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Abstract: This article presents some basic aspects of a research
about the evaluation of the effect of earthquakes on storage
racking systems. In particular, it focuses on the possible sliding
and friction of the stored good subjected to a horizontal inertial
force. In the first part, a theoretical SDOF system is studied to
derive general indications on the sliding behavior and to serve as
a reference for the validation of a more advanced numerical
model. The second part presents then an application of the
numerical model to ssimplerack structures.
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I. INTRODUCTION

Despite their lightness, storage racking systems made of
thin-walled cold formed steel products are able to carry very
high live load many times larger than the dead load, opposite
to what happens in usual civil engineering structures. These
racks can aso raise considerable height. For these reasons,
their use is nowadays very common in warehouses (see fig.
1).

However, these structures have to be carefully designed.
Indeed many difficulties arise in the prediction of their
structural behavior, such as instabilities (global, local and
distortional) or modeling problems (beam-upright connection
stiffness, base plate anchoring) [1].

Things become even more complicated when a storage rack
isinstalled in a seismic zone where, subjected to earthquake,
it has to withstand horizontal dynamic forces. In that case, in
addition to usual seismic global and loca mechanisms,
another limit state of the system is the fall of pallets with
subsequent damages to goods, people and to the structure
itself. Indeed the horizonta inertial forces acting on pallets
may be sufficient to exceed the friction resistance.

Nevertheless if the amplitude of the sliding movement is not
too important, in such a way that pallets remain on the rack,
this effect can benefit to the structure as it limits the
horizontal forces on the rack to the friction force at the
interface between pallet and beams.

Results presented in this paper are part of a wider research
project [2] funded by the European Union and focusing
specificaly on the seismic behavior of storage racks. This
research includes many items such as:

— Experimental determination of friction properties of

pallets lying on rack beams;

— Statistical evaluation of the rate of occupancy of racksin
order to define the design value of horizontal seismic
action, which is directly related to the mass of stored
goods;

— Study of the dynamic structural behavior of racks
subjected to earthquakes, with a special look at diding
of pallets.

This paper intends to develop three main aspects:

— The study of asimple SDOF dliding system subjected to
sinusoidal ground motion, in order to get reference
results and general trends;

— The development of an advanced numerical tool to be
used for the modeling of whole racking systems;

— A limited study of smplified rack systems intending to
show the abilities of the new numerical tool in practical
situations.
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Fig. 1. Example of a storage rack

II. SDOF SLIDING SYSTEM

The simple system studied in this chapter is showed at Fig.
2. It consists in @ mass M laid down on a rigid support
subjected to a horizontal sinusoidal imposed acceleration. The
friction coefficient of the mass on its support x is supposed to
be constant. The movement of the support is noted u(t) while
the absolute displacement of the massis noted x(t).



The detailed analytical developments summarized hereafter
can befound in Ref. [3].
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Figure 2 — SDOF system

The behavior of this system can be separated into two
phases.

(1) While the inertia force on the mass doesn’t exceed the
friction force at the interface, the mass is stuck to the support.
The governing equations are thus:

X(t)=1U(t)=—-agsnwt

X(t)=x(ty )+ a—g(coswt —Ccoswty )
[0

X(t) = X(ty )+ (X(ty) — agwcoswty )(t -ty ) )
+ 29 (sinwt - sinaty )
w
while F(t)=M X(t)< uM g 2

Therefore, according to (1.a8) and (2), it comes that no
diding of the mass can occur if the non-dimensional maximal
acceleration of the support is lower than the friction
coefficient (a < p).

(2) As soon as the inertial force exceeds the friction
resistance, the mass starts sliding on the support. The massis
thus subjected to a constant horizontal force equal to the
friction force. The governing equations are:

+tuMg

X(t) =
X(t) = X(tg )£ ug(t—to) 3

(t—t5)°

X(t)=x(tg )+ X(to )(t -t )+ 19 >

The mass starts again sticking to the support as soon as the
relative velocity between the mass and the support become
equal to zero.

The moment at which this re-sticking happens can be
evaluated by solving Eq. (4) obtained by equating the absolute
velocity of the mass and of the support. Eq. (4) can't
unfortunately be solved analytically. An example of graphical
solution is presented at Fig. 3, in which the two red curves are
respectively the left-hand and right-hand side of (4). The
solution of this equation is noted (wt,).

K —ﬁa)t = coswt
a
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Figure 3 — Graphical evaluation of the re-sticking time

An additional problem to solve consists in evaluating the
inertial force at time t;. Indeed in order to obtain an effective
re-sticking, this force must not exceed the friction force,
otherwise the mass starts immediately dliding again. The
second condition for re-sticking is thus given by Eq. (5).

lsinat| < (5)
o

Condition (5) is commented at Fig. 4.a and 4.b. In these
figures, the shadowed areas correspond to time-periods for
which the condition is verified. Therefore, if the behavior of
the system is such that the time t; evaluated from Eqg. (4) and
Fig. 3 fdls in a shadowed area, the system exhibits an
effective re-sticking (Fig. 4.a- ¢ /a =0.6 ). Otherwise if t; is
outside one of these areas, the mass go on dliding. However, it
can be demonstrated (see Ref. [3]) that the inversion of the
sign of the relative velocity results in an inversion of the sign
of the friction force. The diding sense of the mass is then
inverted (Fig. 4.b- u/a=04).
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Figure 4.a— Second condition of re-sticking verified



1 P

0.8 | -\ /

06}/

0.4

0.2 [/

0

0.2} - \ froed -

j RN a4 .
AN

1 2 3 4 5 6 7 8 9 10

0
Figure 4.b — Second condition of re-sticking not verified

The analysis of the SDOF system can then be continued
according to the principles developed above, in order to
evaluate the whole stick-dlip behavior of the mass. Figures 5.a
and 5.b present one more step for u/a= 0.6 and x/a = 0.4.

#la=0.6(Fig. 5.9):

Up to ty: initial stick phase;

Fromty to ty: first diding phase;

From t; to t,: stick phase — the mass follows the
support;

From t, to t; — second sliding phase;

Fromt; to t; — stick phase

ula= 0.4 (Fig. 5.b):

Up to ty: initial stick phase;

Fromto to t;: first diding phase;

From t; to t3: second sliding phase (inverted sense of
the sliding);

Fig. 6 summarizes the general behavior of the system for
different values of the ratio u /a. As illustrative examples,
Fig.7 presents the displacement, velocity and friction force for
three particular values of the ratio. The following conclusions
can be drawn from these two figures:

If g isgreater than 1.0, the mass remains stuck to
the support all along the loading;

If gla isbetween 0.537 and 1.0, the movement of
the mass is an alternation of stuck and sliding phases.
For what regards the sliding phases, the sign of the
friction force changes from a phase to the following
one. The movement is thus oscillatory around its
equilibrium position (see figure 7, case 1). The
distance between the initial position of the mass and
the equilibrium position is related to the friction
coefficient. The smaler the coefficient, the more
distant the equilibrium position.

If gais smaler than 0.537, the movement of the
mass is a first stuck phase followed by alternated
dlidings corresponding to alternate changes in the
sign of the friction force. These changes of the sign
are represented by the solid lines on Fig. 6. In this
case, it is observed that the general movement of the

0.2 AN \') ;
-0.4 \ % /,"

-0.6 -

08 : \ \\ ,/'” \ ]
N A = [l

1 i ‘H/HOL i 01.6

s

oo il
osl AL V.
0.2 /\ \ / ‘

0 1 2 3 4 5 6 7 8 9 10

Figure 5.a— Behavior of the SDOF system - u/a = 0.6
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Figure 5.b — Behavior of the SDOF system - u/a= 0.4
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mass is an oscillation around an equilibrium position that
is moving aong the supporting device. However this
equilibrium position tends to stabilize after a sufficient
duration, this duration being an inverse function of the
friction coefficient.

Figure 7 (cases 2 and 3) illustrates this behavior. In case
2, the equilibrium position is obtained rather quickly,
while in case 3, the global movement of the mass is much
more significant before to find a stabilized state. It can
aso be noticed that the ratio between the global
displacement of the equilibrium position and the
amplitude of the oscillatory component is increasing
when the friction coefficient decreases.
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Figure 7 — Displacement, velocity and friction force for the
SDOF system with g/ equa 0.75 (case A), 0.5 (case B) and
0.25 (case C) — 1: support; 2: supported mass

Consequences on the behavior of pallets on racks

As far as a pallet may be considered as a simple mass, two
main conclusions can be drawn.

— The general movement of a pallet exhibiting ‘stick
and dlip’ behavior is a globa displacement in the
direction of the first diding. This conclusion is in
agreement with experimental observations made
during tests carried out on the shaking table of NTUA
Athens[2].

— Theratio g/a - where & isthe relative acceleration of
the support referred to g - is the main parameter
alowing evaluating whether the pallet will dlide
during an earthquake or not. In the case of a pallet
lying on a rack, « is the relative horizontal
acceleration of the supporting beam. Its value can be
estimated from both the movement of the soil during
the earthquake and the dynamic properties of the rack.
The main difficulty is that aimost all the mass of the
system is actually the mass of the pallets. Therefore as
soon as the pallets start sliding, the dynamic properties
of the rack may be significantly modified, with
consequences on the relative acceleration a. The
procedure to evaluate the possible dliding should thus
either be based on the above conclusions on SDOF
systems, coupled with an iterative procedure to
evaluate the relative acceleration of each supporting
beam, or make use of advanced structural dynamics
computational tools.

I1l. ADVANCED NUMERICAL MODEL

In order to be able to evaluate precisely the behavior of
racks subjected to seismic action with a due account for
possible dliding of supported pallets, an advanced numerical
tool is developed. The tool isincluded in the non linear finite
element software FineLg [4]. Indeed this software already
alows performing step-by-step dynamic analysis accounting
for geometrical and material non linearity’s of the structure.
In particular it is possible to study the response of a structure
subjected to an earthquake defined by the time-history of the
ground acceleration. The only missing feature is the
possibility to let the masses dide.

A. Basic concept

The starting point of the development of the dliding-mass
model is the use of the concept of “mathematical deck”
dready available in FineLg since its development by FH
Yang [5]. The mathematical deck was elaborated to study the
dynamic behavior of structures subjected to moving loads or
vehicles and particularly to study the bridge-vehicles
interaction.

According to this concept, the interactive behavior is
obtained by solving two uncoupled sets of equations,
respectively for the structure and for the vehicle, and by
ensuring conditions of geometrica compatibility and
equilibrium at the interaction points between the structure and
the vehicle using an iterative procedure. In this scheme, the
mathematical deck acts as an interface element to evaluate the
position of the vehicles with respect to the physical deck and
to perform the iterative compatibility process (Fig. 8).



Regarding the possible movements of the vehicles, the
horizontal displacement is imposed according to the speed of
the vehicle and to its traffic lane. The vertical displacement,
velocity and acceleration are at the contrary the result of a
dynamic computation and are obtained from the behavior of
the vehicle itself, of the underlying structure and of their
possible interaction.
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Figure 8 — General scheme of the mathematical deck

The idea in elaborating the "dliding mass' moddl is to start
from a "moving mass' vehicle without any user-imposed
speed and to make the horizontal behavior of the mass be the
result of a dynamic computation according to a stick/dlip
model (Fig. 9).
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Figure 9 — Evolution of the mathematical deck for dliding
mass — basic scheme

1) Stuck phase

During this stage, the displacement, velocity and
acceleration of both the mass and the underlying structure are
the same. The mathematica deck computes thus the
horizontal  friction force F, necessary to ensure
simultaneously the compatibility and the general equations of
dynamics including the whole set of external actions (Fig.
10.a).

Ugr = Upallet

Figure 10.a— Sliding mass model in stuck phase

For structures like racks, the supported mass is much more
important than the mass of the structure itself (M up to more
than 100 times the structural mass). It that case, the
experience shows that the convergence of the iterative
procedure for ensuring equilibrium and compatibility of the
coupled system is rather difficult to achieve unless using
specific methods. Therefore the particular iterative approach
chosen here is an Aitken acceleration procedure (see [5] and

[6]).
2) Siding phase
As soon as the horizontal contact force exceeds the static

friction resistance Ry «, the mass starts diding. The dynamic
response of the two systems (mass and structure) may then be

evaluated separately under a constant contact force equal to
the dynamic friction resistance Ry g (Fig. 10.b). During this
stage, the palet moves on the mathematical deck and its
position, velocity and acceleration (= Rhgn/M) can be
evauated at any time step. The dliding behavior lasts until the
relative velocity between the pallet and the structure becomes
equal to zero. From that condition, it can then be evaluated
whether and when the pallet starts sticking again.
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Figure 10.b — Sliding mass model in sliding phase

B. Validation examples

In order to validate the sliding mass model, a series of very
simple systems has been studied with FineLg and compared to
equivalent MDOF systems solved with the semi-analytical
approach followed in part Il of the paper. Some of the
considered examples are described in the next paragraphs.

1) Example 1 — mass on rigid support with imposed
sinusoidal acceleration

This example is the SDOF system studied analytically in the
first part of the paper (Fig. 2). The results obtained with
FineLg are perfectly similar to the curves of Figure 7.

2) Example 2 — 3DOFs system subjected to a
sinusoidal force applied on one of the DOFs

P(t) = P° sin ot

Figure 11.a— Simple example n® 2

The results obtained with FineLg and with the reference
semi-analytical procedure are found in very good agreement.
FineLg results are plotted in Fig. 11.b for g/a = 1.00 (no
sliding) and ¢/ = 0.5. In this last case, 4 sliding phases are
observed during which the relative displacement between M2
and M3 varies.

3) Example 3 — 2DOFs system subjected to an imposed
acceleration of the support

a(t) = agsin (wt) H
—

Figure 12.a— Simple example n°3
Results are once again found in perfect agreement.
Displacement of mass M1 is plotted on Fig. 12.b for
decreasing values of the friction coefficient.
As expected, it is observed that accounting for the possible
sliding of the supported mass M2 limits the inertial action on



its maximal

the supporting structure M1 and reduces
displacement in conseguence.

TABLE1

CROSS SECTION PROPERTIES OF THE STRUCTURAL

— -DiyM1; mu=apha
——DispM1; mu=05apha
—— Disp M2 = Disp M3 ; mu = alpha
— -DiyM2; mu=05apha
- - - DiyM3; mu=05apha

—— Disp M3 - Disp M2; mu =05 alpha|

COMPONENTS OF THE RACK
Element Area Inertia
Beams 605.8 mm? 93.8cm*
Uprights 488.9 mm? 413 cm’
Equivalent spring stiffness
Beam-to-upright 160 KNm
connection
Base anchorage 160 KNm

Figure 11.b — Results of the simple example n°2
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Figure 12.b — Results of the simple example n°3

IV. BEHAVIOR OF A SIMPLE RACK STRUCTURE

This chapter intends to show the application of the new
numerical tool for the step-by-step dynamic analysis of a
simple rack structure subjected to an imposed acceleration of
the ground, with account for the possible diding of the
supported masses.

A. Définition of the example

The chosen structure comprises two spans and one level
with typical dimensions of rack structures (span = 1.8 m —
height = 2.0 m; see Fig. 13). The cross section properties of
the structural elements are summarized in Table 1. Four
masses (400 kg) are positioned on the beam.

1.8 m

2m

Figure 13 — Simple rack structure

In this application, the structure is supposed to behave
linearly. It means that no second-order geometrical effects and
no yielding of elements are taken into account.

Eigenmodes

The eigenmodes of the structure are computed with Finel.g
before performing the step-by-step dynamic anaysis. The
only relevant mode for horizontal seismic action —with 99.6%
of collaborating mass — is plotted on Fig. 14.

The corresponding period is equal to 0.65s.

Figure 14 — First horizontal eigen-mode of the structure

Loading

The structure is subjected to an imposed acceleration of the
ground. The time-history of the imposed acceleration is
generated artificially with the software GOSCA [7]. The
characteristics of the target response spectrum are:

— EC8typel spectrum
- PGA =0.3g

— Soil typeC

- n1=5%

— Duration = 15s

The generated accelerogram, the corresponding response
spectrum and the target spectrum are given in Fig. 15.a and
15.b.

Friction properties

The computation is carried out with varying friction
properties of the masses, i.e. x = 0.80, 0.75, 0.60 and 0.30.
This covers the normal range of friction coefficient measured
for pallets on rack beams.
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B. Results

Figures 16.ato 16.d present respectively the evolution of
— The horizontal displacement of the beam. It is worth

noticing that the internal forces in the structure, and in
particular the bending moments, are proportional to
this displacement;

The horizontal acceleration of the beam;

The sum of the horizontal contact forces between the
beam and the four masses. As the mass of the
structure is very small compared to the total additional
mass, this contact force may be considered as the total
inertial force acting on the structure;

The relative displacement of one of the masses with
respect to the beam. As the four masses are identical,
they exhibit of course the same local displacement.

Table 2 summarizes the extreme values derived from the
curves of Fig. 16.
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Figure 16.b — Horizontal acceleration
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Figure 16.d — Local displacements
TABLE 2
EXTREME VALUESFROM FIG. 16
u Disp. Acc. Force Sliding
0.80 0.087 9.03 12788 0.00
0.75 0.083 8.74 12000 7.32
0.60 0.067 31.82 9600 6.85
0.30 0.035 69.53 4800 44.34
Observations
— Racking structures are very flexible. Horizontal
displacements are important (6/H = 1/23). A

complementary non linear computation accounting for
geometrical second order effects should be necessary.



However the results presented here are very
significant at a qualitative point of view;

— The main effect of the sliding of pallets is to cut the
horizontal inertial forces. With a friction coefficient
equal to 0.6, the force is already reduced to 75% of its
non dliding value;

— The simple structure studied in this paper responds
exclusively on its first mode. Therefore the global
displacement is directly proportional to the inertial
force. The subsegquent internal forces are thus also
significantly reduced by the cutting effect of diding;

— Some very important peaks are observed for the
horizontal acceleration when the friction coefficient
decreases. These peaks correspond indeed to strong
acceleration or breaking of the structure every time
that the masses start or stop sliding;

— The amplitude of the local didings remains
reasonable. Even for very low friction coefficients, the
maximum local displacement isless than 5cm.

— The conclusion of part Il of the paper can be
commented again with regard to this example. The
maximum relative acceleration a of the supporting
beam is here equa to 9.03/g ~ 0.9. The dliding
condition defined by Eq. (2) for sinusoidal excitation
of the support forecast thus sliding of the palletsif the
friction coefficient is under 0.9. However on the
example, no dliding is observed above 0.75. It seems
then that the use of the simplified verification formula
is safe-sided regarding the initiation of the diding.

V. CONCLUSIONSAND PERSPECTIVES

This paper has presented a numerical tool for the simulation
of the dliding of masses on structures subjected to
earthquakes, with a particular emphasis on the dliding of
pallets on storage racks. The numerical developments have
been validated by comparisons with analytical and semi-
analytical results. An example of simple structure has then
been treated, leading to interesting observations on the
prediction of the dliding of pallets and on the favorable effect
of acontrolled sliding on the internal forcesin the structure.

The next steps of this research should consist in accounting
for the non linear geometrical effects and in investigating
structures comprising a greater number of storage levels
requiring thus the participation of more than one single
eigenmode for the evalutation of the dynamic response.
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