A mineralogical and microstructural study of 7 eucrites (A-881394, Y-791195, Y-981617, Y-790266, Y-791186, Y-792510, Y-793591). H. C. Foucart1, M. B. Holness2, O. Namur2, J. Vander Auwera1, 1University of Liège, Department of Geology, Liège 4000, Belgium, 2University of Cambridge, Department of earth Sciences, Cambridge CB2 3EQ, UK.

The mineral chemistry and the detailed microstructure of seven eucrites (A-881394 [e.g. 1-2], Y-791195 [e.g. 3], Y-981617, Y-790266 [e.g. 4], Y-791186 [e.g. 4-5], Y-792510 [e.g. 4-5] and Y-793591) of the NIPR collection of Antarctic meteorites have been examined in order to constrain their modal mineralogy and chemistry and to explore the potential of microstructural analysis as a new tool for interpreting meteorites.

The minerals major element composition was analyzed with a Cameca SX 100 electron microprobe while a universal stage [e.g. 6] allowed measuring true dihedral angles [e.g. 7-8-9] in thin-sections (Figure 1). ImageJ, Gimp and GEOrient softwares were also used to produce elemental maps, to calculate modal mineralogy, aspect-ratios [e.g. 10] and fabric strengths [e.g. 11].

Our results are in agreement with previous work [e.g. 1-2-3-4-5]. Three meteorites, Y-792510, Y-791186 and Y-793591, are brecciated basaltic eucrites with a subophitic texture characterised by plagioclase and/or cloudy pyroxene grains set in dark comminuted matrixes. Y-981617 is a typical cumulate eucrite but the classification of the remaining three is less obvious. A-881394 and Y-791195 are granulitic whereas Y-790266 features a coarse-grained texture with abundant irregular and sub-rounded interstitial areas. There is some variability in the modal mineralogy of these samples. The proportion of pyroxene and plagioclase ranges from 41.4 (A-881394) to 60.7 (Y-791186) and from 33.6 (Y-791186) to 50.1 (A-881394) respectively.

The mineral chemistry demonstrates that all eucrites with the exception of Y-790266 are equilibrated (types 4-6) and highly metamorphosed with Y-791195 being the most metamorphosed sample. A qualitative assessment of the extent of equilibration of primary igneous textures was also made from a consideration of microstructure. Only the unbrecciated eucrites were used for this. Indeed, discrimination between different degrees of equilibration is possible by using the median of the population of pyroxene-plagioclase-plagioclase dihedral angles, with greater equilibration resulting in high dihedral angles [e.g. 7-8-9]. These medians can thus be used to place the unbrecciated samples in order of increasing metamorphism within a single coherent classification scheme. Analysis of lattice orientations of plagioclase grains in granulitic eucrites (A-881394 and Y-791195) suggests that these highly equilibrated meteorites were once cumulates, with a strong preferred orientation of elongate plagioclase. Subsequent thermal metamorphism led to the recrystallization and formation of a granular microstructure without the rotation of the original preferred lattice orientation of the plagioclase.

Based on the mineral chemistry and the texture of Y-791195 and Y-790266, we suggest including a third class of gabbroic eucrites in the usual two-fold classification of eucrites into cumulate and non-cumulate [e.g. 12-13]. This third type is characterised by an evolved composition similar to the basaltic eucrites but has an intrusive microstructure with medium to coarse grain size formed by slow cooling in a sub-surface environment.

References:

This work was carried out in the framework of the SAMBA – NIPR collaboration.