Automated mineral mapping in optical ore microscopy

Accuracy and limitations

Eric PIRARD
Université de Liège
GeMMe - Georesources & Geolmaging
Automated Mineral Mapping

- Sampling
- Imaging
- Mineral Identification
Automated Mineral Mapping

- **Imaging**
 - Spatial Sampling
 - A random point sampling gives an unbiased estimator of the volume proportion of a phase (α) in a solid

 1^{st} Principle of Stereology (Delesse, 1848)

 $$P^\alpha_P = A^\alpha_A = V^\alpha_V$$

 Systematic sampling on a “random” section

 “Do more less well”
Automated Mineral Mapping

- Sensing the mineral target
 - Sensing principle
 » Ex. X-ray fluorescence; light absorption; atomic force; ...
 - Signal processing and interpretation
 » Database of spectra; Characteristic rays (K_{α},...)
Automated Mineral Mapping

- **Whiskbroom imaging mode**
 - Scanning beam
 - or moving sample

Ex. Scanning Electron Microscopy

Result of EDX mapping © QEM SCAN
Automated Mineral Mapping

- **Pushbroom imaging mode**
 - Scanning linear sensor

- Industrial vision of « marble » tiles

- Diffuse reflectance imaging

- Specular reflectance imaging
• Array imaging mode
 - CCD/CMOS camera

Reflected Light Microscopy

Typical Quantum Efficiency for an Si-detector
Photonic Ore Microscopy

- Photons
- Filters
- Reflectance database
• MultiSpectral Imaging
 • Conventional Ore Microscope
 » Objective transmittance >50% @ 1100nm
 • Scientific grade CCD camera
 » Spectral sensitivity 350nm-1000nm
 • Filter wheel
 » Interference filters @ 50 nm spacing

Typical Quantum Efficiency Curve for an Si-detector

Multispectral Image
Photonic Ore Microscopy

- **MultiSpectral Imaging**
 - Calibration
 - Correction for uneven illumination
 - Measure of reflectance standard
 - Correlation with Specular Reflectance Database
 - Quantitative Data File - QDFIII (Criddle & Stanley, 1993)
 - Extension to 1000 nm (Brea et al., IMA, 2010)

COVÉLITÉ

CR 286

Enhanced Pyrrhotite-Cubanite discrimination
MultiRadial Imaging

- Rotating incident polarizer
 - “Information” about crystal anisotropy

\[B = \text{Max}\{P_{x,y}^\theta\} - \text{min}\{P_{x,y}^\theta\} \]
Applications

- Epithermal Cu-Au
- Stratiform Cu
- Carbonate rocks
Wavelength Selection

- Phalaborwa: Cu-Ni Sulphides
 - @ 437nm; 489nm; 591nm; 692nm (10nm FWHM)

Pentlandite
Chalcopyrite
Violarite
Pyrrhotite
Cubanite
Chalcocite
Covellite
Bornite
Magnetite

Criddle & Stanley QDFIII, 1993

Califice A., 2008
Chelopech: Epithermal Cu-Au Paragenesis

False Colour Image

Maximum Likelihood Classification

Pyrite
Chalcopyrite
Bornite
Covellite
Résine

Pyrite
Résine+gangue
Covellite
Enargite
Chalcopyrite
Galène
Tennantite
Bornite

After Conditional Geodesic Propagation
Modal Analysis

- **Kansanshi: Stratiform Cu**
 - Supergene (mixed) zone
 - Secondary Cu sulphides,
 - Malachite,...

489nm, 590nm, 690nm

Chalcopyrite (A)
Chalcopyrite (B)
Copper
Cuprite
Digenite
Malachite
Chalcocite
Rutile
Molybdenite
Pyrite

Siebels K., 2012
Modal Analysis

- **Kansanshi: Stratiform Cu**
 - Supergene (mixed) zone
 - Secondary Cu sulphides,
 - Malachite,...

![Modal Analysis Diagram](image)

Curva de Liberación Ccp RoCo

- **Cp1**
- **Cp2**
- **Cc**
- **Mal**
- **Py**

Composition

- **Ss-Cu** 11.1%
- **Ox-Cu** 3.0%
- **Hem** 1.7%
- **S-Fe** 25.1%
- **Gg** 4.6%
- **Other** 0.3%
- **Cp** 54.2%

EMC2012 Frankfurt

Dufrasne Fl., 2010; Perez-Barnuevo L., 2011
Microstructure Analysis

- Carbonate Rock

Multiradial Image

Porosity

Grain Boundaries (gradient)

Jaimes Contreras R., 2011
- Carbonate Rock

Percentiles of Intercept Length (Crystal Size Distribution)
Accuracy & Limitations

- Visual check
- Chemistry, XRD
- Comparison with SEM
- Round Robin
Accuracy & Limitations

- **Validation**
 - Visual
 » Point counting; Time Consuming; Subjective;...
 - Chemistry
 » Balance; Limited mineralogy; ...
 - XRD
 » Major minerals;...
 - Round Robin Test
 » Interlaboratory test on « similar samples »
 » Detailed statistics of inter/intra variability
 » Initiative of IMA-CAM
• Comparison with Automated EM-based Mineralogy
 - QEM-SCAN/MLA
 • High resolution (PGE, Au)
 • Non-stoechiometric minerals (Lcx)
 • Trace / Precious elements partitioning
 • Gangue mineralogy
 • Process mineralogy oriented software

 - Optics
 • Cheap technology
 • Fast imaging
 • Large samples (do more less well!)
 • Good discrimination in some critical ores
 » Iron oxide; Ni-Cu sulfides; ...
 • Multiradial imaging
 » Grain size analysis
 » Crystal orientation (EBSD for the poorest)
EMERALD Erasmus Mundus

- European Master Degree in Georesources Engineering

- Innovative education in « Geometallurgy »
 - Mineral Resources Characterization - Processing - Modelling - Management

- Worldwide network of associated universities
 - Moscow, Queensland, Capetown, Hacceteppe, Minas Gerais, UChile, Kazakhstan, ...

- Supported by major mining companies

Application Deadline
31 Dec 2012
gemme@ulg.ac.be