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ON THE APPROXIMATION OF INCOMPRESSIBLE MATRRIALS

IN THE DISPLACIEMENT METHOD

J.TPe DEBONGNIE

A mathematical analysis of the numerical approximation to incompres-—
sibility with nearly incompressible displacement finite elewments is pre~
sented, It explains why, as observed by many authors, convergence to the
incompressible solutlon is not necessarily obtained when Poisson's ratio
is inereased up to 0.5. It also allows predicting under which conditions

convergence of the nearly incompressible approach {s guaranteed.



1.

1. Introduction

It ie obvious that when incompressibllity is assumed, the stiffness
matrix of a displacement finite clement model is no lonper definite.
Thus, the analysis of incompressilble structures cannot be performed

exactly using the displacement method,

From an engineer point of view it seemz reasonable to expect that to a
continuous change in matevial behaviour 1Is assoclated a continuous change
in the solution. In cur case, the nearly incompressible solution can thus be

expected to be not very different from the exact Incompressible one.

Some numerical experiments with the nearly incompressible approach, however,
have lead to somewhat discouraging results, specially in plane strain problems,
The faitlures of the method have generally been attributed to the fact that the

stiffress matrix become singular as v tends to 0.5,

A short prasentation of the displaccment wethod applicd to nearly inconpres-
gible materials is given first, and a detailed analysis of the inaccuracy so
introduced follows which shows that ill~t0nditioning of the stiffness matrix
cannot be responsible for the discrepancles observed on the results. The proof
is next piven that the lack of couvergence is essentially due to an improper
discretization of the displacement field. This conclusion is enhanced by a

properly chosen example,

2. Presentacion of the method

The strain energy can be written In the general form

ay - Vv . ’
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where Eij = -%'(Diuj + Djui}, v is Poisson's ratio and G Coulomb's modulus
Of course, it is Impossible to set v equal to 0.5, since the stiffness
matrix would not be definite, But it seems logical to approximate the
preblem by setting v = 0.5 - £, € being an arbitrary small position
constant, The problem can then be solved numerically, and one may hope

that the results will give a good approximation teo the incompressible

solution,



The exact variational problem for an incompressible structure is
) P

J Ge,, P dv - f t, w dS min {2
v 4 5 ue
where I Ls the subspace of abl admissible displacements verifying the

-.},.
incompressibility equation div u = 0,

The approximate problem that we will effectively solve is

. V) [ &> 2 —
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whare H denotes the whole space of admissible displacements.
Comparing the two functionals shows that they eonly differ through the

additional term

kd ¢ (div u)> av . (4)
1-2v v

(4) is precisely the norm of the function that must be zero multiplied
v . .
by the factor T As the latter hecomes infinite for v = 0.5, the

additional term (4) can thus be regarded as a penalty functional [il . DJ.

However, some authors have used this wmethod and obtailned unexpectedly
poor results. These inaccuracies have generally been attributed to the fact
that the stiffness matrix becomes nearly singular. In the following example,

we shall demonstrate that the problem is essentially of an other nature,



Je Analysils of an example

Let us gonsider the plane straln problem of a pressurized thick-walled
cylinder made of an incompressible material contajned in a thick elastic
case (fig. 1). This problem is idealized by trianpular torus elements,
as represented on fig. 2. The elastic characteristics of the eylinder and its

container are

E = 23‘0?69'kg/mm2 » B, = 2.1 x 10zi kg/mm2 y Vo T 0.3,
The same problem has been analyzed wich two types of elements. The first
type 13 a classical displacement element where the displacemcents are
discretized as polynomials of the coovdinates EWJ . The second type is
a mived element following Herrmann®s varlatlonal principle [6] « In
Herxmann's Formulation the variable ave thus the displacements and the
mean pressureJt allows for an exact treatment of incompressible structures

and will thus be useful for a comparison.

The problem has been analyzed successively with the fcllowimg values
of Polsson's ratio: v = 0.4%, 0,499, 0,4999, 0.49999, 0,400999, and using
linear, quadratic and cubic elements. For each analysis we consider
the following quantitiecs : the total energy, the circumfercential force in
the shell, and the ratio between the largest error on the reactions and
the mean lead. This ratio is a good measure of numerical condilioning
of the system. When lower than 10“8 it is assumed cqual to O, The results
are compared to those of an analysis made with Herrmann's incompressible

elements of third degree.



Table 1. Variatjon of petential encrpy (X 1077
degrioe | element | w= 0,49 wE 499 | u=D 499% v=0L49990 | u=0,.490999]  y=0.5
1 H 3,358223 2.560309 2,460611 24503094 2.449370 -
C 2.377885 0.647630 0.085141 0,.003306 0.,0003834 -
- . . .
H 3,433747 2.601914 2.498709 2.,488147 2.487042 s
2 3.352144 | 2.330433 | 1.714360 | 0.678295 | 0.093106 -
1! 3.438266 2.60438] Z2.500965 2.490377 2,489316 |2.439193
3 C 3.432833 2.582317 2.430040 2.,286522 1.534954 -
Table 2, Variation of circumferenciel forece MGB
degree | element | v=0.49 v=0.499 v=0.49%9 | v=0.49999 v=0,499%99 | v=0,5
(7 1 H 231.6 275,1 280.5 281,1 281.1 -
c | 167.1 70,90 9,885 1.029 0.1033 -
2 H 236,5 279.6 284.8 285.4 2854 -
C 231.2 250 .6 195.5 77.81 11.26 -
3 I 236.8 275.3 235,.1 255.6 285.7 285.7
C 236.5 277.5 277.1 262.3 176.2 -
Table 3, Relative error in the reactions (Element C)
degree v=0,49 v=0.499 v=0,4999 v=0,49999 v=0.,499999
1 Oc(k) Oa Oc 00 O.
2 0. 0. a. 0. .
3 0. 0. 0. 2.1078 1.107%
-3
() 0. means <10




The results obtained from both approaches are collected Iin tables 1, 2
and 3. The evolution of the potential energy Is represented on fipure 3,

and the variation of the circumferential force on figure 4. The displacement
and lerrmam's formulations are noted "C" and "H" | respectively.
It can be scen that lierrmann's solutilon behaves continuously as
v—>3,5, and that even the lower degree approximation give fairly
accurate results. It singularly contrasts with the behaviour of the various
displacement approaches. The latter provide with accurate results when
Poisson's ratio remzivs sufficiently small. When the structure tends to the

incompressible one, the three solutions seem to converge to zero.

It is dwmpovtant to point out this evolution is such that the
solution s better for higher deprees, But this contradicts the idea
that the discrepancies are related to the ill-conditioning of the stiffness
matrix. Indeed in this case, the lower the system is, i.e. for the first
degree, the better the numerical vesults would be., In additien, it can
be seen that the relative errors on the reactionsarve always very little,
Indicating thus that numerical inversion is not responsible for the

discrepancy observed,

Thus it 1s obvious that the preblem is not essentially a numerical
problem and that another phenomenon must exisi which explains this
tremendous divergence. In the next section the polynomial discretization
of the displacement field will be identified as the main source of

discrepancy.

4, Analysis of the problem

When there are no kinematical modes, the admissible displacements
form a Hilbert space H on which the following scalar preduct can be
defined :

1, v) - I 26 e, & ° ) av (5)

Vv



The displacement modes which verify the incompressibility equation
divu =0 (6}
- r B ™ > - ] +
form a linear subspace I, 0f course, If u & I, the quadratic functional
-+ A
b(u,u) = [ 2G(div u)" 4v (7)
Vv
vanishes.
Let us next consider a linear subspace SCH. The quontity

J 26(div o) 2av

e{5) = wmin v g = min b{ﬁpgﬁ (8)
uess Hn| I UEsS
|51 ]= 1

has the followling property

e(S) > 0 if and only if s 1 = {0}
{ } ) (9
e(sy =0 if SH 1 # {0}

e '
The set of linecar fucntionals £{u) which are continuous and

verify the inequality

% = max AL < w
| 'f| ,S}: = Edh Htﬂ < (10)
ues

is called dual of S [S] . We shall denote it S° . The quant icy| | £]] . 18

: . ] P
the norm of £ in S, Of course, if 5 and T are two linear spaces



and 1f S < T, the norms "f!]qk and ||f||Tﬁ verify the Ineqgualiry

el , < Hell (1)

For simplicity, we suppese in the following that the kinematical
conditions are homopeneous, The extension to other boundary conditions

would be suraiphtforward.
The exact incompressible problem (2) is of the form

1 i 2 ->
P I |u| | - flu) min
2 deT

1 =2 . . 4 ore
whete-i |1u|| is the strain enerpy, and the linear Ffunctional f£{i), the
potential enerpgy of external loads,

If we decompose the displacement vector in the following form

v = Yu,o, (12)
whare

A = u] ]

N o »

u HT orsmmnn

SRy

the variational problems (2) may be rewritten in the form

2 .
{ [':L AT - Af(lz) | min ]} min (13)
2 1
. A -3 ‘
.M
_}.
Let us first minimise on uy p
f(a ) max
1 -3

{ u, €L (14)

1
[l =1



By virtue of (10) , the sclution Kl Is suech that

£ = ||f||1x (15)

P
Then, the minimisation on A shows that the solution u verify the

following relations

i

%] | IIf:IIIK

{ , } (16)
- 2
1K £(u) = "f"];k

I

The finite element method consists to select a finlte dimensional
subspace 5 C H and to minimize the functlonal in this subspace. Any
displacement vector lying in 5 way be decomposed in the finite element
basis

-

qi uj. B (]7)

o
i
(e B

i=1

where N fs the dimension of §. It is easy to extract the linear

P - =+ . . . v
combinations of u, which lie in I : they are the solution of the system

N

£ A, q =0 13

j=1 M % ’ . (s
where

A, = f div(u.) div(a,) dv (19)

1] y -k i

The linear closure S1 of these combinations 1s naturally a linear

subspace of 5. If we orthogonalize the basis {U,, cos Gg] to the

basls of SI we chtain the basis of an other subspace SC orthogonal to §



Any displacement of § can thus be decomposed in the form

u o= oup + U . {200)
-+ >
ag el A KA x
where vy £ SI and u, € &c . |10|
The approximate problem (3) is
Y
12 5 > e
=l +omemen ]y 3) o~ £{u in 22
2|| || T (g ) () .? (22)
ut 5
The decompesition (20) gives
v
L+ 2 Loy 2 ) > a > . ,
-2-| 'U‘IH + 5 I|ut| + Ty b{uc,uc) - (ui) - f(uc) ll_Tylﬁl[l . (23)
U5,
L I
i o
uc% 8.
This variational problem can thus be split in the following ones
Lijg+ 42 -+ .
§{|ull[ - f(ul) mlz ) {24)
up € 5
and
>
1 -+ 2 2 -+ ¥ g
st e — - 1 1
3 |‘ucl| T b(ucguc) f(uc) min (25)

Ye € Sc'

The first problem is the discretization of the exact incompressible problem
(2). Following (16}, at the sclution, we have
..). .
Hougll = 1lel] (26)
5
I
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tccording te Clapeyron's theorem , the solution of the secend problem is

I ?, 3 o
BT+ e b uu) = 8 ()
But
e | e Tl T
e

.

o > (2
b<uc”&c) 2 IIJCI‘

e(S )

<

Thusz, the following inequality bolds for the compressible part u, of the

displacement u

-+ 2 . ) . o>
B2 Ty e Lo el 11
Ve
and
el :
e
B 1] < - (27)
[ 55 e )
Al

Since T when v o+ 0,5,
the coupressible term u, converges to zero when v *+G6,5, The factor

e(SC) shows that this convergence 1s particularly fast when the discretization

is poor.

This 1s precisely where the difficulty lies. Lf the subspace § is

such that SI = 0 . the finite element solution is contained in SC.

Then, according to (27) it must converge to zero when v + 0,5

It is easy to check that it was the case in the preceding example, In an

axlsymmetric plane strain pxoblem, the incompressibility condition takes

the form
1 d -
.;. :.i-r (ru) = {) (23)
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The asolutionz of which obviously form the linear one-dimensional sulbispace,

I = {u J u o= o = gonstant .
As the finite element subspaces that we have consldered do not contain
. o .
the functions P the solution will then converge to zero.
The lower the degree is, the faster the convergeuce to zero will be, since
in this case e(SC) is the larger. It is exactly the phenomenon that we have

observed In the numerical application above,

Let us still make the following remark about the convergence of the poten-—

tial energy. Siuce

Bl = nel,
"1
ard
£
| st
-+ c
AENEE 5
1+ g e 6]
— — — 2 —
L@ = e@p 1@ < el w1l IR
I c (30)
1|2y
. Hellgn
ML +
* \
Ssp 1o el
It appears that £(T)»> ||f]]| 5 When v 0.5

51
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i.e, the potential energy converges to a lower bound to the exact value. But
the selution of the appreximated problem does not necessarily give a lower
bound of the cnergy since the sccond term of {30} can happen to be larger
than the difference ||f|| - ||f|l .
IK’ S‘k
I
To conclude this section, the approximated functional (2} may be used,
but the convergence of the resulta depend on the representation of the incom=
pressible subspace by its finite element discretization. If no incompressible
functlon lies fu the finite elewent wodel, the solution will converge o
zero, but if the incompressible subspace is sufficiently represented, a

satisfactory displacement finite element solution can then be expected.

5. An ezaumple of good converszence

As an {llustration of the theory, we congider next the case of a cylinder
whose lateral surface is clamped, At one end, the "inlet end" , a pressurc of
100 kg/cmz is applied. The "outlet end" is free. All radial displacements‘are
fixed. Lt can easily be shown that this problem is identical to Stokes flow
in an Infinite pipe [i] . Its exaet analytical solution gives

.!’Xpel)‘Z

u ey
max ie G1 »

where U oax is the displacement on the axisy; Apfl the pressure gradilent,
D the dismeter, and G Coulomb's modulus,
Similarly we obtain for the potential energy

P = p.lg e Mo rz
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where u = u lZ.
M

With the following numerical values of material constant, geomstrical -

characteristics and applied load
L= 40., D=20,, E=10. ; p = 100,,
the solution is thus

u = 18,75
max

P o= 2,045243 x 107,

This etructure has been analvsed for the followlng values of Poilsson's ratio.
= 0,49, 0,499, 0.,499%, 0.49999, 0.499399

with second degree elements,. The vesults arve collected in the following

table.
Table 4

v=0, 49 v 409 v=( 4999 v=0 49999 | vw=0,4999919
umax(inlﬁt) 26,19736 19.52690 18.82769 18 .75777 18,75073
%nlx(outlet) 14 .76267 18.,32613 18.70767 18,74577 18 .74958

Potenc ial ener~ 4,553300 3.128204 2.963807 2.,947102 2.945429
~5 .
gy (x 107)

These results are plotted on figures 6 and 7, which emphasize the very
good convergence to the incompressible solution,

For compressible structures, u (outlet) # u (inlet)} but for
. max max

<

incompressible structures their value must be the sanme,

This result is resteored with 2 good precision for v= 0.4999
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Conclugion

The approximation of incowpressible structures by displacement nearly
incompressible elements may be regavrded as a penalty method. The results
depend essentially on the representation of the incompressible subspace by
the finite element model, If there are no Incempressible modes in the
idealisation the solution converpges to zere as TPoisson's ratio tends to 0.5,
This phenomenon ie the wmain cause of the difficultiles encountered in many
experiments, If the incompressible subspace is correctly represented, however,
it is possible to obtaln fairly accurate results. This theoretical couclusion
is of great practical interest becavsge it justifies the use of displacement

models in many incompressible structures,
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