

(s)← 0

end for

i← 0
repeat

for all s ∈ S do

V
(i+1)

ψ
(t+1)
m

(s)← max
a∈A

[ ∑
s′∈S

P̃ (t+1)(s, a, s′) (R̃(t+1)(s, a, s′) + γ V
(i)

ψ
(t+1)
m

(s′))
]

end for
i← i+ 1

until “Stopping conditions are reached”

for all s ∈ S do
V ∗
ψ
(t+1)
m

(s)← V
(i)

ψ
(t+1)
m

(s)

end for
end for

It is a usual Dynamic Programming algorithm, improving iteratively a
previous function in order to converge to the optimal one. Because of the
nature of such a process, one needs stopping conditions when the computed
function is considered to be good enough.
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There are two stopping conditions commonly used:

1. Given a precision factor θ, one can stop the process when any value of
V did not change more than θ:

|V (i)

ψ
(t+1)
m

(s)− V (i+1)

ψ
(t+1)
m

(s)| ≤ θ, ∀s ∈ S

2. One can stop the process after T iterations:

i = T

There are many possibilities to perform the update of the function. For ex-
ample, the Prioritized Sweeping [1] approach consists to determine a priority
among the value to be updated, which could be really useful to improve the
convergence speed. Besides, one can also consider not to update every state
(like in Q-Learning, only updating the value associated to the state appear-
ing in the last transition provided).

3.2 E/E dilemma

A common way to use a batch mode technique consists to compute, at each
time-step, the utility function corresponding to the current historic. Then,
the inferred policy is used by the agent to choose the action to perform.

This approach is commonly called Greedy, since the exploration of the MDP
is performed thanks to a suboptimal policy, which is converging an optimal
one. However, is it the best way to proceed? A batch mode technique is not
efficient if the provided historic is not convenient. There is a necessity to col-
lect enough information about each state, or state-action pair, in order to be
confident about the quality of the utility function computed.

If an agent has the choice between an unknown state-action pair or another
state-action pair not well-known, which one has to be experienced at first?
This is the exploration/exploitation dilemma, where the agent has to choose
between exploiting his current knowledge, or taking the risk to explore the
unknown.

3.2.1 Random

The Random approach consists to take decisions randomly. This way, all
state-action pairs are tested uniformly when the number of decisions taken
is big enough. The main drawback of this approach is the complete lack of
control, leading to unnecessary tests of well-known state-action pairs. It is a
waste of resources, which can be critical depending on the problem faced.
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3.2.2 Soft-max [7]

The Soft-max approach is an algorithm that chooses the action to perform
randomly, by favouring the more promising ones.

A temperature parameter is used to control the impact of the utility value
on the probabilities. A high temperature leads to a more uniform distribu-
tion, while a low temperature favours the best actions according to the utility
function.

Formally, let τ ∈ R+
0 be the temperature parameter. Let u(., .) be a func-

tion evaluating the quality of a state-action pair. The probability to choose
action a in state s, Pu(s, a), is given by:

u(., .) : S ×A → R

Pu(s, a) =
exp (u(s,a)τ )
∑
a′∈A

exp (u(s,a
′)

τ )

Generally, the function u(., .) is depending on a Q-function learned in a model-
free setting, or on a Q-function (or V -function) learned in a model-learning
setting, given an environment m.

• Model-free

u(s, a) = Qm(s, a),∀s ∈ S, a ∈ A

• Model learning

u(s, a) =
∑

s′∈S
P (τψ(s, a) = s′) (E[ρψ(s, a, s′)] + γ Vm(s′)), ∀s ∈ S, a ∈ A

where ρψ(., ., .) and τψ(., .) are computed from ψ, a model of m.

When τ → +∞, the Soft-max approach tends to the Random approach.
When τ → 0, the Soft-max approach tends to the Greedy approach.

3.2.3 ε-Greedy [7]

The ε-Greedy approach consist in switching between Random and Greedy
approaches. A parameter ε ∈ [0; 1] is introduced. Its role is to determine
which approach to use. The Random approach is used with a probability of
ε, and the Greedy approach is used with a probability of (1− ε). This way,
ε controls the exploration/exploitation balance.
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For a given state, let rand(.) be the action to be performed according to
a Random approach, greed(.) be the action to be performed according to a
Greedy approach. The action a chosen by the ε-Greedy approach when
standing in state s is:

rand(.) : S → A
greed(.) : S → A
a = rand(s),with a probability of ε

a = greed(s),with a probability of (1− ε)

When ε→ 1, the ε-Greedy approach tends to the Random approach.
When ε→ 0, the ε-Greedy approach tends to the Greedy approach.

3.2.4 R-max approach [2]

The R-max approach is similar to a Greedy approach, where the update of
the underlying Q-function is controlled in order to manage the exploration/-
exploitation balance.

Initially, the value of each state-action given by the Q-function is maximal. In
this case, the agent chooses randomly which action to perform, since there is
no decision better than another according to the Q-function. The transitions
provided by the environment are used to update a model. When a state-action
pair has been observed exactly m times, the current model is used to update
the Q-function through a Q-Iteration process. Observing again the same
state-action pair will not modify the model nor the Q-function.

The agent will start to explore randomly each state-action pair. The ex-
ploration will not end until each reachable state-action pair has been tested m
times, since the value computed by the Q-function is maximal when a state-
action has been encountered less then m times. Then, the exploration will
stop since the agent will consider there is enough data collected, and he will
start to exploit what he knows.

Generally, the maximal reachable value is chosen as the discounted sum of
rewards, where the rewards obtained are equal to rmax, the maximal reward
provided by the environment

+∞∑

t

γt rmax =
rmax
1− γ
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A model is learned through the computation of two functions. Let n(j)(., .)
be a function counting the number of times a state-action pair has been ob-
served after the jth update of the model, and c(j)(., .) be the sum of rewards
observed for this pair. The (j+ 1)th update of these functions is performed as
follows:

T tm = (st, at, st+1, rt)

n(j+1)(st, at) = n(j)(st, at) + 1

n(j+1)(s, a) = n(j)(s, a), ∀(s, a) 6= (st, at)

c(j+1)(st, at) = c(j)(st, at) + rt

c(j+1)(s, a) = c(j)(s, a), ∀(s, a) 6= (st, at)

From these functions, one can compute an estimation of E[ρm(s, a)], the mean
reward observed for the state-action pair (s, a) after the jth update, referred
by R̃(j)(s, a):

R̃(j)(s, a) =
c(j)(s, a)

n(j)(s, a)
, ∀s ∈ S, a ∈ A

The R-max algorithm is summarized below:
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Algorithm 5 R-max algorithm

{Initialize n(0), c(0) and Q∗
ψ
(0)
m

}
for all (s, a) ∈ S ×A do
n(0)(s, a)← 0
c(0)(s, a)← rmax

1−γ
Q∗
ψ
(0)
m

(s, a)← rmax
1−γ

end for

{Process}
j ← 0
for all t = 0, 1, · · · do
{Retrieve transition T tm = (st, at, st+1, rt)}
if n(j)(st, at) < m then

{Compute ψ
(j+1)
m }

n(j+1)(st, at)← n(j)(st, at) + 1
c(j+1)(st, at)← c(j)(st, at) + rt
j ← j + 1

if n(j)(st, at) = m then
for all (s, a, s′) ∈ S ×A× S do

R̃(j)(s, a)← c(j)(s,a)

n(j)(s,a)

end for

{’Compute Q∗
ψ
(j)
m

’}
end if

end if
end for
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Algorithm 6 Q∗
ψ
(j)
m

computation

{’Compute Q∗
ψ
(j)
m

’}
for all s ∈ S do
Q

(0)

ψ
(j)
m

(s)← rmax
1−γ

end for

i← 0
repeat

for all (s, a) ∈ S ×A do

Q
(i+1)

ψ
(j)
m

(s, a)← R̃(j)(s, a) + γ max
a′∈A

Q
(i)

ψ(j)m
(st+1, a

′)

end for
i← (i+ 1)

until “Stopping conditions are reached”

for all (s, a) ∈ S ×A do

Q∗
ψ
(j)
m

(s, a)← Q
(i)

ψ
(j)
m

(s, a)

end for
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Chapter 4

Exploiting prior knowledge
for E/E in a MDP

This chapter is focusing on how to outperform classical Reinforcement Learn-
ing techniques, when prior knowledge is available on the MDP. We suppose
that this prior knowledge is encoded in the form of a probability distribution
of the MDP to be played.

The approach presented here is an instantiation of the learning approach for
exploration/exploitation developed this last year at the University of Liège to
the case where the environment is a MDP. This approach was first tested for
multi-armed bandit problems which are MDPs having only one single state [5].

This chapter is divided into two main sections. Section 4.1 carefully states the
problem addressed in this thesis. Section 4.2 presents the general approach.
The empirical evaluation of this approach is reported in Chapter 5.

4.1 Desired optimality

Let H i
m = {T 0

m, T
1
m, · · · , T i−1m } be the historic obtained over problem m before

the ith decision ai. Let e be an E/E strategy, and πe be the policy using the
E/E strategy e:

ai = πe(H i
m, si)

si+1 ∼ τm(si, ai)

ri = ρm(si, ai, si+1)

where τm is the transition law of m, and ρm its reward distribution.

The return of an agent following these policies over problem m is defined
by:

Rπ
e

m =
+∞∑

t=1

γ rt

where γ ∈]0; 1[ is the discount factor.
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The expected discounted sum of rewards over any problem m, drawn from
the same distribution pM(.), obtained by an agent using the E/E strategy e,
is given by:

Jπ
e

pM(.) = E
m∼pM(.)

(Rπ
e

m )

Let E be a set of E/E strategies. The E/E strategy e∗ ∈ E is optimal if:

Jπ
e∗

pM(.) ≥ Jπ
e

pM(.),∀e ∈ E

4.2 General approach

The main idea behind our approach consists in two main phases:

1. Defining a large and rich set of E/E strategies E .

2. Finding the best E/E strategy of E .

Soft-max and ε-Greedy are two types possible strategies. The choice of the
underlying induction procedure affects directly the quality of the E/E strat-
egy used. Besides, there is many other approaches that could be referred as
greedy, but where the induction procedure is dealing with the E/E dilemma
by itself.

The following chapter is structured as follows: Subsection 4.2.1 describes a
way to define E , while Subsection 4.2.2 concerns the searching algorithm used
to find e∗ in E .

4.2.1 Formula-based E/E strategies

Our approach consists to build a set of strategies, in which one can hope to
find a promising one. The main idea is to use a formula to define an E/E
strategy, which will be called a formula-based E/E strategy. By defining a
rich set of formulas, one hopes to define a rich set of strategies.

Formally, let pM(.) be the distribution of the considered class of MDPs. A
formula-based E/E strategy is a strategy which will choose the most promis-
ing action on problem m ∈ M by following the return of a given formula

FM, which is depending on the current historic of the system H
(t−1)
m =

{T (1)
m , · · · , T (t−1)

m }, the current time-step t, the current state st and an ac-
tion a ∈ A. Let πFM be the E/E strategy defined by the formula FM:

FM(., ., ., .) : HM × N× S ×A → R

πFM(st) = arg max
a∈A

FM(H(t−1)
m , t, st, a)

where HM is the set of all possible histories on M.
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When a tie occurs, the action to perform is chosen randomly among the
most promising actions. Such an approach has already been studied as an
index-based strategy. In that case, the formula is an estimation the action-
value function. Many algorithms are randomized versions using ε-Greedy or
Soft-max approaches.

Defining a rich set of strategies can be achieved by defining a rich set of
formulas. In this master thesis, a discrete set of formulas is studied. The main
advantage of using small formulas leads to underlying interpretable strategies.

4.2.1.1 Formula definition

Let m be the environment, Hm an historic, t a strictly positive integer, s a
state and a an action. Formally, a formula FM is either:

• A binary expression: FM(Hm, t, s, a) = B(F
′
M(Hm, t, s, a), F

′′
M(Hm, t, s, a)),

where F
′
M and F

′′
M are both formulas, B is a binary operator;

• A unary expression: FM(Hm, t, s, a) = U(F
′
M(Hm, t, s, a)),

where F
′
M is a formula, U is a unary operator;

• A constant: FM(Hm, t, s, a) = C,
where C is a constant or;

• A variable: FM(Hm, t, s, a) = V (Hm, t, s, a)
where V is variable. A variable is a function depending on Hm, t, s and
a.

Let |FM| be the size of formula FM, which can be seen as the total number
of operators, constants and variables appearing in it. We are trying to define
FKM, the set of all formulas of size not greater than K.

Building FKM is not our objective. Indeed, what we need is a set of formulas
defining strictly different policies. It is easy to find two formulas F 1

M and F 2
M

for which πF 1
M
≡ πF 2

M
. This is why we are instead searching for F̄KM, the set

of all formulas of FKM that produces strictly different E/E strategies.

4.2.1.2 F̄KM, the reduction of FKM
There is a necessity to determine when two different formulas, F 1

M and F 2
M,

leads to equivalent strategies:

πF 1
M
≡ πF 2

M

The values computed by F 1
M and F 2

M does not matter, only the ordering
implicitly defined when the action varies.
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F̄KM can be obtained by partitioning the formulas of FKM into equivalence
classes. Taking one formula of each equivalence class is enough to define a
valid F̄KM. For optimisation concerns, we decided to take the shortest formula
of each equivalence class in order to build F̄KM.

This classification is not trivial: it would imply strong mathematical analysis
such as commutativity, associativity, operator-specific rules and any increasing
transformation. Because we cannot afford a too costly process, we are going
to build F̃KM, an approximation of F̄KM.

4.2.1.3 F̃KM, the approximation of F̄KM
For each formula of F̄KM, a key is computed according to how they rank d
samples, each defining an different attribution of values for all variables. For-
mulas sharing the same key represents a different partition of FKM. Formally
we proceed as follows:

1. Building FKM;

2. Defining randomly d attributions of values, according to the validity
domain of each variable:

Θ1, · · · ,Θd

3. The formulas of FKM are partitioned according to the following rule: two
formulas FM and F ′M belong to the same partition if and only if they
rank all the Θi points in the same order:

∀i, j ∈ {1, . . . , d}, i 6= j, F (Θi) ≥ FM(Θj) ⇐⇒ F ′M(Θi) ≥ F ′M(Θj)

4. Selecting the shortest formula of each partition, and adding it to F̃KM.

Notice that when the set of samples corresponds to all possible attributions of
values, F̃KM= F̄KM. Moreover, choosing a good d is not easy. One could think
that the greater it is, the more accurate our approximation will be. However,
accuracy errors would be more and more often when d increases, which could
lead to a slightly different ranking for mathematically equivalent formulas,
leading to the introduction of unnecessary new partitions.

4.2.2 Search algorithm

Let assume the existence of a learning set of p samples:

M = {m1, · · · ,mp}

where mi ∼ pM(.), ∀i ∈ [1, p].
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It represents the prior knowledge on the considered problem class. In our
case, we assumed the knowledge of the problem distribution pM. A learning
set of p instances has been built by simply drawing p problem instances from
it. If E is the set of the considered E/E strategies, our goal is to find the
strategy e∗ for which we have:

J
πe∗
m∈M ≥ Jπem∈M , ∀e ∈ E

By doing so, one hopes to obtain the best possible E/E strategy not only on
M , but also for any MDP that can be drawn by pM(.).

Our approach consists to transcribe our problem into a multi-armed ban-
dit problem, for which many good algorithms exists. A multi-armed bandit
problem is a problem where the state space S is reduced to one single state.
Maximizing the sum of rewards consists to find the best action of A as quickly
as possible.

In our context, each E/E strategy of E corresponds to an action of A:

E = {e1, e2, · · · }
A = {a1, · · · , a|E|}
ai ≡ ei

Choosing the action ai corresponds to choose to test the strategy ei. Perform-
ing an action consists to test the E/E strategy ei on an instance m ∈M . The
reward r, retrieved for the multi-armed bandit problem, is the discounted sum
of rewards obtained by the agent, using the E/E strategy ei:

r = R
πei
m

Many algorithms performs well to solve the multi-armed bandit problem (such
as UCB1). However, we decided to use an algorithm developed by Maes
Francis [6], with a few changes to improve its efficiency. Our choice was driven
by the necessity of using a fast algorithm, since the process is really costly.
It appears to be a good choice since it proves to give good results, with the
advantage to be multi-threaded, which is necessary in our application.

4.2.2.1 Search as a multi-armed bandit problem

The objective is to determine, as quickly as possible, the most promising E/E
strategies of E = {e1, e2, · · · } over M = {m1, · · · ,mp}, for which we compute
an accurate estimation of JπeM . The more promising a strategy is, the most it
will be tested. A strategy is tested by using it over a problem instance m ∈M .
The E/E strategy ek ∈ E is characterized by two variables:

• θk: the number of times ek has been tested.

• µk: the current estimation of J
πek
M .
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Initially, each strategy ek is tested over m1. All strategies are placed on a pri-
ority queue. Each process retrieves the most promising strategy ej remaining
on the queue. The retrieved strategy is then tested over m([(θi+1) mod p]+1).
Both θj and µj are updated before the ej strategy is inserted back to the queue.

The most promising strategy is determined by an index-function Iα(., .):

Iα(., .) : R× N→ R

Iα(µi, θi) = µi +
α

θi

where α is a parameter controlling the exploration rate of the Search algorithm.

After Tb tests, the research is terminated. The best strategy e∗ = ej ∈ E
is considered to be the one with the highest µj :

µj >= µi, ∀i
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Chapter 5

Experiments

This chapter reports the results obtained by applying the approach presented
in Chapter 4 on test problems. The structure of this chapter is as follows:
the prior knowledge on the considered class of MDPs is presented in Section
5.1. Section 5.2 summarizes the set of E/E strategies considered, and lists
the discovered formulas. Afterwards, some baseline strategies are presented in
Section 5.3 and a comparison with the most promising discovered formula is
performed in Section 5.4.

5.1 Prior knowledge

Let pM(.) be the the distribution of the considered class of MDPs, S =
{s1, s2, · · · } be the set of states, A = {a1, a2, · · · } be the set of actions,
nS = |S| be the number of states and nA = |A| be the number of actions.
Each state-action pair can lead to 10% of all possible states, which are chosen
randomly. It implies that the transition law is stochastic. Each possible tran-
sition provides a deterministic reward between 0 and 1.

Formally, for each state-action pair (s, a) ∈ S × A, we define S ′(s,a) ⊂ S, a

list of states. Its size is arbitrarily fixed to |S ′(s,a)| = 0.1 nS . The transition

law τM(s, a) and the reward distribution ρM(s, a) are defined as follows:

P (τM(s, a) = s′) 6= 0,∀s′ ∈ S ′(s,a)
P (τM(s, a) = s′) = 0,∀s′ ∈ S \ S ′(s,a)
ρM(s, a) ∈]0; 1], ∀s′ ∈ S ′(s,a)
ρM(s, a) = 0,∀s′ ∈ S \ S ′(s,a)

The learning set M is composed of 10 000 instances, for which nS = 20,
nA = 5. The discounted factor γ is set to 0.995.
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5.2 Discovered formula

The chosen set of formulas F5
M has been obtained by combining, in all possible

ways, at most 5 elements, which are operators, constants or variables:

• Operators

– Unary
| . |, √., log(.)

– Binary
+, −, ×, /, min(., .), max(., .)

• Constants
1, 2, 3, 5, 7

• Variables

– ρ̃(s, a): The mean reward obtained for the current state-action pair.

– n(s, a): The number of times the current state-action pair has been
encountered before.

– Q̂(s, a): Q-function value for the current state-action pair.

– V̂ (s): V -function value for the current state.

– t: The current time-step.

– γt: The current discount factor.

The V -function is computed based on a model ψ, with a precision factor
θ = 0.001. The Q-function is obtained from it:

Q̂(s, a) =
∑

s′∈S
P (τψ(s, a) = s′) (E[ρψ(s, a)] + V̂ (s′))

The search algorithm has been used with α = 150.0 and Tb = 1 000 000.
An E/E formula-based strategy e is evaluated by the discounted sum of re-
wards:

Rπ
e

=
n∑

t=1

γt rt

where n has been chosen to ensure a precision of 0.001:

n = dlogγ((1− γ) ∆)e
= dlog0.995((1− 0.995) 0.001)e
= 2436

The following formulas have been discovered:

Rank Formula

1 (N(s, a) × Q̂(s, a)) − N(s, a)

2 max(1, (N(s, a) × Q̂(s, a)))

3 Q̂(s, a) (= Greedy)

4 min(γt, (Q̂(s, a) − V̂ (s)))

5 min(ρ̂(s, a), (Q̂(s, a) − V̂ (s)))
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5.3 Baselines

The following techniques have been selected for the comparison:

• Optimal
A greedy approach based on the exact model.

• Random
Take decisions randomly.

• Greedy
A greedy approach based on an approximated model.

• R-max (m = 1)
Classical R-max technique.

To ensure an objective comparison, the RL techniques based on one or several
parameters have been tuned, using the same learning set M as the one used
for the discovery of the formulas. The tuning of the ε-Greedy algorithm led
to ε = 0, which is equivalent to the Greedy approach.

5.4 Comparison

We measured the quality of a strategy over a set of problem instances by the
mean of the returns obtained over each instances of it. Five problem sets of
2 000 instances have been considered, differing by the size of their state set
(10, 20, 30, 40 and 50). This way, one can observe the quality of a policy,
tuned for a specific size of the state set, and measure its robustness.
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Figure 5.1: Performances of the learned and the baseline strategies for different
distributions of MDPs that differ by the size of the MDPs belonging to their
support.
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Chapter 6

Conclusions

In this thesis, we have sought to develop an approach able to exploit prior
knowledge to compute good exploration/exploitation (E/E) strategies for fi-
nite MDPs. This prior knowledge was encoded as a probability distribution
over the MDP to be played. The approach works by (i) defining a rich of
E/E strategies based on small interpretable formulas (ii) searching using a
customized optimisation algorithm for the strategy that was working at best
in average on MDPs drawn for the distribution encoding the prior knowledge.

Our tests revealed that the discovered strategy outperforms state-of-the-art
reinforcement learning algorithms on MDPs drawn from the same distribution.
Besides, it appears that making slight errors on the knowledge of the prob-
lem distribution does not decrease the efficiency of our approach for problem
instances using a larger state space, ensuring a certain robustness. Moreover,
the use of small formulas rather than ”black-box functions” for representing
the strategies leads to a better interpretability of the discovered strategies.

This work could be extended along several lines. First, it is worth notic-
ing that our search algorithm can only be used in a finite configuration: the
state/action spaces as well as the set of considered E/E strategies have to be
finite because of the search algorithm, which is limited to the discrete case.
An extension of this work to the infinite case setting would certainly be in-
teresting. A search algorithm able to solve multi-armed bandit problem in the
continuous case could be considered. Defining a richer sets of E/E strategies
could be done by using an infinite set of formulas to define those strategies.
One could imagine to parametrize the formulas, add other original variables,
or simply consider a completely new type of strategies. Finally, it would also
be worth improving the optimisation strategy at the heart of our approach.
Indeed, the CPU time it requires for discovering a good strategy can become
highly prohibitive as soon as the size of the MDP, the discount factor or the
size of the formulas start growing too much.

In conclusion, this research lead to an original procedure to discover new
strategies to address the original Reinforcement Learning problem. However,
it certainly raises more new research questions than it has answered to.
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Appendix A

Publication

The work presented in this thesis has led to a research paper that has been
accepted for publication in the proceedings of the 2012 European Workshop
on Reinforcement Learning. This paper, as it will be published in these pro-
ceedings, is given hereafter.

At the end of this Appendix, we also give the comments of the reviewers
we got for this paper.
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Editor: Marc Deisenroth

Abstract

We consider the problem of learning high-performance Exploration/Exploitation (E/E)
strategies for finite Markov Decision Processes (MDPs) when the MDP to be controlled
is supposed to be drawn from a known probability distribution pM(·). The performance
criterion is the sum of discounted rewards collected by the E/E strategy over an infi-
nite length trajectory. We propose an approach for solving this problem that works by
considering a rich set of candidate E/E strategies and by looking for the one that gives
the best average performances on MDPs drawn according to pM(·). As candidate E/E
strategies, we consider index-based strategies parametrized by small formulas combining
variables that include the estimated reward function, the number of times each transition
has occurred and the optimal value functions V̂ and Q̂ of the estimated MDP (obtained
through value iteration). The search for the best formula is formalized as a multi-armed
bandit problem, each arm being associated with a formula. We experimentally compare
the performances of the approach with R-max as well as with ε-Greedy strategies and
the results are promising.

Keywords: Reinforcement Learning, Exploration/Exploitation dilemma, Formula discov-
ery

1. Introduction

Most Reinforcement Learning (RL) techniques focus on determining high-performance poli-
cies maximizing the expected discounted sum of rewards to come using several episodes.
The quality of such a learning process is often evaluated through the performances of the fi-
nal policy regardless the rewards that have been gathered during learning. Some approaches
have been proposed to take these rewards into account by minimizing the undiscounted re-
gret (Kearn and Singh (2002); Brafman and Tennenholtz (2002); Auer and Ortner (2007);
Jaksch et al. (2010)), but RL algorithms have troubles solving the original RL problem of
maximizing the expected discounted return over a single trajectory. This problem is almost
intractable in the general case because the discounted nature of the regret makes early mis-
takes - often due to hazardous exploration - almost impossible to recover. Roughly speaking,
the agent needs to learn very fast in one pass. One of the best solution to face this Ex-
ploration/Exploitation (E/E) dilemma is the R-max algorithm (Brafman and Tennenholtz
(2002)) which combines model learning and dynamic programming with the “optimism in

c© 2012 M. Castronovo, F. Maes, R. Fonteneau & D. Ernst.
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the face of uncertainty” principle. However, except in the case where the underlying Markov
Decision Problem (MDP) comes with a small number of states and a discount factor very
close to 1 (which corresponds to giving more chance to recover from bad initial decisions),
the performance of R-max is still very far from the optimal (more details in Section 5).

In this paper, we assume some prior knowledge about the targeted class of MDPs,
expressed in the form of a probability distribution over a set of MDPs. We propose a
scheme for learning E/E strategies that makes use of this probability distribution to sample
training MDPs. Note that this assumption is quite realistic, since before truly interacting
with the MDP, it is often possible to have some prior knowledge concerning the number of
states and actions of the MDP and/or the way rewards and transitions are distributed.

To instantiate our learning approach, we consider a rich set of candidate E/E strategies
built around parametrized index-functions. Given the current state, such index-functions
rely on all transitions observed so far to compute E/E scores associated to each possible
action. The corresponding E/E strategies work by selecting actions that maximize these
scores. Since most previous RL algorithms make use of small formulas to solve the E/E
dilemma, we focus on the class of index-functions that can be described by a large set of
such small formulas. We construct our E/E formulas with variables including the estimated
reward function of the MDP (obtained from observations), the number of times each tran-
sition has occurred and the estimated optimal value functions V̂ and Q̂ (computed through
off-line value iteration) associated with the estimated MDP. We then formalize the search
for an optimal formula within that space as a multi-armed bandit problem, each formula
being associated to an arm.

Since it assumes some prior knowledge given in the form of a probability distribution
over possible underlying MDPs, our approach is related to Bayesian RL (BRL) approaches
(Poupart et al. (2006); Asmuth et al. (2009)) that address the E/E trade-off by (i) assuming
a prior over possible MDP models and (ii) maintaining - from observations - a posterior
probability distribution (i.e., “refining the prior”). In other words, the prior is used to
reduce the number of samples required to construct a good estimate of the underlying
MDP and the E/E strategy itself is chosen a priori following Bayesian principles and does
not depend on the targeted class of MDPs. Our approach is specific in the sense that
the prior is not used for better estimating the underlying MDP but rather for identifying
the best E/E strategy for a given class of targeted MDPs, among a large class of diverse
strategies. We therefore follow the work of Maes et al. (2012), which already proposed to
learn E/E strategies in the context of multi-armed bandit problems, which can be sought
as state-less MDPs.

This paper is organized as follows. Section 2 formalizes the E/E strategy learning
problem. Section 3 describes the space of formula-based E/E strategies that we consider
in this paper. Section 4 details our algorithm for efficiently learning formula-based E/E
strategies. Our approach is illustrated and empirically compared with R-max as well as
with ε-Greedy strategies in Section 5. Finally, Section 6 concludes.

2. Background

Let M = (S,A, pM,f (·), ρM , pM,0(·), γ) be a MDP. S =
{
s(1), . . . , s(nS)

}
is its state space

and A =
{
a(1), . . . , a(nA)

}
its action space. When the MDP is in state st at time t and
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action at is selected, the MDP moves to a next state st+1 drawn according to the probability
distribution pM,f (·|st, at). A deterministic instantaneous scalar reward rt = ρM (st, at, st+1)
is associated with the stochastic transition (st, at, st+1).

Ht = [s0, a0, r0, . . . , st, at, rt] is a vector that gathers the history over the first t steps and
we denote by H the set of all possible histories of any length. An exploration / exploitation
(E/E) strategy is a stochastic algorithm π that, given the current state st, processes at
time t the vector Ht−1 to select an action at ∈ A: at ∼ π(Ht−1, st). Given the probability
distribution over initial states pM,0(·), the performance/return of a given E/E strategy π
with respect to the MDP M can be defined as: JπM = E

pM,0(·),pM,f (·)
[RπM (s0)] where RπM (s0)

is the stochastic discounted return of the E/E strategy π when starting from the state s0.
This return is defined as:

RπM (s0) =
∞∑

t=0

γtrt ,

where rt = ρM (st, π(Ht−1, st), st+1) and st+1 ∼ pM,f (.|st, π(Ht−1, st)) ∀t ∈ N and where
the discount factor γ belongs to [0, 1). Let pM(·) be a probability distribution over MDPs,
from which we assume that the actual underlying MDP M is drawn. Our goal is to learn
a high performance finite E/E strategy π given the prior pM(·), i.e. an E/E strategy that
maximizes the following criterion:

Jπ = E
M ′∼pM(·)

[JπM ′ ] . (1)

3. Formula-based E/E strategies

In this section, we describe the set of E/E strategies that are considered in this paper.

3.1. Index-based E/E strategies

Index-based E/E strategies are implicitly defined by maximizing history-dependent state-
action index functions. Formally, we call a history-dependent state-action index function
any mapping I : H × S × A → R. Given such an index function I, a decision can
be taken at time t in the state st ∈ S by drawing an optimal action according to I:
π(Ht−1, st) ∈ arg max

a∈A
I(Ht−1, st, a)1. Such a procedure has already been vastly used in

the particular case where the index function is an estimate of the action-value function, even-
tually randomized using ε−greedy or Boltzmann exploration, as in Q-Learning (Watkins
and Dayan (1992)).

3.2. Formula-based E/E strategies

We consider in this paper index functions that are given in the form of small, closed-form
formulas. This leads to a very rich set of candidate E/E strategies that have the advantage
of being easily interpretable by humans. Formally, a formula F ∈ F is:
• either a binary expression F = B(F ′, F ′′), where B belongs to a set of binary operators

B and F ′ and F ′′ are also formulas from F,

1. Ties are broken randomly in our experiments.
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• or a unary expression F = U(F ′) where U belongs to a set of unary operators U and
F ′ ∈ F,
• or an atomic variable F = V , where V belongs to a set of variables V depending on

the history Ht−1, the state st and the action a,
• or a constant F = C, where C belongs to a set of constants C.

Since it is high dimensional data of variable length, the history Ht−1 is non-trivial to use
directly inside E/E index-functions. We proceed as follows to transform the information
contained inHt−1 into a small set of relevant variables. We first compute an estimated model
of the MDP M̂ that differs from the original M due to the fact that the transition probabil-
ities and the reward function are not known and need to be learned from the history Ht−1.
Let P̂ (s, a, s′) and ρ̂(s, a) be the transition probabilities and the reward function of this esti-
mated model. P̂ (s, a, s′) is learned by computing the empirical frequency of jumping to state
s′ when taking action a in state s and ρ̂(s, a) is learned by computing the empirical mean
reward associated to all transitions originating from (s, a)2. Given the estimated MDP, we
run a value iteration algorithm to compute the estimated optimal value functions V̂ (·) and

Q̂(·, ·). Our set of variables is then defined as: V =
{
ρ̂(st, a), N(st, a), Q̂(st, a), V̂ (st), t, γ

t
}

where N(s, a) is the number of times a transition starting from (s, a) has been observed in
Ht−1.

We consider a set of operators and constants that provides a good compromise be-
tween high expressiveness and low cardinality of F. The set of binary operators B in-
cludes the four elementary mathematical operations and the min and max operators: B =
{+,−,×,÷,min,max}. The set of unary operators U contains the square root, the loga-
rithm and the absolute value: U =

{√·, ln(·), | · |
}

. The set of constants is: C = {1, 2, 3, 5, 7}.
In the following, we denote by πF the E/E strategy induced by formula F :

πF (Ht−1, st) ∈ arg max
a∈A

F

(
ρ̂(st, a), N(st, a), Q̂(st, a), V̂ (st), t, γ

t

)

We denote by |F | the description length of the formula F , i.e. the total number of operators,
constants and variables occurring in F . Let K be a maximal formula length. We denote by
FK the set of formulas whose length is not greater than K. This defines our so-called set
of small formulas.

4. Finding a high-performance formula-based E/E strategy for a given
class of MDPs

We look for a formula F ∗ whose corresponding E/E strategy is specifically efficient for the
subclass of MDPs implicitly defined by the probability distribution pM(·). We first describe
a procedure for accelerating the search in the space FK by eliminating equivalent formulas
in Section 4.1. We then describe our optimization scheme for finding a high-performance
E/E strategy in Section 4.2.

2. If a pair (s, a) has not been visited, we consider the following default values: ρ̂(s, a) = 0, P̂ (s, a, s) = 1
and P̂ (s, a, s′) = 0, ∀s′ 6= s.
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4.1. Reducing FK

Notice first that several formulas FK can lead to the same policy. All formulas that rank
all state-action pairs (s, a) ∈ S ×A in the same order define the same policy. We partition
the set FK into equivalence classes, two formulas being equivalent if and only if they lead
to the same policy. For each equivalence class, we then consider one member of minimal
length, and we gather all those minimal members into a set F̄K .

Computing the set F̄K is not trivial: given a formula, equivalent formulas can be ob-
tained through commutativity, associativity, operator-specific rules and through any in-
creasing transformation. We thus propose to approximately discriminate between formulas
by comparing how they rank (in terms of values returned by the formula) a set of d random
samples of the variables ρ̂(·, ·), N(·, ·), Q̂(·, ·), V̂ (·), t, γt. More formally, the procedure is the
following:
• we first build FK , the space of all formulas such that |F | ≤ K;
• for i = 1 . . . d, we uniformly draw (within their respective domains) some random

realizations of the variables ρ̂(·, ·), N(·, ·), Q̂(·, ·), V̂ (·), t, γt that we concatenate into a vector
Θi;
• we cluster all formulas from FK according to the following rule: two formulas F and

F ′ belong to the same cluster if and only if they rank all the Θi points in the same order,
i.e.: ∀i, j ∈ {1, . . . , d}, i 6= j, F (Θi) ≥ F (Θj) ⇐⇒ F ′(Θi) ≥ F ′(Θj). Formulas leading
to invalid index functions (caused for instance by division by zero or logarithm of negative
values) are discarded;
• among each cluster, we select one formula of minimal length;
• we gather all the selected minimal length formulas into an approximated reduced set

of formulas F̃K .
In the following, we denote by N the cardinality of the approximate set of formulas

F̃K = {F1, . . . , FN}.

4.2. Finding a high-performance formula

A naive approach for determining a high-performance formula F ∗ ∈ F̃K would be to perform
Monte-Carlo simulations for all candidate formulas in F̃K . Such an approach could reveal
itself to be time-inefficient in case of spaces F̃K of large cardinality.

We propose instead to formalize the problem of finding a high-performance formula-
based E/E strategy in F̃K as a N−armed bandit problem. To each formula Fn ∈ F̃K
(n ∈ {1, . . . , N}), we associate an arm. Pulling the arm n consists first in randomly drawing
a MDP M according to pM(·) and an initial state s0 for this MDP according to pM,0(·).
Afterwards, an episode starting from this initial state is generated with the E/E strategy πFn

until a truncated time horizon T . This leads to a reward associated to arm n whose value
is the discounted return RπM (s0) observed during the episode. The purpose of multi-armed
bandit algorithms is here to process the sequence of such observed rewards to select in a
smart way the next arm to be played so that when the budget of pulls has been exhausted,
one (or several) high-quality formula(s) can be identified.

Multi-armed bandit problems have been vastly studied, and several algorithms have
been proposed, such as for instance all UCB-type algorithms (Auer et al. (2002); Audibert
et al. (2007)). New approaches have also recently been proposed for identifying automati-
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cally empirically efficient algorithms for playing multi-armed bandit problems (Maes et al.
(2011)).

5. Experimental results

In this section, we empirically analyze our approach on a specific class of random MDPs
defined hereafter.

Random MDPs. MDPs generated by our prior pM(·) have nS = 20 states and nA = 5
actions. When drawing a MDP according to this prior, the following procedure is called for
generating pM,f (·) and ρM (·, ·, ·). For every state-action pair (s, a) : (i) it randomly selects
10% of the states to form a set of successor states Succ(s, a) ⊂ S (ii) it sets pM,f (s′|s, a) = 0
for each s′ ∈ S \Succ(s, a) (iii) for each s′ ∈ Succ(s, a), it draws a number N(s′) at random

in [0, 1] and sets pM,f (s′|s, a) = N(s′)∑
s′′∈Succ(s,a)N(s′′) (iv) for each s′ ∈ Succ(s, a), it sets

ρM (s, a, s′) equal to a number chosen at random in [0, 1] with a 0.1 probability and to zero
otherwise. The distribution pM,0(·) of initial states is chosen uniform over S. The value of
γ is equal to 0.995.

Learning protocol. In our experiments, we consider a maximal formula length of K = 5
and use d = 1000 samples to discriminate between formulas, which leads to a total number of
candidate E/E strategies N = 3834. For solving the multi-armed bandit problem described
in Section 4.2, we use an Upper Confidence Bound (UCB) algorithm (Auer et al. (2002)).
The total budget allocated to the search of a high-performance policy is set to Tb = 106.
We use a truncated optimization horizon T = logγ ((1− γ)δ) for estimating the stochastic
discounted return of an E/E strategy where δ = 0.001 is the chosen precision (which is also
used as stopping condition in the off-line value iteration algorithm for computing Q̂ and V̂ ).
At the end of the Tb plays, the five E/E strategies that have the highest empirical return
mean are returned.

Baselines. Our first baseline, the Optimal strategy, consists in using for each test MDP,
a corresponding optimal policy. The next baselines, the Random and Greedy strate-
gies perform pure exploration and pure exploitation, respectively. The Greedy strategy
is equivalent to an index-based E/E strategy with formula Q̂(s, a). The last two baselines
are classical E/E strategies whose parameters have been tuned so as to give the best per-
formances on MDPs drawn from pM(·): ε-Greedy and R-max. For ε-Greedy, the best
value we found was ε = 0 in which case it behaves as the Greedy strategy. This confirms
that hazardous exploration is particularly harmful in the context of single trajectory RL
with discounted return. Consistently with this result, we observed that R-max works at its
best when it performs the least exploration (m = 1).

Results. Table 1 reports the mean empirical returns obtained by the E/E strategies on
a set of 2000 test MDPs drawn from pM(·). Note that these MDPs are different from
those used during learning and tuning. As we can see, the best E/E strategy that has been
learned performs better than all baselines (except the Optimal), including the state-of-
the-art approach R-max.

We may wonder to what extent the E/E strategies found by our learning procedure
would perform well on MDPs which are not generated by pM(·). As a preliminary step
to answer this question, we have evaluated the mean return of our policies on sets of 2000
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Baselines Learned strategies
Name Jπ Formula Jπ

Optimal 65.3 (N(s, a) × Q̂(s, a)) − N(s, a) 30.3

Random 10.1 max(1, (N(s, a) × Q̂(s, a))) 22.6

Greedy 20.0 Q̂(s, a) (= Greedy) 20.0

ε-Greedy(ε = 0) 20.0 min(γt, (Q̂(s, a) − V̂ (s))) 19.4

R-max (m = 1) 27.7 min(ρ̂(s, a), (Q̂(s, a) − V̂ (s))) 19.4

Table 1: Performance of the top-5 learned strategies with respect to baseline strategies.
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Figure 1: Performances of the learned and the baseline strategies for different distributions
of MDPs that differ by the size of the MDPs belonging to their support.

MDPs drawn from slightly different distributions as the one used for learning: we changed
the number of states nS to different values in {10, 20, . . . , 50}. The results are reported in
Figure 1. We observe that, except in the case nS = 10, our best E/E strategy still performs
better than the R-max and the ε-Greedy strategies tuned on the original distribution
pM(·) that generates MDPs with 20 states. We also observe that for larger values of nS , the
performances of R-max become very close to those of Greedy, whereas the performances
of our best E/E strategy remain clearly above. Investigating why this formula performs
well is left for future work, but we notice that it is analog to the formula tk(rk − C) that
was automatically discovered as being well-performing in the context of multi-armed bandit
problems (Maes et al. (2011)).

6. Conclusions

In this paper, we have proposed an approach for learning E/E strategies for MDPs when
the MDP to be controlled is supposed to be drawn from a known probability distribution
pM(·). The strategies are learned from a set of training MDPs (drawn from pM(·)) whose
size depends on the computational budget allocated to the learning phase. Our results
show that the learned strategies perform very well on test problems generated from the
same distribution. In particular, they outperform on these problems R-max and ε-Greedy
policies. Interestingly, the strategies also generalize well to MDPs that do not belong to
the support of pM(·). This is demonstrated by the good results obtained on MDPs having
a larger number of states than those belonging to pM(·)’s support.
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These encouraging results suggest several future research direction. First, it would be
interesting to better study the generalization performances of our approach either theo-
retically or empirically. Second, we believe that our approach could still be improved by
considering richer sets of formulas w.r.t. the length of the formulas and the number of vari-
ables extracted from the history. Finally, it would be worth investigating ways to improve
the optimization procedure upon which our learning approach is based so as to be able to
deal with spaces of candidate E/E strategies that are so large that even running once every
strategy on a single training problem would be impossible.
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APPENDIX A. PUBLICATION

A.1 Reviewers’ comments

1 ------------------ REVIEW 1 ----------------

2 PAPER: 5

3 TITLE: Learning Exploration/Exploitation Strategies

for Single Trajectory Reinforcement Learning

4 AUTHORS: Michael Castronovo , Francis Maes , Raphael

Fonteneau and Damien Ernst

5
6 OVERALL RATING: 1 (weak accept)

7 REVIEWER ’S CONFIDENCE: 2 (medium)

8
9 The paper does not appear to be a double submission.

10 I recommend that the paper be presented as a talk ,

either long or short.

11
12 The article introduce a method for finding good index

formulas for MDPs drawn from a chosen prior over

the class of MDPs. Such formulas are otherwise

often designed by hand such that bounds can be

proven. This article continues and extends work by

Maes et. al. on finding good index formulas for

Bandit problems. That paper by Maes et. al. used

small collections of Bandits and I think it is far

more satisfactory to simply draw MDPs from a

prior as the authors of this article is doing.

13
14 The empirical results are good and the found formula

outperforms generic methods like R-max when MDPs

are sampled from the given prior , however , the

authors do not compare to Bayesian RL methods

despite referencing them and pointing out that

they are the most closely related methods. To base

a Bayesian RL method on the same prior would

allow the competition the same information that is

provided to the introduced method which would

make it a truly fair comparison.

15
16 The paper is well presented.
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1 ------------------ REVIEW 2 ----------------

2 PAPER: 5

3 TITLE: Learning Exploration/Exploitation Strategies

for Single Trajectory Reinforcement Learning

4 AUTHORS: Michael Castronovo , Francis Maes , Raphael

Fonteneau and Damien Ernst

5
6 OVERALL RATING: 3 (strong accept)

7 REVIEWER ’S CONFIDENCE: 4 (expert)

8
9 A Is this paper a Double -Submission?

10 No , I do not think so.

11
12 B If the paper gets accepted , what do you recommend:

13 (i) Long Talk + poster

14 (ii) Short Talk + poster

15 (iii) Poster

16
17 I recommend (i) Long Talk + poster.

18
19
20 I Summary of the Paper

21
22 The paper presents a method for learning exploration/

exploitation strategies for solving

23 Markov Decision Processes using Reinforcement

Learning. This method uses a set of formulas

24 that are used on the interaction history of the RL

agent to compute the best action to

25 select. The system is trained on a large number of

different MDPs taken from some prior

26 probability distribution , which circumvents the

method to be tailored only to one specific

27 MDP. The results show that the approach learns

exploration/exploitation strategies that

28 are better than R-MAX , or epsilon -greedy.

29
30
31 II Contribution of the Paper

32
33 The main contribution is the use of formula discovery

for learning an exploration/exploitation

34 strategy. It is often difficult to construct new

exploration/exploitation strategies , and the

35 proposed method allows the agent to learn novel

strategies itself. This is very original.
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36 The algorithm generates a large number of different

formulas and selects to use each time

37 one of them using UCB. It would be interesting to use

the same formula discovery also for

38 this multi -armed bandit problem.

39
40 III Clarity and Presentation

41
42 The paper is very well written and very interesting

to read. It describes very original work

43 and the obtained results are very good as well.

44
45 IV Relevance and Significance

46
47 The paper is very relevant for EWRL , and has a high

significance. It is interesting original

48 research that will be interesting for a large RL

audience.

49
50
51 V Strengths and Weaknesses

52
53 The strengths of the paper are:

54
55 1) Very original approach

56 2) Very interesting for a large RL audience

57 3) Very well written paper and very nice to read

58 4) Very good results

59
60 I do not see any weaknesses , except maybe the

difficulty to prove regret bounds with the

61 found formulas which are much more complex to analyze

than humans could come up with.

62
63
64 VI Open Questions and Detailed Comments

65
66 I found some typos:

67
68 Page 2. and that action a_t is selected -> remove

that

69 Page 3. we call history -dependent -> a history -

dependent

70 Page 3. such an index functions -> function

71 Page 5. we clusterize -> we cluster

72 Page 6. \rho_M(s,a,s’) -> before the reward function

is based on (s,a) so: \rho_M(s,a)
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73 Page 6. 2000 tests MPDs -> MDPs

74 Page 6. reported on Figure 1 -> reported in

75
76
77 VII Summary of the Review

78
79 Excellent paper describing very original research

48


