

Real-time auralization: a low cost updating of ray-tracing results induced by modifications of the acoustical space

A. Billon, J.-J. Embrechts University of Liège ABAV General Assembly, 3rd june 2009, Leuven

1. Background

The Auralias project aims to create an immersive environment including sound rendering (auralization)

• Aims of the Auralias project:

- interaction between the acoustician and the architect;
- real time auralization.
- Modifications of the room's acoustics:
 - absorption coefficient values;
 - diffusion coefficient values;
 - position of some sound reflectors.

Need to obtain the room's impulse responses (RIR) as quickly as possible.

Leuven, ABAV General Assembly

1. Background

- RIR obtained through the geometrical room-acoutic program Salrev, developed at the ULg
- Salrev includes two prediction methods:

First specular reflections Very accurate directions

Ray-tracing

Diffuse reflections and late reverberation

More efficient for higher order reflections

3rd june 2009

Leuven, ABAV General Assembly

1. Background

Exact Room Impulse Responses:

- calculation of the late part

Impraticable due to the long computation time (several minutes).

- Related work (Schröder & Assenbacher, 2008):
 - quick updating of the mirror sources;
 - recalculating the ray-tracing part.

No existing method suitable.

Necessity to develop our own method.

2. Main idea

- Minimising the computation load
- Dividing the echograms in 2 parts:
 - the early part recalculated ($t < T_c$);
 - the late part modelised ($t>T_c$);
 - junction of the two obtained

parts.

2. Main idea

- Minimising the computation load
- Dividing the echograms in 2 parts:
 - the early part recalculated ($t < T_c$);
 - the late part modelised $(t>T_c)$;
 - junction of the two obtained parts.

- Updating the mirror sources
- Short time ray-tracing.
- Problems to solve:
 - value of the truncation time T_c ;
 - modelling the late part.

3rd june 2009

RÉGION WALLONNE

Leuven, ABAV General Assembly

4. Truncation time

- Physical criterion : mixing time T_m
 - $T_m \approx 2 \times \sqrt{V}$ in ms (Hidaka et al., 2007; Cremer & Müller, 1982);
 - $T_m \approx \sqrt{V}$ in ms (Defrance & Polack, 2008).
- Subjective criterion (Meesawat & Hammershoi, 2002)
 not much sensitive to the sound decay >140 ms.

Proposed law:

- T_c =150 ms for V<5625 m³;
- $T_c = 2 \times V^{1/2} \text{ ms} \text{ for } V > 5625 \text{ m}^3;$
- 150 ms = 50 m traveled by the sound.

5. Sound reflectors

Hypothesis

The echograms' late parts are unaffected by the position or orientation of the sound reflectors.

Method:

- modification of the reflectors positions;
- new ray launching for $t < T_c$;
- mirror sources updating;
- junction of the echograms at T_c .

6. Diffusion coefficient value

Hypothesis

- The echograms' late parts are unaffected by diffusion coefficient values:
- true for *s*>0,4 for all geometries;
- true for all s values for near cubic shapes.

Method:

- modification of the diffusion coefficients values;
- new ray launching for $t < T_c$;
- mirror sources power updating;
- junction of the echograms at T_c .

7. Absorption coefficient value

Hypothesis

The geometry owns a single mean free path value e.g. composed of a single enclosure.

Method:

- modification of the diffusion coefficients values;
- new ray launching for $t < T_c$;
- mirror sources power updating;
- modelling of the late part;
- junction of the echograms at T_c .

7. Absorption coefficient value

Late part modeling based on statistical quantities

$$SPL'(t) \propto SPL(t) \frac{\ln(1 - \overline{\alpha'})}{\ln(1 - \overline{\alpha})}$$
 with $\overline{\alpha} = \sum_{i=1}^{n} p_i \alpha_i$

where p_i is the probability of collision with surface i

Example: Room 12x1x2 m³

Ceiling absorption: $0.1 \rightarrow 0.6$ Other walls : 0.1

- --: Original echogram
- o o : Aimed echogram
- : Modelised echogram

Very good agreement with the aimed echogram.

8. Conclusions

- Propositions allowing to speed up the updating of the echograms when the room acoustics is modified
- A truncation time based on objective and subjective criteria has been shown
- It allows to separate the echograms in two parts:
 - the early part which is recalculated;
 - the late part which can be approximated.
- Limitations:
 - deterministic phenomena: flutter echoes;
 - single volume when the absorption is modified.

