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Abstract. This paper presents some aspects of the non linear dynamic time-history analysis of 
storage racks made of thin-walled steel products commonly used in warehouses when they 
are subjected to an earthquake action. It focuses essentially on the accounting for structural 
non-linearities (geometric second order behavior of the structure and non-linear material be-
havior of the joints) and for the possible relative motion between the rack and the stored 
goods that occurs as soon as the inertial force exceeds the friction resistance. In particular, it 
presents the algorithm used of to couple these two problems, followed by some simple appli-
cations and comparisons with test results. 
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1 INTRODUCTION 
Despite their lightness, storage racking systems made of thin-walled cold formed steel 

products are able to carry very high live load many times larger than the dead load, opposite 
to what happens in usual civil engineering structures. These racks can also raise considerable 
height. For these reasons, their use is nowadays very common in warehouses (see fig. 1). 
However, these structures have to be carefully designed. Indeed many difficulties arise in the 
prediction of their structural behavior, such as instabilities (global, local and distortional) or 
modeling problems (beam-upright connection stiffness, base plate anchorages) [1]. 

Things become even more complicated when a storage rack is installed in a seismic zone 
where, subjected to an earthquake, it has to withstand horizontal dynamic forces. In that case, 
in addition to usual seismic global and local mechanisms, another limit state of the system is 
the fall of pallets with subsequent damages to goods, people and to the structure itself. Indeed 
the horizontal inertial forces acting on the pallets may be sufficient to exceed the friction re-
sistance. Nevertheless if the amplitude of the sliding movement is not too important, in such a 
way that pallets remain on the rack, this effect can benefit to the structure as it limits the hori-
zontal forces on the rack to the friction force at the interface between pallet and beams. 

Results presented in this paper are part of a wider research project "Seisracks – Storage 
racks in seismic area" [2] funded by the European Union (RFCS research program). This re-
search program aims at constituting a scientific background document for the drafting of a 
European Standard [3] and includes therefore many items such as: 

• Experimental determination of friction properties of pallets lying on rack beams; 

• Statistical evaluation of the rate of occupancy of racks in order to define the design value 
of horizontal seismic action, which is directly related to the mass of stored goods; 

• Experimental study of the cyclic behavior of beam-to-upright joints and of base anchor-
ages; 

• Experimental and numerical study of the global dynamic structural behavior of racks 
subjected to earthquakes including sliding of pallets. 

The present paper intends to develop one of the crucial points of this research, namely the 
non-linear dynamic time-history analysis of rack structures subjected to earthquake, account-
ing for the global geometrical non-linearities, for the non-linear material behavior of the joints 
and for the possible sliding of the pallets with respect to the supporting structure. Additional 
comparisons with test results are also presented. 

2 ADVANCED NUMERICAL TOOL 

2.1 General 

An advanced numerical tool has been developed in order to be able to evaluate accurately 
the behavior of racks subjected to seismic action with a due account for possible sliding of 
supported pallets. The tool is included in the non linear finite element software FineLg devel-
oped in University of Liège [4]. Indeed this software already allowed performing step-by-step 
dynamic analysis accounting for geometrical and material non-linearities of the structure. In 
particular it was possible to study the response of non-linear structures subjected to an earth-
quake defined by the time-history of the ground acceleration. The only missing feature was 
the possibility to let the masses slide. 
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Figure 1: Example of a storage rack 

2.2 Basic concept 
The starting point of the development of the sliding-mass model is the use of the concept 

of “mathematical deck” already available in FineLg since its development by FH Yang [5]. 
The mathematical deck was elaborated to study the dynamic behavior of structures subjected 
to moving loads or vehicles and particularly to study the bridge-vehicles interaction. 

According to this concept, the interactive behavior is obtained by solving two uncoupled 
sets of equations, respectively for the structure and for the vehicles, and then by ensuring 
compatibility and equilibrium at the contact points between the structure and the vehicles with 
an iterative procedure. In this scheme, the mathematical deck acts as an interface element to 
evaluate the position of the vehicles with respect to the physical deck and to perform the itera-
tive compatibility process (Fig. 2). 

 

  vehicles

structure

Mathematical 
deck 

 
Figure 2: General scheme of the mathematical deck 

Regarding the possible movements of the vehicles, the horizontal displacement is imposed 
according to the speed of the vehicle and to its traffic lane. The vertical displacement, velocity 
and acceleration are on the contrary the result of a dynamic computation and are obtained 
from the behavior of the vehicle itself, of the underlying structure and of their possible inter-
action. 

The idea in elaborating the "sliding mass" model is to start from a "moving mass" vehicle 
without any user-imposed speed and to obtain the horizontal behavior of the mass as the result 
of a dynamic computation according to a stick/slip model (Fig. 3). 
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Figure 3: Evolution of the mathematical deck for the sliding mass model (basic scheme) 

• "Stick" phase 

During this stage, the displacement, velocity and acceleration of both the mass and the un-
derlying structure are identical. The mathematical deck computes thus the horizontal friction 
force Fh ensuring simultaneously this equality of displacement and the general equations of 
dynamics for both the mass and the structure, including also the earthquake action (Fig. 4). 

 

  
Fh 

-Fh 
Ustr = Upallet 

 
Figure 4: Sliding mass model in "stick" phase 

For structures like racks, the supported mass is much more important than the mass of the 
structure itself (M up to more than 100 times the structural mass). It that case, it is shown in 
[5] and [7] that the convergence of the iterative procedure to ensure equilibrium and compati-
bility of the coupled system is very difficult to achieve unless if specific methods are used. In 
the present case, an Aitken acceleration procedure [6] is developed. The detailed methodology 
and the way of choosing the best convergence parameters are described in [7]. 

 
• "Slip" phase 

As soon as the horizontal contact force exceeds the static friction resistance Rh,st, the mass 
starts sliding. The dynamic response of the two systems (mass and structure) may then be 
evaluated separately under a constant contact force equal to the dynamic friction resistance 
Rh,dyn (Fig. 5). During this stage, the pallet moves on the mathematical deck and its position, 
velocity and acceleration (= Rh,dyn/M) can be evaluated at any time step. The sliding behavior 
lasts until the relative velocity between the pallet and the structure becomes equal to zero. 
From that condition, it can then be evaluated whether and when the next "stick" phase is initi-
ated. 

 

  
Rh,dyn 

- Rh,dyn 
Ustr ≠ Upallet 

 
Figure 5: Sliding mass model in "slip" phase 
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2.3 Validation examples 
In order to validate the sliding mass model, a series of very simple systems has been stud-

ied with FineLg and compared to equivalent MDOF systems solved with a semi-analytical 
approach (see ref. [8]). Some of the considered examples are presented in Fig. 6. 

The results obtained with FineLg and with the reference semi-analytical procedure are 
found in very good agreement. As illustration, results obtained with FineLg for case 6.c are 
plotted in Fig. 7 for µ/α  = 1.00 (no sliding) and µ/α  = 0.5 (µ is the friction coefficient and α 
is the maximum imposed acceleration referred to gravity). In this second configuration, 4 slid-
ing phases are observed during which the relative displacement between M2 and M3 varies 
(green curve on Fig. 7). 
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Figure 6: Validation examples (a) 1DOF – (b) 2DOF – (c) 3DOF 
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Figure 7: Time-history of the displacements obtained for case 6(c) 

3 BEHAVIOR OF A RACK STRUCTURE 

3.1 Linear elastic behavior with sliding 

This section intends to show an application of the new numerical tool for the step-by-step 
dynamic analysis of a very simple rack structure subjected to an imposed acceleration of the 
ground, with account for the possible sliding of the supported masses. 

The chosen example comprises two spans and one level with typical dimensions of rack 
structures (span = 1.8 m – height = 2.0 m; see Fig. 8). The cross section properties of the 
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structural elements are also typical of real rack structures. The beam-to-upright joints and 
base-anchorages are modeled by springs with appropriate rotational stiffness. Four masses 
(400 kg) are positioned on the beam. In this basic application, the structure is supposed to be-
have linearly. This means that no second-order geometrical effects and no yielding of ele-
ments are taken into account. 

 

2 m 1.8 m 

 
Figure 8: Simple rack structure 

The structure is subjected to an imposed acceleration of the ground. The time-history of the 
imposed acceleration is generated artificially with the software GOSCA [9]. The characteris-
tics of the target response spectrum are: 

• EC8 type I spectrum 

• PGA = 0.3g 

• Soil type C 

• Damping ratio ξ = 5 % 

• Duration = 15s 

The computation is carried out with varying friction properties of the masses, i.e. µ = 0.80, 
0.75, 0.60 and 0.30. This covers the normal range of friction coefficient measured for pallets 
on rack beams [2]. 

Figures 9.a to 9.d present respectively the evolution of (a) The horizontal displacement of 
the beam. It is worth noticing that the internal forces in the structure, and in particular the 
bending moments, are proportional to this displacement – (b) the horizontal acceleration of 
the beam – (c) the sum of the horizontal contact forces between the beam and the four masses. 
As the mass of the structure is very small compared to the total additional mass, this contact 
force may be considered as the total inertial force acting on the structure – (d) the relative dis-
placement of one of the masses with respect to the beam. As the four masses are identical, 
they exhibit of course the same local displacement. Table 1 summarizes the extreme values 
derived from the curves of Fig. 9. 

The main observations that can be drawn from these figures are the following: 

• Racking structures are very flexible. Horizontal displacements are important (δh/H = 
1/23). This evidence the fact that an accurate analysis of a rack is only possible if second 
order geometrical effects are duly accounted for; 

• The main effect of the sliding of pallets is to limit the horizontal inertial force. With a 
friction coefficient equal to 0.6, this force is already reduced to 75% of its value without 
sliding; 
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• The simple structure studied in this example responds exclusively on its first mode. 
Therefore the global displacement is directly proportional to the inertial force. The sub-
sequent internal forces are thus also significantly reduced by the limiting effect of sliding; 

• Some very sharp peaks are observed for the horizontal acceleration when the friction co-
efficient decreases. These peaks correspond to strong acceleration or breaking of the 
structure every time that the masses start or stop sliding; 

• The amplitude of the local sliding remains reasonable. Even for very low friction coeffi-
cients, the maximum local displacement is less than 5cm. 

 

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Time [s]

G
lo

ba
l d

isp
la

ce
m

en
t [

m
]

mu = 0.80
mu = 0.75
mu = 0.60
mu = 0.30

 

-12.5

-10

-7.5

-5

-2.5

0

2.5

5

7.5

10

12.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Time [s]

H
or

iz
on

ta
l a

cc
el

er
at

io
n 

[m
/s

²]

mu = 0.80
mu = 0.75
mu = 0.60
mu = 0.30

-15000

-10000

-5000

0

5000

10000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Time [s]

T
ot

al
 fr

ic
tio

n 
fo

rc
e 

[N
]

15000
mu = 0.80
mu = 0.75
mu = 0.60
mu = 0.30

 

-50

-40

-30

-20

-10

0

10

20

30

40

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Time [s]

Sl
id

in
g 

of
 p

al
le

ts
 [m

m
]

50

mu = 0.8

mu = 0.75

mu = 0.60
mu = 0.30

 
Figure 9: Time-history results for the simple frame – (a) Horizontal displacements – (b) Horizontal acceleration 

– (c) Total friction force – (d) sliding displacements 

µ Disp. [m] Acc. [m/s²] Force [N] Sliding [mm] 
0.80 0.087 9.03 12788 0.00 
0.75 0.083 8.74 12000 7.32 
0.60 0.067 31.82 9600 6.85 
0.30 0.035 69.53 4800 44.34 

Table 1: Extreme values from Figure 9(a) to 9(d) 

3.2 Non linear behavior 
The numerical model presented above has been used to reproduce test results obtained on 

the shaking table of the Laboratory of Earthquake Engineering of the NTU Athens. Figure 10 
shows the tested specimen (2 bays – 3 levels unbraced structure) and the corresponding nu-
merical model. 

It is obviously not possible to describe in this paper the whole series of test results and the 
numerous variations of the different parameters of the model that have been taken into con-
sideration. Results for one intermediate level of acceleration are presented (i.e. peak ground 
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acceleration of the table equal to 0.45g) and only the two parameters having the most impor-
tant impact on the rack's behavior are commented. The full comparison can be found in [2]. 

   
Figure 10: Test specimen and corresponding numerical model 

In the model, the second-order geometrical non-linearities of the structure and the material 
non-linear behavior of the joints are considered. The two main governing parameters have 
been identified as being (1) the plastic resistance of the base-anchorages and (2) the sliding 
properties of the masses, even if this second parameter exhibits less influence in the present 
case of moderate acceleration. 

Figure 11 shows the comparison of the displacement of the top level obtained for the test 
and for the numerical model with different assumptions on the base resistance. In this com-
parison, the friction coefficient is assumed rather high (0.6) so that no sliding was predicted 
by the numerical model. The input signal is the time-history of the acceleration recorded on 
the table during the test. Table 2 summarizes some of the important numerical values of the 
comparison. 
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Figure 11: Effect of the column base characteristics on the structural response 
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Test 

Model (Base 
resistance = 
2.00 kNm) 

Model (Base 
resistance = 
1.75 kNm) 

Model (Base 
resistance = 
1.50 kNm) 

Model (Base 
resistance = 
1.25 kNm) 

Maximum dis-
placement [mm] 

78.3 91.4 91.4 91.4 90.3 

Minimum dis-
placement [mm] 

62.2 68.0 71.0 75.9 75.0 

Residual dis-
placement [mm] 

4.7 0.4 1.5 0.9 7.1 

 
Table 2: Effect of the column base characteristics on the structural response 

From these results, the following observations can be drawn: 

• The general shape of the time-history response of the structure is correctly predicted by 
the model. 

• It is necessary to account for the non-linear behavior of the joints otherwise the residual 
displacements of the structure can't be explained. 

• Displacements are slightly overestimated (about 15%). However in this comparison, no 
sliding was accounted for, while some sliding occurred during the test and brought some 
additional damping to the structure. 

Figure 12 shows the comparison of the numerical results obtained for different assump-
tions on the sliding coefficient (no sliding, µ = 0.40 and  µ = 0.30). Fig. 12-a compares the 
horizontal displacement of the structure, Fig. 12-b compares the contact friction force and Fig. 
12-c compares the local sliding. As a matter of additional comparison, Fig. 12-d also presents 
the sliding recorded for 2 masses during the tests. Table 3 summarizes some interesting values. 
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Figure 12: Effect of the sliding of pallets on the structural behavior 
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 Test Model without 
sliding 

Model with µ = 
0.40 

Model with µ = 
0.30 

Maximum dis-
placement [mm] 

78.3 93.4 93.4 91.9 

Minimum dis-
placement [mm] 

62.2 68.5 67.8 73.8 

Maximum fric-
tion force [N] 

1751 1799 1540 1155 

Minimum friction 
force [N] 

1759 2055 1540 1155 

Maximum sliding 
displacement [mm] 

2.54 0 6.95 14.23 

Table 3: Effect of the sliding of pallets on the structural behavior 

From these results, the following observations can be drawn: 

• The main effect of the sliding is to limit the contact force transmitted from the pallets to 
the structure (Fig. 12-b). However for the moderate level of imposed acceleration consid-
ered in this example, this limitation is activated only during very short periods corre-
sponding to peaks in the acceleration time-history of the non-sliding system. The 
consequent effect on the displacement is therefore not significant. 

• The moments where some sliding occurs is correctly predicted by the numerical model in 
comparison with the test results (see Fig. 12-c and 12-d). Even if the order of magnitude 
is correct (a few millimeters), the amplitude of each individual sliding stage is strongly 
overestimated, but this should be improved by using slightly higher values of the friction 
coefficient. This requirement for a higher friction coefficient is also confirmed by the 
maximum friction forces roughly evaluated from the acceleration measured during the 
test (see Table 3). It is also important to notice that the maximum sliding displacement is 
very small (2.5 mm) and corresponds thus to an acceptable motion of the pallets with re-
spect to the structure, from a point of view of "falling of pallets" limit-state. 

4 CONCLUSION AND PERSPECTIVES 
In this paper, one presented a numerical model able to reproduce in a satisfactory manner 

the behavior of storage racks subjected to earthquakes, in comparison with analytical exam-
ples and with test results. It also emphasized that the main parameters on which it is possible 
to act for calibrating the model are the behavior of the column bases, the friction coefficient of 
the pallets and the viscous damping (even if this last aspect was not commented into details in 
the paper). It is now possible to consider extensive parameter studies with variations of these 
parameters, in the perspective of developing backgrounds for design recommendations lead-
ing to an improved safety of the storage areas for both industrial and commercial applications. 
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