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I Introduction
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Introduction Ordinal longitudinal data

Analysis of ordinal longitudinal data

Units: Subjects, objects (i = 1, · · · ,N)

Outcome: Ordinal variable Y with K levels

Measurement: Repeated at T time points, Yi = (Yi1, · · · ,YiT )′

Covariates: T × p covariates matrix Xi = (xi1, · · · , xiT)′

Time, gender, age ...

Methods: Methods for Non-Gaussian Longitudinal Data
Generalized estimating equations (GEE)

Problem: Missing data
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Missing data Missingness

Missingness

Missing data patterns:

I Drop out / attrition

I Non-monotone missingness

Missing data mechanism (Little and Rubin, 1987)

MCAR - Missing completely at random

I independent of (both observed and unobserved) measurements

MAR - Missing at random

I conditional on observed measurements, independent of
unobserved measurements

MNAR - Missing not at random

I dependent on unobserved and (also possibly) observed
measurements
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Analysis - GEE Methods for Non-Gaussian Longitudinal Data

GEE

I GEE - extension of Generalized Linear Models to longitudinal data

I Ordinal data (proportional odds model) - needs some transformations

I Define of a (K − 1) expanded vector of binary responses
Y∗ij = (Y ∗ij1, ...,Y ∗ij,(K−1))’ where Y ∗ijk = 1 if Yij = k and 0 otherwise

I logit[Pr(Yij ≤ k)] = logit[Pr(Y ∗ijk = 1)] = β0k + x′ijβ

N∑
i=1

∂πi
′

∂β
W−1

i (Y∗
i − πi) = 0

where Y∗i = (Y∗i1, ...,Y
∗
iT )′, πi = E (Y∗i ) and Wi = V

1/2
i RiV

1/2
i with Vi the

diagonal matrix of the variance of the element of Y∗i . The matrix Ri is the
’working’ correlation matrix that expresses the dependence among repeated
observations over the subjects.
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Analysis - GEE Methods for Non-Gaussian Longitudinal Data

GEE - Large sample properties

√
N(β̂ − β) N(0, I−1

0 I1I
−1
0 )

I β̂ are consistent even if working correlation matrix is incorrect

I uncorrected specification of the correlation structure affects efficiency of β̂

I valid only under MCAR

I What if not MCAR?

I Solution: Use Multiple Imputation (MI) as a preliminary step
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Multiple imputation Multiple imputation

Multiple imputation

Idea Replace each missing value by a set of M > 1 plausible values drawn from
conditional distribution of unobserved values given observed ones

How

1. Imputation stage - Ymissing
ij ⇒ Y 1

ij , · · · ,YM
ij

2. Analysis stage - Analyze the M completed datasets using GEE(
β̂m, ˆvar(β̂m)

)
,m = 1, · · · ,M

3. Pooling stage - Combination of the M results

β̂
∗

=
1

M

M∑
m=1

β̂m T = W +

(
1 +

1

M

)
B

where W = 1
M

∑M
m=1 ˆvar(β̂m) and B = 1

M−1

∑M
m=1(β̂m − β̂

∗
)(β̂m − β̂

∗
)′
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Multiple imputation Imputation methods

Imputation mechanism

Any monotone response pattern can be written as Y = (Yo ,Ymissing ).
Let θ represents the parameter vector of the distribution of the response Y. The
idea is to impute missing data using f (Ymissing |Yo ,θ).
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Multiple imputation Imputation methods

Imputation methods - MCMC

Assuming data arise from a multivariate Normal distribution, use an iterative
imputation method based on MCMC (Schafer, 1997).

1. I-step Given starting values for θ, θ(0), values for Ymissing are simulated by

randomly drawing a value from f (Ymissing|Yo,θ(0)).

2. P-step New value for θ, θ(j), is drawn from a transition distribution,
considering the previous value θ(j) ≈ hs(θ(j−1)).

Both steps are iterated long enough to provide a stationary Markov chain
(Ymissing

(1) ,θ(1)), (Ymissing
(2) ,θ(2)), · · · and last iteration is used to impute Ymissing in

the dataset.

Repeat to obtain M sets of imputed values.

Problem when applied to ordinal data

I Normality assumption fails

I Imputed values are no longer integers between 1 and K → rounding

AFr. Donneau (ULg) Multiple imputation methods for incomplete longitudinal ordinal data: a simulation study 11 / 21



Multiple imputation Imputation methods

Imputation methods - MCMC

Assuming data arise from a multivariate Normal distribution, use an iterative
imputation method based on MCMC (Schafer, 1997).

1. I-step Given starting values for θ, θ(0), values for Ymissing are simulated by

randomly drawing a value from f (Ymissing|Yo,θ(0)).

2. P-step New value for θ, θ(j), is drawn from a transition distribution,
considering the previous value θ(j) ≈ hs(θ(j−1)).

Both steps are iterated long enough to provide a stationary Markov chain
(Ymissing

(1) ,θ(1)), (Ymissing
(2) ,θ(2)), · · · and last iteration is used to impute Ymissing in

the dataset.

Repeat to obtain M sets of imputed values.

Problem when applied to ordinal data

I Normality assumption fails

I Imputed values are no longer integers between 1 and K → rounding

AFr. Donneau (ULg) Multiple imputation methods for incomplete longitudinal ordinal data: a simulation study 11 / 21



Multiple imputation Imputation methods

Imputation methods - MCMC

Assuming data arise from a multivariate Normal distribution, use an iterative
imputation method based on MCMC (Schafer, 1997).

1. I-step Given starting values for θ, θ(0), values for Ymissing are simulated by

randomly drawing a value from f (Ymissing|Yo,θ(0)).

2. P-step New value for θ, θ(j), is drawn from a transition distribution,
considering the previous value θ(j) ≈ hs(θ(j−1)).

Both steps are iterated long enough to provide a stationary Markov chain
(Ymissing

(1) ,θ(1)), (Ymissing
(2) ,θ(2)), · · · and last iteration is used to impute Ymissing in

the dataset.

Repeat to obtain M sets of imputed values.

Problem when applied to ordinal data

I Normality assumption fails

I Imputed values are no longer integers between 1 and K → rounding

AFr. Donneau (ULg) Multiple imputation methods for incomplete longitudinal ordinal data: a simulation study 11 / 21



Multiple imputation Imputation methods

Imputation methods - OIM

Ordinal imputation model:

logit[Pr(Yij ≤ k)|x∗ij ] = γ0k + x′
∗
ijγ (1)

where the covariates typically include Xij , possible auxiliary covariates Aij , and the

previous outcomes Ỹij = (Yi1, ...,Yi,j−1).

1. Draw new values for parameters Γ̂ = (γ′0,γ
′)′,

Γ∗ = Γ̂ + V′hiZ

where Vhi is the upper triangular matrix of the Cholesky decomposition of
V (Γ̂) and Z is a [(K − 1) + q]−vector of independent random Normal
variates.

2. For each missing observation, Ymissing
ij , compute the expected probabilities

πk = P[Ymissing
ij = k |x∗ij ] (k = 1, ...,K ), using (Eq. 1)

3. Draw a random variate from a multinomial distribution with probabilities
derived in step 2.

4. Repeat steps 1 to 3 to obtain M sets of imputed values.
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Simulation Data setup

Simulation plan

Longitudinal ordinal data model:

logit[Pr(Yij ≤ k|xi , tj)] = β0k + βxxi + βttj + βtxxi tj (k = 1, · · ·K − 1)

with a binary group effect (x = 0 or 1), an assessment time (t) and an interaction
term between group and time.

MAR missingness generation:

logit[Pr(Di = j |xi ,Yi,(j−1))] = ψ0 + ψxxi + ψprevYi,(j−1)

Model simulation parameters (Well-balanced data):
K = 2, 3, 4, 5 and 7
T = 3, 5
N = 100, 300, 500
Missingness = 10%, 30%, 50%
→ 90 different combination patterns. For each pattern, 500 random samples were
generated.
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Simulation Results - Global

Simulation results

Relative bias (%)

Relative bias (Mean ± SD)
MCMC OIM Difference

βx 89.4 ± 13.1 99.5 ± 15.5 -10.1 ± 8.91
βt 84.6 ± 10.4 100.9 ± 8.95 -16.4 ± 9.58
βtx 90.6 ± 5.73 99.7 ± 5.37 -9.10 ± 4.60

Mean square error (MSE): similar for MCMC and OIM.
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Simulation Results - βtx

Simulation results - Relative bias βtx

Number of levels K

K MCMC OIM Difference
2 92.9 ± 5.18 101.2 ± 2.93 -8.35 ± 4.29
3 94.1 ± 2.98 103.4 ± 4.23 -9.35 ± 4.34
4 88.0 ± 6.71 99.1 ± 6.05 -11.1 ± 4.66
5 89.1 ± 5.36 99.5 ± 3.09 -10.4 ± 4.70
7 88.7 ± 5.56 95.0 ± 6.12 -6.34 ± 3.87

< 0.0001 < 0.0001 0.034

Number of time points T

T MCMC OIM Difference
3 91.7 ± 5.82 100.9 ± 5.34 -9.26 ± 4.73
5 89.4 ± 5.47 98.4 ± 5.14 -8.94 ± 4.51

0.007 0.009 0.61
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Simulation Results - βtx

Simulation results - Relative bias βtx

Sample size

N MCMC OIM Difference
100 90.5 ± 6.60 97.7 ± 6.73 -7.22 ± 4.18
300 90.9 ± 5.37 100.8 ± 4.77 -9.88 ± 4.48
500 90.2 ± 5.29 100.4 ± 3.85 -10.2 ± 4.67

0.74 0.027 0.0002

Rate of missingness

Missingness MCMC OIM Difference
10% 95.4 ± 2.65 100.1 ± 2.47 -4.64 ± 0.94
30% 89.9 ± 3.23 99.9 ± 3.57 -9.94 ± 2.21
50% 86.3 ± 6.29 99.0 ± 8.31 -12.7 ± 4.92

< 0.0001 0.37 < 0.0001
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Conclusions Conclusions

Conclusions

Relative bias
I MCMC yields highly underestimated model parameters
I The estimates derived under the OIM method are almost unbiased.

I

K N T Missingness

βx MCMC ↑
OIM ↑ ↓ ↑

βt MCMC ↑ ↑
OIM ↑ ↓ ↑

βtx MCMC ↑ ↑ ↑
OIM ↑ ↓ ↑

↑ Absolute bias increases
↓ Absolute bias decreases

MSE
I MCMC and OIM were similar
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Conclusions Conclusions

Conclusion - General

MCMC is not really recommended to impute longitudinal ordinal data.

Advisable to impute missing ordinal data using appropriate method.
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Conclusions Conclusions

Thank you.
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Simulation Results - Skewed data

Simulation results - Relative bias βtx - Skewed

No relationship between the OIM relative bias and the modeling parameters
MCMC relative bias increased with K (p = 0.0002) and the rate of missingness
(p = 0.0005)
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Figure: Relative bias (%) of βtx according to the number of categories and the rate of

missingness (MCMC= shaded boxplot - OIM=empty boxplot)
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