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Abstract

This paper presents a simple adaptive controller which
universally achieves so-called X-tracking for linear systems
where only little structural information about the system
to be controlled is needed. The paper extends previous
results to the case of systems with higher relative degree.
Stability and convergence of the adaptation is proven for
tracking arbitrary but sufficiently smooth reference trajec-
tories. The design of the controller is very simple and in-
tuitive and only few parameters have to be tuned. The ro-
bustness is increased by the introduction of a dead-zone in
the adaptation, whose width A can be chosen by the user.

In this paper a continuous adaptation law is used as op-
posed to the discrete law suggested in earlier papers. There
are several advantages in using a continuous adaptation:
Besides displaying a simpler structure the necessary gain
to achieve the control goal will also be significantly lower
in general. To demonstrate the performance the controller
is applied to the model of a ball and plate experiment.

1 Introduction

A popular method for the robust stabilization of con-
trol systems is adaptive control. On the one hand, on-
line identification techniques are used for tuning the con-
troller (see (Ast95;Nar91) for a survey). In non-identifier-
based adaptive control, on the other hand, the controller
is directly tuned without estimating the parameters of the
plant, usually by increasing it as long as the control ob-
jective has not yet been achieved (see (I1c91) for a sur-
vey of earlier works). The first, rather complicated non-
identifier-based controller was proposed in 1978 by Feuer
and Morse (Feu78). In the mid-80's several authors im-
proved and simplified the adaptation and the controller
structure, see (I1c91) for a list of references. These con-

trollers achieve stabilization via adapting a gain continu-
ously or in a step-wise manner. The latter has the draw-
back there is that the height of the steps has to grows expo-
nentially. Usually, the gain adaptation reduces to increas-
ing the gain as long as the control objectives, for example
stabilization, have not been achieved.

To increase the robustness especially when output noise
is present, a dead-zone (of width ) in the gain adapta-
tion is introduced in (Mil91; 11c94). This is usually called
X-stabilization or X-tracking as the objective is to control
the output or the tracking error no longer to zero but to
a X-neighborhood of zero. Thus, an output error of am-
plitude smaller than the width of the dead-zone does not
increase the adaptation parameter. While in (11c94) a con-
tinuous adaptation is used for systems of relative degree
one, (Mil91) and later (Bul99b) who are dealing with the
higher relative degree case need an adaptation parameter
that is increasing in a step-wise manner.

Our contribution is to propose a simple adaptation
scheme allowing X-tracking with a continuously increasing
adaptation parameter for any minimum-phase linear sys-
tem with known relative degree while keeping the simplic-
ity of the controller. This leads to a simple, robust con-
troller that does not need the discontinuities in the adap-
tation parameter and the tracking error is guaranteed to
converge to the interval [0, A]. Another approach for treat-
ing the higher relative degree case with a continuous adap-
tation has recently been proposed in (Ye99), but due to
the fact that there the X-tracking controller is derived via
backstepping, the controller design and the resulting con-
troller are more complicated.

To demonstrate the applicability of the X-tracker the
controller is applied to the model of a ball and plate labo-
ratory setup.

The paper is organized as follows. After stating the
system class and explaining the structure of the controller
in Section 2, the theory and an outline of the proof are
presented in Section 3. Section 4 presents the example.



2 Preliminaries

System class

We consider linear systems with known relative de-
gree r > 1, having one input and one output and stable
zero-dynamics, therefore being stabilizable and detectable.
They can be described by the differential equation

z(t) = Az(t) + bu(t), A e R™", (1a)
y(t) = ex(t), 2(t), b,"€R"  (Ip)
with
cA'b=0 for i=0, ..,r—2 (2a)
CA™ lb=g>5 >0, (2b)
det [SI"_AS] £0 forallseC, 2¢)

where (2a), (2b) are the relative degree conditions and (2¢)
guarantees minimum phaseness.

Objective

The control objective is to track a reference signal y,.y(:)
asymptotically while tolerating a tracking error smaller
than a user-defined A. All states should remain bounded,
i.e. X € L,. Yres(-)isin W™, the set of all bounded func-
tions that are absolutely continuous on compact subinter-
vals and whose r first derivatives are essentially bounded.
This set includes almost all practically relevant signals.

For this an adaptive output-feedback controller is de-
signed in the state-space. It consists of an adaptive high-
gain observer and an adaptive high-gain controller, both
described in the following.

Observer

The observer is an adaptive version of the high-gain
observer introduced by Nicosia and Tornambe (Nic89) as
in (Bul97). A state-space representation is

E(t) = A2(t) + &e(t) (3a)
e(t) = y(t) — Yref (t) (3b)
with z € R" and
—-pr-1 & 10 Dr-1'K
—pr_o k20 1 Prp - K2
Am - ) Bn =
—p1-k"T1 0 0 1 pr- K71
~pg- kT 0 0 0 Po- K"

Note that if the parameters p; are chosen such that s™ +
S5 pistis a Hurwitz polynomial, then for any positive
value of the observer gain «, the spectrum of A, lies in
the open left half plane, o(A4,) ¢ C_ and the observer
dynamics are stable. No further knowledge of the model
besides that of the relative degree is needed for the observer
design. The observer gain x is adapted according to the
adaptation law described below.

Controller
The controller is an observer-state feedback

u= _qkiv (4)
where

g, = [q0- k", - g1 k]

The parameters ¢; are chosen such that s”+g Zf;é q;s'
is a strongly Hurwitz polynomial. Then for any positive
value of the controller gain k, the spectrum of A — bq, lies
in the open left half plane. Of the model, only the relative
degree and a lower bound of the high-frequency gain are
needed for the controller design. The adaptation law for
the controller gain k is described below.

Gain Adaptation
The adaptation for the observer gain « and the controller
gain k£ is chosen in such a way that the gains are increased
as long as the amplitude of the tracking error e is larger
than the user-defined bound A from the control objectives.
Let, for A>0, v> 0, k(0) = kg > 0,
. 2. _ 7 | lel=Afor le] = A,
B(t)=da(e(t), k(1))*s dae, k) = 1 { B forel<h

In order to guarantee the achievement of the objectives
the observer gain x has to grow sufficiently faster than the
controller gain k for large &’s. For simplicity, we choose as
a simple case k = k2.

This adaptation law ensures a monotonical increases of
the observer and controller gains.
In Section 3 we need the following definition.

Definition 1 A polynomial p(s) = s"+3./_, pis' is called

strongly Hurwitz if p(s) is a Hurwitz polynomial and there
exists a symmetric, positive definite matrix P such that the
companion matrix

01
A=
0 1
—Pbo ..... —DPra
satisfies for ¥,. = diag{l, 2, . . ., r} the inequalities
AT . P+P-A<0 (6a)
¥.-P+P-¥, >o0. (6b)

A matrix with a strongly Hurwitz characteristic polynomial
will be called strongly Hurwitz.

Remark 1 As shown in (Bul99¢c), the strongly Hurwitz
condition is not a restrictive assumption.

Remark 2 Systems with cA™ b =g <g< 0 instead of
(2b) can easy be treated by changing the sign of the con-
troller.



3 Results

As stated in the following theorem we can prove that
combining the adaptive observer (3) with the adaptive con-
troller (4) and using the adaptation law (5) with x = k2 to
close the loop of an arbitrary system of class (1), (2) yields
that the tracking error asymptotically converges to the -
strip, that the adaption converges, that all states remain
bounded and that no finite escape time can occur.

Theorem 3 If for all 4 > §, s" + Y1 pis' and s™ +
qz::_g g;s* are strongly Hurwitz polynomials then the ap-
plication of the X-tracker (3),(4), (5) with x =k to any
stabilizable system of the class (1), (2) and to any reference
signal Yres (-)EW™ results in a closed-loop system which,
independently of the initial values x=(0)eR"™, i(0) €R",
k(0) > 0 has a unique solution which exists on the whole
half axis t € [0, co) and, moreover,

a) (m()"’i’()ak()) € LOO(O’OO)’
b) lim— e dist(le(t)], [0, A]) = O.

Remark 4 Theorem & states that for any linear system
with known relative degree and lower bound of the high-
frequency gain, a X-tracking controller can be designed with
the guarantee that all states and adaptation parameters re-
main bounded and that the tracking error y —ur.f asymp-
totically converges to the X-strip. The width of this strip is
a parameter which can be chosen by the user and will usu-
ally depend on the specifications, on model uncertainties
and on the quality of the measurement.

Remark 5 The motivation for such an observer-based
controller comes from the fact that for fixed adaptation pa-
rameters k and « the transfer function from y to &;, the
i-th state of the observer,

+(2

s n
. . = “+ ... -1
wl(s): st 1<l - (:)n s n-—l'c - )y(S),
()" +()" Pt 4,
is at ((low” frequencies, i.e. for small (%), approximately
a series of differentiators,

“y(s)

with a band width proportional to the observer gain. Thus,
the observer states approximate the derivatives of the output
y Therefore, the controller is approximately a PD...D"~!
controller:

T-1 r—1
u()m —k Y gk T () =k 3 g (3 y(s).
(o]

i=0 i=

&i(s) = s

Proof
The following lemma,
the proof of Theorem. 3.

Lemma 6 (N oBRveryasthbilibable hméar sys-
tem (A, b, c) of order n and relative degree r as given in (1)

proven in (Bul99b)will be used in
where

and(2)issimi!a_r to the

o Alb
tion (4,b,¢): i’ ‘} =
¢cl0

f space representa- t a t

0 1 07
] 1 0
QO e Tl e e e e e — Qp-—1 g
0

A ™

* *
. ) A33 .
1 * * 0

| 10 ... 0T |0l

where o(Ay2)CC_,0(As3) C C_ and the stars indicate
for real entries. All other entries are zero.

Proof (of Theorem 3)

Outline of the Proof. We will prove Theorem 3 in four
steps. First, it is shown that k cannot go to infinity on the
maximal time interval where all states remain bounded.
Then, it is proven that the solution of the differential equa-
tions exists for all times and thus that the maximal time
interval of existence of the solution is infinite and that there
are no peaking effects. A consequence of the first two steps
is that the controller gain k converges. In the third part
boundedness of the observer states & and thus of the plant
input « as well as boundedness of the plant states x is
shown. The proof concludes by showing that the tracking
error converges to the X-strip.

1) Boundedness of the adaption parameters. By
Lemma 6, we may assume that the system is given in the
normal form (7). The nonlinear closed-loop system (7),
(3), (4) and (5) is of the form

T = Ax —bq,z, z(0) = zo e R (8a)
&= A& + bye, #£(0) = & €R"  (8b)
k = dx{e, k), k(0) = ko > 0, (8c)
e = CX — Yref- (8d)

Using the coordinates 7 = [¢7, 27, &"] where ¢7 =
[Z1 = Urefs T2 — Urefy «ovy Ty — y,‘fﬁ}l)] denotes the
tracking error and its derivatives, z = (2,41, .
are the uncontrollable, but stable states and those of

the zero-dynamics, [#r41,...,&,]in (7), and e =

[®1,...,2z:]T — 2€R" is the observer error, the closed
loop (8) can be written as
z = Az - By,.; = f(z,1). )
With
T
=K [gT, 2, @7 (10)

K = diag{K,, In, K2}, K, = diag{k, k*,  k"}
and setting = k2, the closed-loop differential equation is
k

- éyref - E‘I‘m2

kel

= DA

8



with
¥ = diag[¥,,0,,%,], ¥, =diag[l, 2, ..,r],
A = diag {A1, Ay, Ag} = diag {kI, I, K21}, A =

~ 0 1
0 1
—go— Z_"Q ...... —Gr1 — a';c"l _Z_"v“ _ a:_l
A
1
a = Gre1 a1 P
_ﬁ*p% i — o
do qlk (ir—lkr_l
—Pr-1 1
—n -1
—po + %% kfil qu—1 |
R — L.—{(r—1
and B=k ( )er[a07 ey a,_l,l],
r j O A
yref:[yref,yrefa.__,yref], gG=4i.q.

e, is the r-th unit vector and A e R(n~7)x{n=r) js Hurwitz
as A is block-triangular with the stable matrices Ay, A3s
on the diagonal. _

By assumption, the matrices Ag, = A,

0 1 ~Pr1 1
le = ) 233— :
0 1 —D1 1
~Go .. —Grt ~po O 0

are strongly Hurwitz. Therefore, there exist unique sym-
metric, positive definite solutions P;, P, P; of the Lya-
punov equations

ATP + PA;=—Q; i=1,2,3,
PO, +¥,P, >0 i=1,3.

(11a)
(11b)

for some matrices @; >1,¢=1,2,3. The state space
partitioning of Z and B into Z; and B; respectively with
i=1,2,3 corresponds to the one for A.

Boundedness of the adaptation parameter is done via
contradiction. Due to lack of space, this part of the proof
is not shown here but can be found in (Bul99a).

2) Global existence of a unique solution. Applying
the boundedness of K to (9), it can be seen that there exist
constants ¢, d, s.t.

|f(z,t)|<c||z||+d and f(-)eC?.

Thus, Z(t) exists for all te R (Hal80).

3) Boundedness of the observer states. As k(-) s
bounded, dy(-) € L2(0, co). From that, (5) and the Holder
inequality follows that

YR ()dA (") € L2(0, 00).
Combining this with
le(-)] = ¥R (-)da(e(t), k(t)) € Loo(0, 00),
yields that
le()l = le()] = vk ()da() + 7K ()dr()

ELz(0,00)

(12)

Lo (0,00)
Defining &(t) = K7 2(t)x(t), A= Apey,b = beey, (8b) is
transformed to
£ = k*AL + k?be — %2\145
define A, = k2 A Ay=A— A, A= —2%\14
€= A€+ ArE + Asg + k2be. (13)

Ay is a constant Hurwitz matrix and there exist ty>
0, M1>0, Mz >0, M3 > 0 such that

| A2()]| < My for all ¢ > tq,
/t As(®)lldt = ()|} log(R)[® =: M,
1]
M; = H8||, and
My, >0 |lertt) || < Myemwt—to)y > ¢

Variation of Constants, see e.g. (Bel53), to (13) yields

t

@) < Mae™ 1) g (k)| + 7] Mye—r—to)

(A5 + 1A + K2(r)Msle(r)]) do
< My JlE (ko) + %(Ml T M)

| ] t
+ MaMsk2, ‘[ le(r)e= =) dr.

(]

Combined with (12), this yields that £(-) is bounded

(Des75), and by the boundedness of k it follows that
() € Loo(0,0) and u = —q,%(-) € Loo(0,00). (14)

4) Boundedness of the states of the plant. Since
(c, A) is detectable, there exists some k € C**! such that
o(A—kc) c C~. Now consider the observer

&= A% + bu + ke(x—%) = (A-KC)% +bu + k(e—yres).

By (12),(14), and the exponential stability of (A — kc) it,
holds that x € L,. Exploiting exponential stability of

d
a(w— 2) = (A ~ke)(xz—2)

again and boundedness of & yields z(-)€ L (0, co) and
also 6() = C:l:() - yref(') € Loo(oa OO)



5) Convergence of the tracking error. It remains to
show b). For this we prove that lim¢_,o dx(e(t), k(1)) = 0.
Since e(-) and k(-) are bounded it follows that &(-) =
dx()? € Loo(0,00). From é = c[Az — bq,&] — ¢res and
previous results we conclude é(-)€ Loo(0,00). Now

e(t)e()
le(?)]

ggd*(t)2 = 2d, (1) (

- r%d,\(t)> € L (0, 00)

and hence dx(-)? is uniformly continuous. This, to-
gether with dx(-)2€ L;(0,00) yields, by Barbilat’s
Lemma (Bar59) that lim;_o, dx(t)? = 0.

This completes the proof. L]

4 Example

To demonstrate the applicability of the proposed A-
tracker the controller is applied in simulation to the iden-
tified model of a bal and plate laboratory setup (Her97).
The system is depicted in Figure 1. The objective is to
make a sted bal follow a user-defined trgectory by ap-
plying voltages to the motors controlling the angles of a
plate that can be rotated about two axis (« and ). The
dimensions are approximately 80 cm x 80 cm for the plate
and the radius of the ball is 5cm The maximal angles of
the plate are about 6” for each of the axes «, f3.

Following (Her97) the ball and plate system can well be
approximated by two linear, decoupled systems of the form

a;
s2(s2 + bgs + ¢;)

a;> 0,b;> 0,c; > 0
i=a,p

due to the fact that the maximum angles are small. There-
fore, this system with two inputs and outputs can be
treated as two decoupled single input single outputs sys
tems, for which controllers can be designed independently.
z, and zz are the ball positions relative to the plate in di-
rection of the a and 3 axis, respectively (see also Figure 1).
Thus, the dimension of each system and the relative de-
gree are both 4, implying that the system has trivia zero
dynamics and is thus minimum phase. We assume that
the high frequency gain, here equa to oy, is larger than 20.
For the controller design we make no further assumptions
about the model. In particular, we assume that the values
a;, bi,c; are not known. The parameters of both controllers
have been chosen as the following strongly Hurwitz poly-
nomials: parameters p and g are such that the poles of the
respective polynomials lie at 1,2,3,4 for the observer and
for the controller, both for a controller gain of 1. For both
axes, the controller parameters are chosen to be ko = 1,
v =1000, A = 1 cm. The reference trajectory consists of
a circle with radius of 20 cm for the first minute, 10 cm for
the second, and 15cm for the last. The observer and the
model are both initidlized at the center of the plate, i.e. at
zero.

ui(s),

zi(s) =

Lo

Figure 1: Sketch of the Bal and Plate system.

For the smulations, model (4) with the numerica val-
ues identified in (Her97) as a, = 34.2, b, = 16571, ¢, =
400s~2 respectively ag = 37.9, bg = 19571, ¢5 = 64052
has been used to represent the plant. Again, these param-
eters were not used for the controller design.

The result can be seen in Figure 2. In Figure 2.a an xy-
plot of the ball's trgectory over three minutes starting at
the origin is shown. After the transient the ball follows
quite well the reference trgjectory, depicted by plus signs.
In Figure 2.b the tracking error is depicted. It can be seen
that it is dowly decreasing towards the X-strip. There, it
keeps oscillating. There are fast increases of the controller
gain during the first seconds and then smaller ones each
time the corresponding tracking error leaves the X-strip, as
shown in Figure 2.c.

5 Conclusions

[Section] In this paper a high-gain adaptive controller
for linear, minimum-phase systems of arbitrary, but known
relative degree is presented. This is the first step in the di-
rection of X-tracking of high relative degree nonlinear sys-
tems. The assumption of knowledge of a bound on the high
frequency gain should be removed in the future. Future
research will focus on nonlinear systems.
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