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Abstract. Feature generation is the problem of automatically construct-
ing good features for a given target learning problem. While most feature
generation algorithms belong either to the filter or to the wrapper ap-
proach, this paper focuses on embedded feature generation. We propose a
general scheme to embed feature generation in a wide range of tree-based
learning algorithms, including single decision trees, random forests and
tree boosting. It is based on the formalization of feature construction as
a sequential decision making problem addressed by a tractable Monte
Carlo search algorithm coupled with node splitting. This leads to fast
algorithms that are applicable to large-scale problems. We empirically
analyze the performances of these tree-based learners combined or not
with the feature generation capability on several standard datasets.
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1 Introduction

It is often admitted that the successful application of supervised learning depends
at least as much on the features chosen to describe the inputs of objects than
on the adopted learning algorithm. In addition to improving the accuracy of
the resulting models, a proper choice of features can also lead to more compact
models which often gain in interpretability. In practice, feature engineering - the
process of identifying a good set of features for a given learning task - is usually
performed manually based on problem expertise, which makes it more an art
than a science. In order to remedy this situation, a number of algorithms for
automatic feature generation have been proposed since the nineties (see [15,19]
for examples of early work on this topic).

Most proposed approaches for automatic feature generation® take the form of
a preprocessing: before doing actual learning, some kind of search is performed
in a space of candidate features in order to construct a (typically small) set of
features that are expected to help learning better models. Proposed approaches
for this preprocessing can be classified in two categories: filters and wrappers

1 . . . . . .
This task is also known as automatic feature discovery, construction, or extraction.



2 Francis Maes, Pierre Geurts, and Louis Wehenkel

[6]. In the former case, the search for good features is performed on the basis
of general statistics, logical or information content criteria (see [8] for example),
while the latter case directly relies on the performance of the target learning
algorithm to guide search through the feature space. Examples of wrappers in-
clude the work of [16] based on wrapping the kNN learning algorithm or the
work of [10] where the wrapped learning algorithm is a C4.5 decision tree. More
recently the authors of [18] proposed an algorithm for joint feature construction
and feature selection, wrapping either C4.5, kNN or a Bayesian classifier. Some
form of genetic programming is used in most of these works, in which individuals
are typically feature sets represented as a forest composed of n trees, each tree
describing one particular feature.

Feature generation is closely related to feature selection and, while feature
selection methods may also be classified as filters or wrappers, the last decade
has seen an increasing interest for so-called embedded feature selection meth-
ods. In these latter methods, the feature selection task is embedded within the
learning algorithm formulation, for example through the use of a L1-norm based
regularization term added to an average loss term to yield the learning objec-
tive function [13]. Embedded methods may offer some advantages over filters and
wrappers, including much better scaling properties and better theoretical under-
standing. Surprisingly however, embedded methods have received little attention
in the field of feature generation. To our best knowledge, the few embedded fea-
ture generation methods proposed so far are built around single decision tree
induction. As an example, it is proposed in [5] to invoke a genetic programming
algorithm to find the best splitting feature at each node during decision tree in-
duction. In this case, feature generation is not seen anymore as a preprocessing
step, but is instead tightly integrated within the learning process.

In this paper, we propose a general scheme to embed in a flexible way feature
generation in a wide range of tree-based supervised learning algorithms includ-
ing single decision trees, random forests and common forms of tree boosting.
We emphasize our analysis on the two latter types of algorithms, since numer-
ous studies show that they clearly outperform single decision trees in terms of
classification accuracy [2].

Both random forests and tree boosting rely on some form of vote over a set
of predictors and they are often the most effective when the individual predic-
tors are only of moderate quality: boosting is based on the combination of many
weak classifiers and random forests rely on randomization to reduce the correla-
tion of ensemble terms. As a consequence, it may be unnecessary and possibly
counterproductive to invest a huge computational budget in the search over the
feature space in the context of these methods. Therefore, instead of using compu-
tationally complex genetic programming algorithms, we propose to use a Monte
Carlo search algorithm which budget may be controlled so as to both weakly
and efficiently explore the feature space at each tree-node when constructing
model terms in random forests or in tree boosting. Our approach thus leads to
a fast integrated learning and feature generation procedure that scales well to
large scale problems and adapts well to the properties of tree-based ensemble



Embedding Monte Carlo search of features in tree-based ensemble methods 3

methods, while it works also with single trees. We show empirically that embed-
ding this feature search into single trees, random forests and tree boosting yields
significant improvements over these algorithms in their basic forms.

The rest of this paper is organized as follows. Section 2 introduces notations
and formulates the learning problem we address. Section 3 motivates the main
principles of our approach for embedded feature generation. Section 4 formalizes
feature generation as a sequential decision making problem and describes Monte
Carlo search algorithms to explore the feature space both efficiently and with
controlled strength. Section 5 presents an empirical evaluation of our algorithms
using several tree-based learning algorithms and Section 6 concludes.

2 Problem formulation

We consider supervised learning where, given a dataset S = {(x(,y®)};c;1 n
of samples (x,y) € X x Y i.id. from a distribution Dy y, the aim is to infer a
classifier i € H to minimize the expected risk: Eix y)ypy, {A(A(X),y)}. Clas-
sically in supervised learning, the input objects x are vectors of numerical or
categorical features that can directly be exploited by the learning algorithm.
This assumes that feature engineering has already been done when formulating
the learning problem. In our context, the aim is to integrate feature generation
within the learning process and we thus make no strong assumptions on the
nature of X'. An input object x € X is an n-tuple of properties x = (z1,...,2,),
where each x; belongs to the space X; that can either be continuous, discrete or
structured. Properties can for example be raw signals such as images or struc-
tured data such as trees and graphs. Classical categorical or numerical data also
naturally fit in this framework.

In order to bring the capacity of feature generation to the learning algorithm,
we expect the user to provide a set of constructor functions, as proposed in [11].
These functions can be mathematical, logical and/or domain-specific and serve
as the basis for feature generation. Formally, a constructor function of arity a
is a triplet (Z,0, F) where Z is the input domain (X} X --- x &%), O is the
output domain and F' is a function F' : T — O. As an example, addition of two
scalars has arity k = 2 and is defined as (Z, 0, F) = (R xR, R, F(x,y) = z+y).
Constructor functions can either be applied to the input properties x; or to the
results of other constructor functions. This naturally leads to tree-structured
features as illustrated by Figure 1. Note that this way of generating features is
rather general and enables to encode complex processing pipelines [14].

3 A general scheme for embedding feature generation

Most previous automatic feature generation algorithms are preprocessings that
aim at constructing a mapping ¢ : X — Z that extracts a set of relevant
features adapted to the targeted learning algorithm (e.g. typically, we have
Z C R%). Learning is then performed on the basis of the modified data set
{o(x),yD};cp1 v and classifying a new input x € X aims at computing
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Fig. 1. Examples of constructed features for three different domains: booleans, real-
valued attributes and images.

h(é(x)) € Y. This paper proposes a scheme to do both feature generation and
learning in an integrated way, so as to solve the following problem: given the
dataset whose inputs are general properties, and a set of constructor functions,
infer a classifier A : X — ) to minimize the expected risk.

Random forests, boosted stumps and boosted decision trees are among the
top-performing and most widely used supervised learning methods nowadays [2].
These algorithms all rely on decision trees, which involve splitting the dataset
recursively by testing one variable at a time. At this level, instead of testing the
raw input variables of the problem, our approach consists in splitting the local
dataset on the basis of locally constructed features, along the ideas of [5].

Table 1 summarizes the characteristics of the splitting procedure of well-
known tree-based supervised learning algorithms?. In single decision trees and
random forests, splits are constructed by searching the threshold optimizing
the information gain for each candidate variable and by selecting the variable
with maximal information gain. Random forests [1] are forests constructed using
bagging and random subspaces: when building a node, only a subset of the (non-
constant) attributes are considered as candidates for making the split. In addition
to random subspaces, extremely randomized trees [7] introduce randomization
by selecting splitting thresholds randomly, which often leads to improved models.
In the two boosting methods, the splitting criterion depends on both the selected
samples D and on their current weight W [17].

Our approach which is detailed in Section 4 consists in testing a small and
randomized part of the feature space to weakly optimize the split scores of Table
1, during each node creation. Note that, except single decision trees, all these
learning algorithms are ensemble approaches that rely on some form of majority

2 Note that while we only consider numerical attributes for the sake of simplicity, the
ideas developed in this paper also apply to other types of attributes.
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Method Abbr. Split score Optimizer

Single decision Tree ST max¢cx,; InfoGain(S,z; <t) |Exhaustive
Random Forest RF maxiex; InfoGain(S,x; <t) Subset
Extremely randomized Trees| ET |[InfoGain(S,z; < t) where t ~ Ux,| Subset

Boosted Stumps BS maxtex; Edge(S, W, z; <t) Exhaustive

Boosted decision Trees BT max¢cx,; Edge(S,W,z; <t) Exhaustive

Table 1. Tree-based learning algorithms with associated splitting procedures.

vote to perform predictions. We believe that in this context, performing only a
weak optimization over the feature space makes sense for various reasons:

— With all ensemble models, learning typically involves making several thou-
sands of splits. So, even if only, say, 1% of a feature subspace is looked at
each node, the whole subspace may still be visited multiple times during
the entire learning procedure, and each of its elements may have multiple
chances to be selected.

— Random forests and extremely randomized trees already rely on random
subspaces to introduce randomization, which was shown to lead to improved
generalization accuracy. Hence, exploring weakly the feature space is a nat-
ural extension of these algorithms that should conserve their advantages.

— With boosting, it is well known that the stronger the base learner is, the
higher the chances of overfitting are. When embedding automatic feature
generation into boosting, this problem is particularly relevant since the fea-
ture space may be highly expressive. Weak exploration of the feature space
is a way to ensure that, even with very expressive candidate features, the
base learner remains weak, hence reducing the risk of overfitting.

In the context of ensemble models, we therefore suggest that it may be unnec-
essary or even counter-productive to use computationally intensive optimization
algorithms (e.g. genetic programming, or sophisticated heuristic search) as tradi-
tionally done in automatic feature generation. To explore this idea, the following
section proposes fast randomized feature generation algorithms invoked locally
during tree growing and in Section 5 we study them empirically.

4 Feature generation algorithms

We define first the feature grammar, then their generation as a sequential decision-
making problem, and finally address this problem by Monte Carlo search.

4.1 Feature grammar using reverse polish notation

Reverse polish notation (RPN) is a representation of expressions wherein every
operator follows all of its operands. For instance, the RPN representation of
the feature ¢ x (a + b), where a, b and ¢ are input properties and + and x
are constructor functions, is the sequence of symbols [c, a, b, +, x]. This way of
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Algorithm 1 RPN evaluation

Require: f € AP: a feature of size D
Require: x € X': input properties
stack «— ()
for d=1to D do
if aq4 is an input property then
Push the value of oy onto the stack
else
Let k be the arity of constructor aq
if |stack| < k then
syntax error
else
Pop the top k values from the stack,
apply aq4 to these operands and push the result onto the stack
end if
end if
end for
if |stack| # 1 then
syntax error
else
return top(stack)
end if

representing expressions is also known as postfix notation and is parenthesis-free
as long as operator arities are fixed, which makes it simpler to manipulate than
its counterparts, prefix notation and infix notation.

Let A be the set of symbols composed of input properties and constructor
functions. A feature f is a finite sequence of symbols of A: f = [ay,...,ap] € A*.
The size of a feature f is its number D of symbols. The evaluation of an RPN
sequence relies on a stack and is depicted in Algorithm 1. This evaluation fails
either if the stack does not contain enough operands when a constructor function
is used or if the stack contains more than one single element at the end of the
process. Feature [a, x] leads to the first kind of error: the function x of arity 2 is
applied with a single operand. Feature [a, a, a] leads to the second kind of error:
evaluation finishes with three different elements on the stack. Features avoiding
both kinds of errors are syntactically correct and are denoted f € F C A*.

4.2 Feature generation as a sequential decision-making problem

We rely on RPN to formalize feature generation as a sequential decision-making
problem. Thanks to this formalization, feature generation can be considered as
a “one-player game” and solved using Monte Carlo search algorithms. In our
approach, we expect the user to provide D, the maximal constructed feature
size, i.e. the length of the longest features which will be considered as candidates.
Given D, our sequential decision-making problem is defined as follows:
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State Valid actions
|stack| = 0 I
|stack| =1 & d # D — 1|1,U, L
|stack| =1 & d =D —1|U, L

|stack| € [2,D — d] ILLUB
|stack| = D —d U,B

|stack| =D —d+1 B

Table 2. Set of valid actions depending on the current state. Symbols are classified
into Input properties, Unary function constructors and Binary function constructors.
|stack| denotes the size of the current stack and d the length of the current RPN
sequence. If the stack does not contain at least one element (resp. two elements), the
unary functions (resp. binary functions) are excluded. When approaching the horizon
D, input properties are excluded, or binary functions are forced to avoid finishing with
too many elements on the stack.

— State space: a state s is an RPN subsequence: s = [ay,...,qq] € A* with
d < D. The initial state is the empty sequence sq = 0.

— Action space: the action space is AU { L}, where L is a special symbol
to denote the end of a sequence. Given state s, we only consider a subset
AP c A of valid actions to avoid the two syntax errors described earlier and
to respect the constructor function typing constraints. Table 4.2 illustrates
the set of valid actions AP C A in a simple case containing only unary and
binary constructor functions that all operate on the same domain (e.g. only
functions operating on real numbers). The following pre-processing can be
used to compute the sets Ay in the general case. First, generate a tree of
all the possible states of the stack for depths d = 0,1,...,D. The state of
the stack is composed of a vector of variable domains; it does not depend on
any particular input x € X. Then, prune this tree by removing recursively
all nodes leading to no valid RPN sequences. Given a particular state s,
identify the corresponding state of the stack in this pruned tree and build
A, accordingly.

— Transition function: if the action L is selected, we enter a final state
defining feature f = s. Otherwise, the selected symbol is appended to the
current RPN subsequence s.

— Reward: it is obtained when entering a final state and corresponds to the
score computed by the target learning algorithm (see Table 1).

4.3 Monte Carlo search for feature generation

Monte Carlo search algorithms for making optimal decisions are receiving an
increasing interest in various fields of artificial intelligence [4], essentially due
to their ability to combine the precision of tree search with the generality of
random simulations. As a first step towards studying the application of these
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Algorithm 2 Random, step and look-ahead feature generation algorithms
Require: budget K
Require: maximal feature size D

function RANDOMSIMULATION (state s)
while s is not a final state do

a~Uyp > Sample valid action randomly
s—s:a > Append symbol to s
end while
return s

end function

function STEPSIMULATION(state s)
r* e —oo; ff—0;d—1
while s is not a final state do

f < randomSimulation(s) > Fill with random simulation
if score(f) > r* then f[* «— f;r* « score(f) end if
s— sz frd > Append the d-th symbol of the best constructed feature
d—d+1

end while

return f*

end function

function LOOKAHEADSIMULATION(state s)
r* — —o0; ff—0;d—1
while s is not a final state do
for each a € AP do
f < randomSimulation(s :: a) > Fill with random simulation
if score(f) > r* then f* « f;r* < score(f) end if
end for
s — s fr[d] > Append the d-th symbol of the best constructed feature
d—d+1
end while
return f*
end function
r* — —o0; f* 10
while num evaluated features < K do
f < {random|step|look Ahead } Simulation((})
if score(f) > r* then f* «— f;r" — score(f) end if
end while
return [~

techniques to the problem of embedded feature generation, we focus here on
three very simple Monte Carlo strategies: random, step and look-ahead.

These strategies are depicted in Algorithm 2. We denote by K the budget
allowed to the search algorithm, i.e. the number of different features it can eval-
uate before to answer. The random strategy randomly generates K features,
computes the score of each of these features and returns the best one. The two
other algorithms start with an empty feature s = () and proceed iteratively. At
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Fig. 2. Illustration of three steps of Algorithm 2 with the look-ahead strategy. Boxes
denote states, curved edges denote random simulations and rounded boxes denote final
states, i.e. constructed and evaluated features. Double-circled boxes denote the symbols
of the best discovered feature so-far that are selected by the algorithm. Note that at
the second step, the best discovered feature is still [a,a,+,b, x], hence the selected
symbol is a.

iteration d, the step strategy completes the current subsequence randomly and
evaluates the corresponding feature. It then selects its next symbol as the d-
th symbol of the currently best found feature f*. Strategy look-ahead proceeds
similarly, but makes more random simulations: one simulation per candidate
successor symbol. This strategy corresponds to the level 1 nested Monte Carlo
search algorithm [3]. Whatever the search strategy, our top-level algorithms work
by repeatedly running the random, step or look-ahead strategy until K different
features have been evaluated, i.e. search is stopped as soon as the split score
function has been called K times. It then returns the best found feature.

Figure 2 illustrates three steps of our feature generation algorithm using the
look-ahead strategy in a simple case with two input properties a and b and two
constructor functions + and Xx.

5 Experimental results

We validate our approach by embedding feature generation into five well-known
classification algorithms: single trees, random forests, extremely randomized
trees, boosted stumps and boosted trees. We focus on a set of 12 standard
classification datasets, study the effect of the parameters D and K and compare
algorithms embedding feature generation with their classical counter-parts.
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5.1 Datasets and methods

We use the same set of 12 multi-class classification datasets as the authors of [7].
These well-known and publicy available datasets cover a wide range of conditions
in terms of number of candidate attributes, presence of noise, non-linearity, ob-
servation redundancy and irrelevant variables. We also use the same train/test
splits and the same evaluation protocol as [7]: for each dataset and each algo-
rithm, we measure the test classification error averaged over 50 train/test splits
for the smaller datasets and 10 train/test splits for the larger datasets.

We embed feature generation into the following algorithms. Single trees (ST)
are classical decision trees without pruning. Random forests (RF) [1] and ex-
tremely randomized trees (ET) [7] are well-known ensemble methods. Boosted
stumps (BS) and boosted decision trees (BT) rely on the AdaBoost.MH algo-
rithm for multi-class classification [17]. For the ST, RF and ET methods, we
use the information gain normalized in the same way as [7]. As in [9], when
splitting nodes into boosted decision trees, we do not maximize information
gain but rather directly maximize the edge, the objective of the weak learner in
AdaBoost.MH.

Although our formalism enables to deal with input properties and constructor
functions of different types, we focus here on a simpler case: all input proper-
ties are numerical attributes and we construct features by using only the four
mathematical operations +, x, —, /. Applying our approach to more complex
situations is left for future work.

5.2 Impact of parameters K and D

Our first series of experiments aims at studying the impact of the optimization
budget K and the maximal feature size D on the performance of single trees,
extremely randomized trees and boosted stumps. To study the impact of K, we
choose a constant value D = 5, which for example enables to construct features
such as a + b x ¢ and vary K from 0.1n to 100n. We then set K to a constant
value (either K = 100n for single trees or K = 10n for the other methods) and
vary the maximal feature length D from 1 to 15.

Single trees. Figure 3 reports the results for single trees. The baseline corre-
sponds to classical decision trees learned on the original variables of the prob-
lem. First, we observe that feature generation does not systematically lead to
improved decision trees, which was already observed in previous work on feature
generation. Second, we observe that scores continuously get better when the
optimization budget K is increased. This is in agreement with the traditional
approach to feature generation involving computationally intensive search al-
gorithms such as genetic programming. Since there is a single chance to build
a good-performing tree (there is no ensemble effect), as much computational
power as possible should be dedicated to feature search. There is no clear ten-
dency concerning the parameter D, although we see that D = 5 seems to be a
reasonable default value. The look-ahead strategy slightly outperforms the two
other search strategies, although the overall difference is rather small.
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Fig. 3. Single trees

Extremely randomized trees. Figure 4 displays the results for ensembles of 100
extremely randomized trees. Our approaches are compared against traditional
extremely randomized trees with parameter K tuned to give the best test scores.
As previously, feature generation enables to obtain significantly improved mod-
els on only a part of the datasets. On the four first datasets, the best scores are
obtained for values of K ranging from 0.1n to 10n. As discussed in Section 3,
extremely randomized trees (and random forests) rely on random subspaces to
introduce randomization, which has been shown to lead to more robust ensem-
ble models. We observe that, when extending these algorithms with automatic
feature generation, it is still interesting to use random subspaces, i.e. to ex-
plore a very small portion of the whole feature space at each node split. This
phenomenon is particularly clear on the vowel dataset, for which we observe
that investing too much computational power into feature search is counter-
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Fig. 4. Extremely randomized trees

productive. On the three last datasets, our approach seems to work the best
for small generated features of size D = 3. Again, there is very little difference
between the three search strategies.

Boosted stumps. Figure 5 presents the results for ensembles of 1000 boosted
stumps. We now observe that models with feature generation strongly outper-
form classical boosted stumps on all datasets. We believe that this is mainly
explained by the fact that the baseline model is not able to exploit multi-variate
correlations, whereas our extended version can exploit multiple variables together
thanks to generated features. The most impressive in these results is that, even
with very small computational budgets K = 0.1n that correspond to testing one
or a few features at each iteration, feature generation still yields significantly
improved models. Furthermore, we observe that increasing K beyond 10n only
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Fig. 5. Boosted stumps

brings slight or no improvements on the error. In these cases, there is thus no
need to invest a huge amount of computational power in feature search to benefit
from feature generation. We also observe that the method is here rather robust
w.r.t. the choice of parameter D and again that differences between the three
search strategies are small.

5.3 Overall comparison of methods

The results of embedding feature generation with our three search strategies
into our five supervised learning algorithms are given in Table 3 for all our
12 datasets. For all methods, we use default settings for hyper-parameters: the
maximal feature size is set to D = 5 in all cases, the feature search budget
is set to K = 100n for single trees and K = 10n for ensemble models. The
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Wave Two Ring Vehicle Vowel Segment Spam Satellite Pen Dig44 Letter Isolet| mean
form norm norm base digits
Single Tree, K = 100n, D =5
Baseline |29.2 21.6 16.6 20.9 20.2 3.21 8.02 14.3 3.81 149 149 25.8(16.12
Random |25.9 15.6 17.5 21.9 18.4 3.38 9.01 14.8 3.11 12.3 15.2 25.6(15.23
Step 26.0 15.3 17.3 21.9 18.9 3.58 8.73 145 3.10 12.5 15.6 24.7|15.17
Look-ahead|25.3 15.3 18.1 21.7 18.9 3.06 8.64 14.0 2.99 12.0 14.9 22.0(14.74
Random Forests, 1000 trees, K = 10n, D =5
KB = /n| 171 4.08 6.03 23.5 3.27 1.94 4.57 8.46 0.969 527 4.62 7.78] 7.30
Random |15.6 2.89 2.92 20.3 343 1.72 4.71 8.46 0.606 4.12 3.74 7.56 | 6.34
Step 15.6 2.87 2.78 20.1 3.35 1.71 4.62 8.45 0.606 4.05 3.75 7.63|6.29
Look-ahead|15.7 2.92 2.93 20.1 3.54 1.69 4.68 8.46 0.615 4.02 3.81 7.46| 6.33
Extra Trees, 1000 trees, K = 10n, D =5
KFT = /n|16.1 3.08 2.88 24.0 1.51 1.85 4.31 833 0.652 4.25 3.53 6.75] 6.43
KPT =n | 174 474 523 220 1.92 142 431 7.99 0.626 459 4.0l 7.85]| 6.85
Random |15.8 2.77 2.44 20.4 158 1.41 456 7.85 0.555 4.29 3.23 6.98 | 5.99
Step 15.7 2.72 2.29 20.4 1.58 143 4.57 7.85 0.578 4.36 3.24 7.00| 5.98
Look-ahead| 15.8 2.78 2.38 20.5 1.62 1.45 444 7.89 0.589 4.31 3.21 6.96 | 5.99
Stump Boosting, 1000 iterations, K = 10n, D =5
Baseline | 19.6 4.88 9.94 20.0 17.3 253 5.51 11.1 2.76 8.49 17.9 8.52(10.72
Random |17.0 3.18 5.08 18.3 3.37 1.53 4.78 9.08 0.432 3.90 6.36 6.40| 6.62
Step 17.1 3.16 5.07 18.1 3.41 1.55 4.96 9.06 0.429 3.96 6.43 6.50| 6.64
Look-ahead|17.0 3.14 5.09 17.9 3.43 1.58 4.88 8.87 0.483 3.86 6.27 6.24| 6.56
Tree Boosting, 1000 iterations, Depth 3, K = 10n, D =5
Baseline | 17.1 3.72 884 19.7 2.44 1.09 497 8.09 0.472 3.56 4.34 5.72| 6.67
Random |15.6 2.89 3.67 18.2 2.00 1.32 4.66 7.92 0.375 2.96 3.38 5.51|5.71
Step 15.6 2.89 3.61 18.4 2.08 1.32 4.62 7.74 0.349 2.97 3.30 5.51|5.71
Look-ahead|15.6 2.90 3.65 18.6 2.18 1.31 4.52 7.77 0.397 2.87 3.28 5.40|5.71
Tree Boosting, 1000 iterations, Depth 5, K = 10n, D =5

Baseline | 16.6 3.66 6.82 21.2 1.90 1.23 4.85 7.55 0.460 3.27 3.53 5.91| 6.41
Random |[15.4 2.84 3.10 20.0 198 1.36 4.60 7.74 0.403 2.99 3.00 6.21 | 5.80
Step 15.4 2.82 3.05 19.7 2.00 1.42 4.52 7.76 0.397 3.00 3.00 6.26 | 5.78
Look-ahead| 15.4 2.85 3.05 19.7 1.90 1.39 4.53 7.90 0.392 2.99 2.95 6.14 | 5.76
Table 3. Comparison of all methods with and without embedded feature generation.

The scores (error rates in %) of methods embedding feature generation are shown in
bold whenever they outperform those of the corresponding baseline(s). The best scores
for each dataset are underlined.

baseline random forests are constructed with K" = /n tested attributes per
constructed splits. For extremely randomized trees, we consider the same two
default setups as in [7]: KFT = \/n and KET = n.

We observe that embedding the Monte Carlo feature generation improves
over the baselines about two times out of three, and on the average all methods
are significantly improved thanks to the feature generation. Among the vari-
ants we tested, the overall best scores are obtained when embedding feature
generation in boosted decision trees of depth 3. The strongest improvement is
however observed for boosted stumps, where we believe that there is a combined
bias and variance reduction effect obtained thanks to the randomized feature
construction. The net result is that, on the average, combining stump boost-
ing with feature generation becomes competitive with baseline boosted trees of
depth 3 or 5. Finally, while the ensemble methods are well improved when using
a rather small budget for the search of features (K= 10n), standard trees may
be improved by using a quite larger search budget (K= 100n).
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6 Conclusion

Automatic feature generation approaches are usually classified into filters and
wrappers. This paper emphasizes a third category: embedded feature generation.
We have proposed a general scheme to embed feature generation into tree-based
learning algorithms and have discussed the particularities of feature generation
in the context of ensemble methods. In this latter context, we argued that it
could be unnecessary or even counter-productive to invest a too large amount
of computational power into feature search and therefore proposed three simple
Monte Carlo search approaches to at the same time weakly and efficiently ex-
plore the feature space, the number of trials allowing to control search strength.
Our empirical investigations confirmed this analysis and showed also that the
embedding of feature generation allows to improve the accuracy over a wide
range of methods and datasets, the strongest improvements being found in the
context of boosting, where Monte Carlo feature generation allows to both reduce
bias (in the context of stumps) and variance (in the context of all versions).

For future research, we suggest to revisit in the light of our findings the earlier
work on oblique decision trees (see e.g. [12]), which may also be viewed as a kind
of embedded feature generation. On the other hand, while we focused in this
paper on accuracy improvement, we believe that embedded feature generation
should also be studied in terms of its effects on model complexity (e.g. in terms of
the speed of convergence of the ensemble methods) and on interpretability (e.g.
in terms of the capability to detect variable interactions of interest). Another
line of research would be to see how to port the embedded feature generation
towards Ll-based regularization of generalized additive models, by building on
the parallels of these approaches with boosting.

The formalism presented in this paper is very general in that it enables to
formulate embedded feature generation on top of all kinds of raw data structures,
including functional signals such as audio and images, and graph structured or
relational data more and more frequently found in current application domains
(e.g. ranging from bio-informatics to web-mining or automatic game playing).
While our experiments focused on constructing features based on raw vectors
of simple numerical features, we believe that embedded feature generation has
even greater potentials to learn with such complex real-world data structures.
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