Multiple imputation methods for incomplete longitudinal ordinal data: a simulation study

Anne-Francoise DONNEAU

Medical Informatics and Biostatistics School of Public Health University of Liège Promotor: Pr. A. Albert

14 September 2012

Outline of the presentation

- \blacktriangleright Introduction
- \triangleright Methods for (incomplete) Non-Gaussian longitudinal data Generalized Estimating Equations (GEE) Multiple imputation based GEE (MI-GEE)
- \triangleright Simulation plan
- \blacktriangleright Results
- \triangleright Conclusions

Units: Subjects, objects $(i = 1, \dots, N)$

Units: Subjects, objects
$$
(i = 1, \dots, N)
$$

Outcome: Ordinal variable Y with K levels

Units: Subjects, objects
$$
(i = 1, \dots, N)
$$

Outcome: Ordinal variable Y with K levels

Measurement: Repeated at T time points, $Y_i = (Y_{i1}, \dots, Y_{iT})'$

Missingness

Missing data patterns:

- \triangleright Drop out / attrition
- \blacktriangleright Non-monotone missingness

Missingness

Missing data patterns:

- \triangleright Drop out / attrition
- \triangleright Non-monotone missingness

Missing data mechanism (Little and Rubin, 1987)

MCAR - Missing completely at random

- \triangleright independent of (both observed and unobserved) measurements
- MAR Missing at random
	- \triangleright conditional on observed measurements, independent of unobserved measurements

MNAR - Missing not at random

 \triangleright dependent on unobserved and (also possibly) observed measurements

GEE - extension of Generalized Linear Models to longitudinal data

- GEE extension of Generalized Linear Models to longitudinal data
- ▶ Ordinal data (proportional odds model) needs some transformations

GEE

- ► GEE extension of Generalized Linear Models to longitudinal data
- \triangleright Ordinal data (proportional odds model) needs some transformations
- \triangleright Define of a $(K 1)$ expanded vector of binary responses $\mathbf{Y}_{ij}^* = (Y_{ij1}^*,...,Y_{ij,(K-1)}^*)'$ where $Y_{ijk}^* = 1$ if $Y_{ij} = k$ and 0 otherwise
- \blacktriangleright logit $[Pr(Y_{ij} \le k)] = logit[Pr(Y_{ijk}^*=1)] = \beta_{0k} + \mathsf{x}_{ij}'\beta$

GEE

- \triangleright GEE extension of Generalized Linear Models to longitudinal data
- \triangleright Ordinal data (proportional odds model) needs some transformations
- \triangleright Define of a $(K 1)$ expanded vector of binary responses $\mathbf{Y}_{ij}^* = (Y_{ij1}^*,...,Y_{ij,(K-1)}^*)'$ where $Y_{ijk}^* = 1$ if $Y_{ij} = k$ and 0 otherwise
- \blacktriangleright logit $[Pr(Y_{ij} \le k)] = logit[Pr(Y_{ijk}^*=1)] = \beta_{0k} + \mathsf{x}_{ij}'\beta$

$$
\sum_{i=1}^N \frac{\partial \pi_i'}{\partial \beta} W_i^{-1} (Y_i^* - \pi_i) = 0
$$

where $\bm{\mathsf{Y}}^*_i=(\bm{\mathsf{Y}}^*_{i1},...,\bm{\mathsf{Y}}^*_{iT})'$, $\pi_{\mathsf{i}}=E(\bm{\mathsf{Y}}^*_{i})$ and $\bm{\mathsf{W}}_{\mathsf{i}}=\bm{\mathsf{V}}_{\mathsf{i}}^{1/2}\bm{\mathsf{R}_{\mathsf{i}}}\bm{\mathsf{V}}_{\mathsf{i}}^{1/2}$ with $\bm{\mathsf{V}}_i$ the diagonal matrix of the variance of the element of \mathbf{Y}_i^* . The matrix \mathbf{R}_i is the 'working' correlation matrix that expresses the dependence among repeated observations over the subjects.

GEE - Large sample properties

$$
\sqrt{N}(\hat{\beta} - \beta) N(0, I_0^{-1}I_1I_0^{-1})
$$

- \triangleright $\hat{\boldsymbol{\beta}}$ are consistent even if working correlation matrix is incorrect
- **E** uncorrected specification of the correlation structure affects efficiency of β
- \triangleright valid only under MCAR

GEE - Large sample properties

$$
\sqrt{N}(\hat{\beta} - \beta) N(0, I_0^{-1}I_1I_0^{-1})
$$

- \triangleright $\hat{\beta}$ are consistent even if working correlation matrix is incorrect
- **E** uncorrected specification of the correlation structure affects efficiency of β
- \triangleright valid only under MCAR
- \blacktriangleright What if not MCAR?

GEE - Large sample properties

$$
\sqrt{N}(\hat{\beta} - \beta) N(0, I_0^{-1}I_1I_0^{-1})
$$

- \triangleright $\hat{\boldsymbol{\beta}}$ are consistent even if working correlation matrix is incorrect
- \blacktriangleright uncorrected specification of the correlation structure affects efficiency of $\hat{\boldsymbol{\beta}}$
- \triangleright valid only under MCAR
- \triangleright What if not MCAR?
- \triangleright Solution: Use Multiple Imputation (MI) as a preliminary step

Multiple imputation

Idea Replace each missing value by a set of $M > 1$ plausible values drawn from conditional distribution of unobserved values given observed ones

Multiple imputation

Idea Replace each missing value by a set of $M > 1$ plausible values drawn from conditional distribution of unobserved values given observed ones

How

- 1. Imputation stage $Y_{ij}^{missing} \Rightarrow Y_{ij}^1, \cdots, Y_{ij}^{M}$
- 2. Analysis stage Analyze the M completed datasets using GEE

$$
\left(\hat{\beta}^m, \hat{\text{var}}(\hat{\beta}^m)\right), m = 1, \cdots, M
$$

3. Pooling stage - Combination of the M results

$$
\hat{\boldsymbol{\beta}}^* = \frac{1}{M} \sum_{m=1}^M \hat{\beta}_m \quad \mathbf{T} = \mathbf{W} + \left(1 + \frac{1}{M} \right) \mathbf{B}
$$

where ${\bf W}=\frac{1}{M}\sum_{m=1}^M\hat{v\^{a r}(\hat{\beta}^m)$ and ${\bf B}=\frac{1}{M-1}\sum_{m=1}^M(\hat{\beta}_m-\hat{\beta}^*)(\hat{\beta}_m-\hat{\beta}^*)'$

Multiple imputation

Idea Replace each missing value by a set of $M > 1$ plausible values drawn from conditional distribution of unobserved values given observed ones

How

- 1. Imputation stage $Y_{ij}^{missing} \Rightarrow Y_{ij}^1, \cdots, Y_{ij}^{M}$
- 2. Analysis stage Analyze the M completed datasets using GEE

$$
\left(\hat{\beta^m},\hat{\text{var}}(\hat{\beta^m})\right), m=1,\cdots,M
$$

3. Pooling stage - Combination of the M results

$$
\hat{\boldsymbol{\beta}}^* = \frac{1}{M} \sum_{m=1}^M \hat{\beta}_m \quad \mathbf{T} = \mathbf{W} + \left(1 + \frac{1}{M} \right) \mathbf{B}
$$

where ${\bf W}=\frac{1}{M}\sum_{m=1}^M\hat{v\^{a r}(\hat{\beta}^m)$ and ${\bf B}=\frac{1}{M-1}\sum_{m=1}^M(\hat{\beta}_m-\hat{\beta}^*)(\hat{\beta}_m-\hat{\beta}^*)'$

Any monotone response pattern can be written as $\textbf{Y}=(\textbf{Y}^o,\textbf{Y}^{\textit{missing}}).$ Let θ represents the parameter vector of the distribution of the response Y. The idea is to impute missing data using $f(\mathbf{Y}^{missing}|\mathbf{Y}^{o}, \boldsymbol{\theta}).$

Any monotone response pattern can be written as $\textbf{Y}=(\textbf{Y}^o,\textbf{Y}^{\textit{missing}}).$ Let θ represents the parameter vector of the distribution of the response Y. The idea is to impute missing data using $f(\mathbf{Y}^{missing}|\mathbf{Y}^{o},\hat{\boldsymbol{\theta}}).$

Any monotone response pattern can be written as $\textbf{Y}=(\textbf{Y}^o,\textbf{Y}^{\textit{missing}}).$ Let θ represents the parameter vector of the distribution of the response Y. The idea is to impute missing data using $f(\mathbf{Y}^{missing}|\mathbf{Y}^{o},\hat{\boldsymbol{\theta}}).$

Imputation mechanisms based on :

Any monotone response pattern can be written as $\textbf{Y}=(\textbf{Y}^o,\textbf{Y}^{\textit{missing}}).$ Let θ represents the parameter vector of the distribution of the response Y. The idea is to impute missing data using $f(\mathbf{Y}^{missing}|\mathbf{Y}^{o},\hat{\boldsymbol{\theta}}).$

Imputation mechanisms based on :

- Markov chain Monte Carlo (MCMC)
- Stochastic regression (ordinal logistic regression (OIM))

Imputation methods - MCMC

Assuming data arise from a multivariate Normal distribution, use an iterative imputation method based on MCMC (Schafer, 1997).

Imputation methods - MCMC

Assuming data arise from a multivariate Normal distribution, use an iterative imputation method based on MCMC (Schafer, 1997).

- 1. **I-step** Given starting values for θ , θ ₍₀₎, values for **Y**^{missing} are simulated by randomly drawing a value from $f(\mathbf{Y}^{\text{missing}}|\mathbf{Y^o}, \theta_{(0)}).$
- 2. $\, {\sf P}\textrm{-step}$ New value for $\theta, \, \theta_{(j)},$ is drawn from a transition distribution, considering the previous value $\theta_{(i)} \approx h_s(\theta_{(i-1)})$.

Both steps are iterated long enough to provide a stationary Markov chain $(\textsf{Y}^{\textit{missing}}_{(1)},\theta_{(1)}),(\textsf{Y}^{\textit{missing}}_{(2)},\theta_{(2)}),\cdots$ and last iteration is used to impute $\textsf{Y}^{\textit{missing}}$ in the dataset.

Repeat to obtain M sets of imputed values.

Imputation methods - MCMC

Assuming data arise from a multivariate Normal distribution, use an iterative imputation method based on MCMC (Schafer, 1997).

- 1. **I-step** Given starting values for θ , θ ₍₀₎, values for **Y**^{missing} are simulated by randomly drawing a value from $f(\mathbf{Y}^{\text{missing}}|\mathbf{Y^o}, \theta_{(0)}).$
- 2. $\, {\sf P}\textrm{-step}$ New value for $\theta, \, \theta_{(j)},$ is drawn from a transition distribution, considering the previous value $\theta_{(i)} \approx h_s(\theta_{(i-1)})$.

Both steps are iterated long enough to provide a stationary Markov chain $(\textsf{Y}^{\textit{missing}}_{(1)},\theta_{(1)}),(\textsf{Y}^{\textit{missing}}_{(2)},\theta_{(2)}),\cdots$ and last iteration is used to impute $\textsf{Y}^{\textit{missing}}$ in the dataset.

Repeat to obtain M sets of imputed values.

Problem when applied to ordinal data

- \triangleright Normality assumption fails
- ► Imputed values are no longer integers between 1 and $K \rightarrow$ rounding

Ordinal imputation model:

$$
logit[Pr(Y_{ij} \le k)|\mathbf{x}_{ij}^*] = \gamma_{0k} + \mathbf{x'}_{ij}^* \gamma
$$
 (1)

where the covariates typically include \mathbf{X}_{ii} , possible auxiliary covariates \mathbf{A}_{ii} , and the previous outcomes $\tilde{\mathbf{Y}}_{ij} = (Y_{i1},...,Y_{i,j-1}).$

Ordinal imputation model:

$$
logit[Pr(Y_{ij} \le k)|\mathbf{x}_{ij}^*] = \gamma_{0k} + {\mathbf{x}'}_{ij}^* \gamma
$$
 (1)

where the covariates typically include \mathbf{X}_{ii} , possible auxiliary covariates \mathbf{A}_{ii} , and the previous outcomes $\tilde{\mathbf{Y}}_{ij} = (Y_{i1},...,Y_{i,j-1}).$

1. Draw new values for parameters $\hat{\mathsf{\Gamma}}=(\gamma_0',\gamma')',$

$$
\pmb{\Gamma}^*=\hat{\pmb{\Gamma}}+\pmb{V}_{hi}'\pmb{Z}
$$

where V_{hi} is the upper triangular matrix of the Cholesky decomposition of $V(\hat{\Gamma})$ and **Z** is a $[(K-1)+q]$ -vector of independent random Normal variates.

Ordinal imputation model:

$$
logit[Pr(Y_{ij} \le k)|\mathbf{x}_{ij}^*] = \gamma_{0k} + {\mathbf{x}'}_{ij}^* \gamma
$$
 (1)

where the covariates typically include \mathbf{X}_{ii} , possible auxiliary covariates \mathbf{A}_{ii} , and the previous outcomes $\tilde{\mathbf{Y}}_{ij} = (Y_{i1},...,Y_{i,j-1}).$

1. Draw new values for parameters $\hat{\mathsf{\Gamma}}=(\gamma_0',\gamma')',$

$$
\pmb{\Gamma}^*=\hat{\pmb{\Gamma}}+\pmb{V}_{hi}'\pmb{Z}
$$

where V_{hi} is the upper triangular matrix of the Cholesky decomposition of $V(\hat{\mathbf{\Gamma}})$ and **Z** is a $[(K-1)+q]$ -vector of independent random Normal variates.

2. For each missing observation, $Y_{ij}^{missing}$, compute the expected probabilities $\pi_k = P[Y_j^{missing} = k | \mathbf{x}^*_{ij}] \; (k = 1, ..., K),$ using <code>(Eq. [1\)](#page-28-0)</code>

Ordinal imputation model:

$$
logit[Pr(Y_{ij} \le k)|\mathbf{x}_{ij}^*] = \gamma_{0k} + {\mathbf{x}'}_{ij}^* \gamma
$$
 (1)

where the covariates typically include \mathbf{X}_{ii} , possible auxiliary covariates \mathbf{A}_{ii} , and the previous outcomes $\tilde{\mathbf{Y}}_{ij} = (Y_{i1},...,Y_{i,j-1}).$

1. Draw new values for parameters $\hat{\mathsf{\Gamma}}=(\gamma_0',\gamma')',$

$$
\pmb{\Gamma}^*=\hat{\pmb{\Gamma}}+\pmb{V}_{hi}'\pmb{Z}
$$

where V_{hi} is the upper triangular matrix of the Cholesky decomposition of $V(\hat{\mathbf{\Gamma}})$ and **Z** is a $[(K-1)+q]$ -vector of independent random Normal variates.

- 2. For each missing observation, $Y_{ij}^{missing}$, compute the expected probabilities $\pi_k = P[Y_j^{missing} = k | \mathbf{x}^*_{ij}] \; (k = 1, ..., K),$ using <code>(Eq. [1\)](#page-28-0)</code>
- 3. Draw a random variate from a multinomial distribution with probabilities derived in step 2.

Ordinal imputation model:

$$
logit[Pr(Y_{ij} \le k)|\mathbf{x}_{ij}^*] = \gamma_{0k} + {\mathbf{x}'}_{ij}^* \gamma
$$
 (1)

where the covariates typically include \mathbf{X}_{ii} , possible auxiliary covariates \mathbf{A}_{ii} , and the previous outcomes $\tilde{\mathbf{Y}}_{ij} = (Y_{i1},...,Y_{i,j-1}).$

1. Draw new values for parameters $\hat{\mathsf{\Gamma}}=(\gamma_0',\gamma')',$

$$
\pmb{\Gamma}^*=\hat{\pmb{\Gamma}}+\pmb{V}_{hi}'\pmb{Z}
$$

where V_{hi} is the upper triangular matrix of the Cholesky decomposition of $V(\hat{\mathbf{\Gamma}})$ and **Z** is a $[(K-1)+q]$ -vector of independent random Normal variates.

- 2. For each missing observation, $Y_{ij}^{missing}$, compute the expected probabilities $\pi_k = P[Y_j^{missing} = k | \mathbf{x}^*_{ij}] \; (k = 1, ..., K),$ using <code>(Eq. [1\)](#page-28-0)</code>
- 3. Draw a random variate from a multinomial distribution with probabilities derived in step 2.
- 4. Repeat steps 1 to 3 to obtain M sets of imputed values.

Simulation plan

Longitudinal ordinal data model:

$$
logit[Pr(Y_{ij} \leq k | x_i, t_j)] = \beta_{0k} + \beta_{x} x_i + \beta_{t} t_j + \beta_{tx} x_i t_j \quad (k = 1, \cdots K - 1)
$$

with a binary group effect ($x = 0$ or 1), an assessment time (t) and an interaction term between group and time.

Simulation plan

Longitudinal ordinal data model:

$$
logit[Pr(Y_{ij} \le k | x_i, t_j)] = \beta_{0k} + \beta_x x_i + \beta_t t_j + \beta_{tx} x_i t_j \quad (k = 1, \cdots K - 1)
$$

with a binary group effect ($x = 0$ or 1), an assessment time (t) and an interaction term between group and time.

MAR missingness generation:

$$
logit[Pr(D_i = j | x_i, Y_{i,(j-1)})] = \psi_0 + \psi_x x_i + \psi_{prev} Y_{i,(j-1)}
$$

Simulation plan

Longitudinal ordinal data model:

 $\mathsf{logit}[\mathsf{Pr}(Y_{ij} \leq k | x_i, t_j)] = \beta_{0k} + \beta_{x} x_i + \beta_t t_j + \beta_{tx} x_i t_j \quad (k = 1, \cdots K - 1)$

with a binary group effect ($x = 0$ or 1), an assessment time (t) and an interaction term between group and time.

MAR missingness generation:

$$
logit[Pr(D_i = j | x_i, Y_{i,(j-1)})] = \psi_0 + \psi_x x_i + \psi_{prev} Y_{i,(j-1)}
$$

Model simulation parameters (Well-balanced data):

 $K = 2, 3, 4, 5$ and 7 $T = 3.5$ $N = 100, 300, 500$ Missingness $= 10\%$, 30%, 50%

 \rightarrow 90 different combination patterns. For each pattern, 500 random samples were generated.

Simulation results

Relative bias (%)

Simulation results

Relative bias $(\%)$

Mean square error (MSE): similar for MCMC and OIM.

Simulation results

Relative bias $(\%)$

Mean square error (MSE): similar for MCMC and OIM.

Number of levels K

Number of levels K

Number of time points T

Sample size

Sample size

Rate of missingness

Conclusions

Relative bias

- \triangleright MCMC yields highly underestimated model parameters
- \triangleright The estimates derived under the OIM method are almost unbiased.

Conclusions

Relative bias

- \triangleright MCMC yields highly underestimated model parameters
- \triangleright The estimates derived under the OIM method are almost unbiased.

Conclusions

Relative bias

- \triangleright MCMC yields highly underestimated model parameters
- \triangleright The estimates derived under the OIM method are almost unbiased.

MSE

 \triangleright MCMC and OIM were similar

Conclusion - General

MCMC is not really recommended to impute longitudinal ordinal data.

Conclusion - General

MCMC is not really recommended to impute longitudinal ordinal data.

Advisable to impute missing ordinal data using appropriate method.

Thank you.

Simulation Results - Skewed data

Simulation results - Relative bias β_{tx} - Skewed

No relationship between the OIM relative bias and the modeling parameters MCMC relative bias increased with K ($p = 0.0002$) and the rate of missingness $(p = 0.0005)$

Figure: Relative bias (%) of β_{tx} according to the number of categories and the rate of missingness ($MCMC$ = shaded boxplot - OM =empty boxplot)