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Abstract: This article presents some basic aspects of a research 
about the evaluation of the effect of earthquakes on storage 
racking systems. In particular, it focuses on the possible sliding 
and friction of the stored good subjected to a horizontal inertial 
force. In the first part, a theoretical SDOF system is studied to 
derive general indications on the sliding behavior and to serve as 
a reference for the validation of a more advanced numerical 
model. The second part presents then an application of the 
numerical model to simple rack structures. 
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I. INTRODUCTION 
Despite their lightness, storage racking systems made of 

thin-walled cold formed steel products are able to carry very 
high live load many times larger than the dead load, opposite 
to what happens in usual civil engineering structures. These 
racks can also raise considerable height. For these reasons, 
their use is nowadays very common in warehouses (see fig. 
1). 

However, these structures have to be carefully designed. 
Indeed many difficulties arise in the prediction of their 
structural behavior, such as instabilities (global, local and 
distortional) or modeling problems (beam-upright connection 
stiffness, base plate anchoring) [1]. 

Things become even more complicated when a storage rack 
is installed in a seismic zone where, subjected to earthquake, 
it has to withstand horizontal dynamic forces. In that case, in 
addition to usual seismic global and local mechanisms, 
another limit state of the system is the fall of pallets with 
subsequent damages to goods, people and to the structure 
itself. Indeed the horizontal inertial forces acting on pallets 
may be sufficient to exceed the friction resistance. 

Nevertheless if the amplitude of the sliding movement is not 
too important, in such a way that pallets remain on the rack, 
this effect can benefit to the structure as it limits the 
horizontal forces on the rack to the friction force at the 
interface between pallet and beams. 

Results presented in this paper are part of a wider research 
project [2] funded by the European Union and focusing 
specifically on the seismic behavior of storage racks. This 
research includes many items such as: 

− Experimental determination of friction properties of 
pallets lying on rack beams; 

− Statistical evaluation of the rate of occupancy of racks in 
order to define the design value of horizontal seismic 
action, which is directly related to the mass of stored 
goods; 

− Study of the dynamic structural behavior of racks 
subjected to earthquakes, with a special look at sliding 
of pallets. 

This paper intends to develop three main aspects: 
− The study of a simple SDOF sliding system subjected to 

sinusoidal ground motion, in order to get reference 
results and general trends; 

− The development of an advanced numerical tool to be 
used for the modeling of whole racking systems; 

− A limited study of simplified rack systems intending to 
show the abilities of the new numerical tool in practical 
situations. 

 

 
Fig. 1. Example of a storage rack 

II. SDOF SLIDING SYSTEM 
The simple system studied in this chapter is showed at Fig. 

2. It consists in a mass M laid down on a rigid support 
subjected to a horizontal sinusoidal imposed acceleration. The 
friction coefficient of the mass on its support µ is supposed to 
be constant. The movement of the support is noted u(t) while 
the absolute displacement of the mass is noted x(t). 



The detailed analytical developments summarized hereafter 
can be found in Ref. [3]. 

 

u(t) = (α g/ω²) sin (ω t) 
M 

µ 

 
 

Figure 2 – SDOF system 
 
The behavior of this system can be separated into two 

phases. 
(1) While the inertial force on the mass doesn’t exceed the 

friction force at the interface, the mass is stuck to the support. 
The governing equations are thus: 
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Therefore, according to (1.a) and (2), it comes that no 
sliding of the mass can occur if the non-dimensional maximal 
acceleration of the support is lower than the friction 
coefficient (α < µ). 

 
(2) As soon as the inertial force exceeds the friction 

resistance, the mass starts sliding on the support. The mass is 
thus subjected to a constant horizontal force equal to the 
friction force. The governing equations are: 
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The mass starts again sticking to the support as soon as the 
relative velocity between the mass and the support become 
equal to zero. 

The moment at which this re-sticking happens can be 
evaluated by solving Eq. (4) obtained by equating the absolute 
velocity of the mass and of the support. Eq. (4) can’t 
unfortunately be solved analytically. An example of graphical 
solution is presented at Fig. 3, in which the two red curves are 
respectively the left-hand and right-hand side of (4). The 
solution of this equation is noted (ω t1). 
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Figure 3 – Graphical evaluation of the re-sticking time 

 
An additional problem to solve consists in evaluating the 

inertial force at time t1. Indeed in order to obtain an effective 
re-sticking, this force must not exceed the friction force, 
otherwise the mass starts immediately sliding again. The 
second condition for re-sticking is thus given by Eq. (5). 

α
µω <1tsin  (5) 

Condition (5) is commented at Fig. 4.a and 4.b. In these 
figures, the shadowed areas correspond to time-periods for 
which the condition is verified. Therefore, if the behavior of 
the system is such that the time t1 evaluated from Eq. (4) and 
Fig. 3 falls in a shadowed area, the system exhibits an 
effective re-sticking (Fig. 4.a - µ /α =0.6 ). Otherwise if t1 is 
outside one of these areas, the mass go on sliding. However, it 
can be demonstrated (see Ref. [3]) that the inversion of the 
sign of the relative velocity results in an inversion of the sign 
of the friction force. The sliding sense of the mass is then 
inverted (Fig. 4.b - µ /α =0.4 ). 
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Figure 4.a – Second condition of re-sticking verified 
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Figure 4.b – Second condition of re-sticking not verified 
 
The analysis of the SDOF system can then be continued 

according to the principles developed above, in order to 
evaluate the whole stick-slip behavior of the mass. Figures 5.a 
and 5.b present one more step for µ /α = 0.6 and µ /α = 0.4. 

µ /α = 0.6 (Fig. 5.a): 
− Up to t0: initial stick phase; 
− From t0 to t1: first sliding phase; 
− From t1 to t2: stick phase – the mass follows the 

support; 
− From t2 to t3 – second sliding phase; 
− From t3 to t4 – stick phase 
− … 

µ /α = 0.4 (Fig. 5.b): 
− Up to t0: initial stick phase; 
− From t0 to t1: first sliding phase; 
− From t1 to t3: second sliding phase (inverted sense of 

the sliding); 
− … 

 
Fig. 6 summarizes the general behavior of the system for 

different values of the ratio µ /α. As illustrative examples, 
Fig.7 presents the displacement, velocity and friction force for 
three particular values of the ratio. The following conclusions 
can be drawn from these two figures: 

− If  µ/α  is greater than 1.0, the mass remains stuck to 
the support all along the loading; 

− If   µ/α  is between 0.537 and 1.0, the movement of 
the mass is an alternation of stuck and sliding phases. 
For what regards the sliding phases, the sign of the 
friction force changes from a phase to the following 
one. The movement is thus oscillatory around its 
equilibrium position (see figure 7, case 1). The 
distance between the initial position of the mass and 
the equilibrium position is related to the friction 
coefficient. The smaller the coefficient, the more 
distant the equilibrium position. 

− If µ/α is smaller than 0.537, the movement of the 
mass is a first stuck phase followed by alternated 
slidings corresponding to alternate changes in the 
sign of the friction force. These changes of the sign 
are represented by the solid lines on Fig. 6. In this 
case, it is observed that the general movement of the 
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Figure 5.a – Behavior of the SDOF system - µ /α = 0.6 
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Figure 5.b – Behavior of the SDOF system - µ /α = 0.4 
 

 
 

Figure 6 – Summary of the behavior of the SDOF system as 
a function of the ratio µ /α 

 



mass is an oscillation around an equilibrium position that 
is moving along the supporting device. However this 
equilibrium position tends to stabilize after a sufficient 
duration, this duration being an inverse function of the 
friction coefficient. 
Figure 7 (cases 2 and 3) illustrates this behavior. In case 
2, the equilibrium position is obtained rather quickly, 
while in case 3, the global movement of the mass is much 
more significant before to find a stabilized state. It can 
also be noticed that the ratio between the global 
displacement of the equilibrium position and the 
amplitude of the oscillatory component is increasing 
when the friction coefficient decreases. 

 

 
 

Figure 7 – Displacement, velocity and friction force for the 
SDOF system with µ/α  equal 0.75 (case A), 0.5 (case B) and 

0.25 (case C) – 1: support; 2: supported mass 
 

Consequences on the behavior of pallets on racks 
As far as a pallet may be considered as a simple mass, two 

main conclusions can be drawn. 
− The general movement of a pallet exhibiting ‘stick 

and slip’ behavior is a global displacement in the 
direction of the first sliding. This conclusion is in 
agreement with experimental observations made 
during tests carried out on the shaking table of NTUA 
Athens [2].   

− The ratio µ/α - where α  is the relative acceleration of 
the support referred to g - is the main parameter 
allowing evaluating whether the pallet will slide 
during an earthquake or not. In the case of a pallet 
lying on a rack, α is the relative horizontal 
acceleration of the supporting beam. Its value can be 
estimated from both the movement of the soil during 
the earthquake and the dynamic properties of the rack. 
The main difficulty is that almost all the mass of the 
system is actually the mass of the pallets. Therefore as 
soon as the pallets start sliding, the dynamic properties 
of the rack may be significantly modified, with 
consequences on the relative acceleration α. The 
procedure to evaluate the possible sliding should thus 
either be based on the above conclusions on SDOF 
systems, coupled with an iterative procedure to 
evaluate the relative acceleration of each supporting 
beam, or make use of advanced structural dynamics 
computational tools. 

III. ADVANCED NUMERICAL MODEL 
In order to be able to evaluate precisely the behavior of 

racks subjected to seismic action with a due account for 
possible sliding of supported pallets, an advanced numerical 
tool is developed. The tool is included in the non linear finite 
element software FineLg [4]. Indeed this software already 
allows performing step-by-step dynamic analysis accounting 
for geometrical and material non linearity’s of the structure. 
In particular it is possible to study the response of a structure 
subjected to an earthquake defined by the time-history of the 
ground acceleration. The only missing feature is the 
possibility to let the masses slide. 

A. Basic concept 
The starting point of the development of the sliding-mass 

model is the use of the concept of “mathematical deck” 
already available in FineLg since its development by FH 
Yang [5]. The mathematical deck was elaborated to study the 
dynamic behavior of structures subjected to moving loads or 
vehicles and particularly to study the bridge-vehicles 
interaction. 

According to this concept, the interactive behavior is 
obtained by solving two uncoupled sets of equations, 
respectively for the structure and for the vehicle, and by 
ensuring conditions of geometrical compatibility and 
equilibrium at the interaction points between the structure and 
the vehicle using an iterative procedure. In this scheme, the 
mathematical deck acts as an interface element to evaluate the 
position of the vehicles with respect to the physical deck and 
to perform the iterative compatibility process (Fig. 8). 



Regarding the possible movements of the vehicles, the 
horizontal displacement is imposed according to the speed of 
the vehicle and to its traffic lane. The vertical displacement, 
velocity and acceleration are at the contrary the result of a 
dynamic computation and are obtained from the behavior of 
the vehicle itself, of the underlying structure and of their 
possible interaction. 
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Figure 8 – General scheme of the mathematical deck 
 
The idea in elaborating the "sliding mass" model is to start 

from a "moving mass" vehicle without any user-imposed 
speed and to make the horizontal behavior of the mass be the 
result of a dynamic computation according to a stick/slip 
model (Fig. 9). 
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Figure 9 – Evolution of the mathematical deck for sliding 
mass – basic scheme 

1) Stuck phase 

During this stage, the displacement, velocity and 
acceleration of both the mass and the underlying structure are 
the same. The mathematical deck computes thus the 
horizontal friction force Fh necessary to ensure 
simultaneously the compatibility and the general equations of 
dynamics including the whole set of external actions (Fig. 
10.a). 

 

Fh 

-Fh 
Ustr = Upallet 

 
Figure 10.a – Sliding mass model in stuck phase 

 
For structures like racks, the supported mass is much more 

important than the mass of the structure itself (M up to more 
than 100 times the structural mass). It that case, the 
experience shows that the convergence of the iterative 
procedure for ensuring equilibrium and compatibility of the 
coupled system is rather difficult to achieve unless using 
specific methods. Therefore the particular iterative approach 
chosen here is an Aitken acceleration procedure (see [5] and 
[6]). 

2) Sliding phase 

As soon as the horizontal contact force exceeds the static 
friction resistance Rh,st, the mass starts sliding. The dynamic 
response of the two systems (mass and structure) may then be 

evaluated separately under a constant contact force equal to 
the dynamic friction resistance Rh,dyn (Fig. 10.b). During this 
stage, the pallet moves on the mathematical deck and its 
position, velocity and acceleration (= Rh,dyn/M) can be 
evaluated at any time step. The sliding behavior lasts until the 
relative velocity between the pallet and the structure becomes 
equal to zero. From that condition, it can then be evaluated 
whether and when the pallet starts sticking again. 

 

Rh,dyn 

- Rh,dyn 
Ustr ≠ Upallet 

 
Figure 10.b – Sliding mass model in sliding phase 

B. Validation examples 
In order to validate the sliding mass model, a series of very 

simple systems has been studied with FineLg and compared to 
equivalent MDOF systems solved with the semi-analytical 
approach followed in part II of the paper. Some of the 
considered examples are described in the next paragraphs. 

1) Example 1 – mass on rigid support with imposed 
sinusoidal acceleration 

This example is the SDOF system studied analytically in the 
first part of the paper (Fig. 2). The results obtained with 
FineLg are perfectly similar to the curves of Figure 7. 

2) Example 2 – 3DOFs system subjected to a 
sinusoidal force applied on one of the DOFs 

M3

µ
P(t) = P° sin ωt

M1
M2

M3

µ
P(t) = P° sin ωt

M1
M2

 
 

Figure 11.a – Simple example n° 2 
 
The results obtained with FineLg and with the reference 

semi-analytical procedure are found in very good agreement. 
FineLg results are plotted in Fig. 11.b for µ/α  = 1.00 (no 
sliding) and µ/α  = 0.5. In this last case, 4 sliding phases are 
observed during which the relative displacement between M2 
and M3 varies. 

3) Example 3 – 2DOFs system subjected to an imposed 
acceleration of the support 

M2

µ

M1

a(t) = α g sin (ω t)

M2

µ

M1

a(t) = α g sin (ω t)

 
Figure 12.a – Simple example n°3 

Results are once again found in perfect agreement. 
Displacement of mass M1 is plotted on Fig. 12.b for 
decreasing values of the friction coefficient. 

As expected, it is observed that accounting for the possible 
sliding of the supported mass M2 limits the inertial action on 



the supporting structure M1 and reduces its maximal 
displacement in consequence. 
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Figure 11.b – Results of the simple example n°2 
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Figure 12.b – Results of the simple example n°3 

IV. BEHAVIOR OF A SIMPLE RACK STRUCTURE 
This chapter intends to show the application of the new 

numerical tool for the step-by-step dynamic analysis of a 
simple rack structure subjected to an imposed acceleration of 
the ground, with account for the possible sliding of the 
supported masses. 

A. Definition of the example 
The chosen structure comprises two spans and one level 

with typical dimensions of rack structures (span = 1.8 m – 
height = 2.0 m; see Fig. 13). The cross section properties of 
the structural elements are summarized in Table 1. Four 
masses (400 kg) are positioned on the beam. 

 

 
Figure 13 – Simple rack structure 

 

TABLE 1 

CROSS SECTION PROPERTIES OF THE STRUCTURAL 
COMPONENTS OF THE RACK 

Element Area Inertia 
Beams 605.8 mm² 93.8 cm4

Uprights 488.9 mm² 41.3 cm4

 Equivalent spring stiffness 
Beam-to-upright 

connection 
160 kNm 

Base anchorage 160 kNm 
 
In this application, the structure is supposed to behave 

linearly. It means that no second-order geometrical effects and 
no yielding of elements are taken into account. 

Eigenmodes 

The eigenmodes of the structure are computed with FineLg 
before performing the step-by-step dynamic analysis. The 
only relevant mode for horizontal seismic action – with 99.6% 
of collaborating mass – is plotted on Fig. 14. 

The corresponding period is equal to 0.65s. 
 

 
Figure 14 – First horizontal eigen-mode of the structure 

 

Loading 

The structure is subjected to an imposed acceleration of the 
ground. The time-history of the imposed acceleration is 
generated artificially with the software GOSCA [7]. The 
characteristics of the target response spectrum are: 

− EC8 type I spectrum 
− PGA = 0.3g 1.8 m 

2 m − Soil type C 
− η = 5 % 
− Duration = 15s 

The generated accelerogram, the corresponding response 
spectrum and the target spectrum are given in Fig. 15.a and 
15.b. 

Friction properties 

The computation is carried out with varying friction 
properties of the masses, i.e. µ = 0.80, 0.75, 0.60 and 0.30. 
This covers the normal range of friction coefficient measured 
for pallets on rack beams. 



-6

-4

-2

0

2

4

6

0 2.5 5 7.5 10 12.5

time [s]

G
ro

un
d 

ac
ce

le
ra

tio
n 

[m
/s²

]

15

 
Figure 15.a – Imposed acceleration of the ground 
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Figure 15.b – Corresponding response spectrum and target 

EC8 spectrum 

B. Results 
Figures 16.a to 16.d present respectively the evolution of 

− The horizontal displacement of the beam. It is worth 
noticing that the internal forces in the structure, and in 
particular the bending moments, are proportional to 
this displacement; 

− The horizontal acceleration of the beam; 
− The sum of the horizontal contact forces between the 

beam and the four masses. As the mass of the 
structure is very small compared to the total additional 
mass, this contact force may be considered as the total 
inertial force acting on the structure; 

− The relative displacement of one of the masses with 
respect to the beam. As the four masses are identical, 
they exhibit of course the same local displacement. 

Table 2 summarizes the extreme values derived from the 
curves of Fig. 16. 
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Figure 16.a – Horizontal displacement 
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Figure 16.b – Horizontal acceleration 
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Figure 16.c – Total friction force 
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Figure 16.d – Local displacements 

TABLE 2 

EXTREME VALUES FROM FIG. 16 

µ Disp. Acc. Force Sliding 
0.80 0.087 9.03 12788 0.00 
0.75 0.083 8.74 12000 7.32 
0.60 0.067 31.82 9600 6.85 
0.30 0.035 69.53 4800 44.34 

 

Observations 

− Racking structures are very flexible. Horizontal 
displacements are important (δh/H = 1/23). A 
complementary non linear computation accounting for 
geometrical second order effects should be necessary. 



However the results presented here are very 
significant at a qualitative point of view; 

− The main effect of the sliding of pallets is to cut the 
horizontal inertial forces. With a friction coefficient 
equal to 0.6, the force is already reduced to 75% of its 
non sliding value; 

− The simple structure studied in this paper responds 
exclusively on its first mode. Therefore the global 
displacement is directly proportional to the inertial 
force. The subsequent internal forces are thus also 
significantly reduced by the cutting effect of sliding; 

− Some very important peaks are observed for the 
horizontal acceleration when the friction coefficient 
decreases. These peaks correspond indeed to strong 
acceleration or breaking of the structure every time 
that the masses start or stop sliding; 

− The amplitude of the local slidings remains 
reasonable. Even for very low friction coefficients, the 
maximum local displacement is less than 5cm. 

− The conclusion of part II of the paper can be 
commented again with regard to this example. The 
maximum relative acceleration α of the supporting 
beam is here equal to 9.03/g ≈ 0.9. The sliding 
condition defined by Eq. (2) for sinusoidal excitation 
of the support forecast thus sliding of the pallets if the 
friction coefficient is under 0.9. However on the 
example, no sliding is observed above 0.75. It seems 
then that the use of the simplified verification formula 
is safe-sided regarding the initiation of the sliding. 

V. CONCLUSIONS AND PERSPECTIVES 
This paper has presented a numerical tool for the simulation 

of the sliding of masses on structures subjected to 
earthquakes, with a particular emphasis on the sliding of 
pallets on storage racks. The numerical developments have 
been validated by comparisons with analytical and semi-
analytical results. An example of simple structure has then 
been treated, leading to interesting observations on the 
prediction of the sliding of pallets and on the favorable effect 
of a controlled sliding on the internal forces in the structure. 

The next steps of this research should consist in accounting 
for the non linear geometrical effects and in investigating 
structures comprising a greater number of storage levels 
requiring thus the participation of more than one single 
eigenmode for the evalutation of the dynamic response. 
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