
1 INTRODUCTION 

In many cases, special devices such as viscous 
dampers must be added to structures, in order to 
compensate for their bad dynamic behaviour. 

Viscous dampers are nowadays commonly used 
in wind and seismic engineering. Some of them can 
sometimes be assumed to exhibit a linear behaviour, 
whereas other damping devices are characterised by 
a non linear behaviour, most of the time described 
by a power law (F = C.Vα - α<1). Compared to lin-
ear dampers, such devices present the advantage to 
dissipate a significantly greater amount of energy for 
identical maximum forces and displacements. How-
ever they are obviously more complicated to manage 
in the context of numerical simulations. 

2 NON LINEAR DAMPERS 

The most basic test that can be realized to deter-
mine the behavior of a dash-pot consists in forcing 
the ends of the device to move with a harmonic rela-
tive displacement. A first characterization can then 
be obtained by varying the frequency of the periodic 
imposed displacement. 

After stabilization of the response, the dash-pot 
describes a characteristic curve in a Force-
Displacement (FD) diagram. For example, for a per-
fectly linear dash-pot, the force is proportional to the 
relative velocity : 

)()( tvCtF =  (1) 

Hence, a harmonic imposed displacement would 
give : 

)sin()( tAtd ω=  (2) 

)cos()()cos()( tACtFtAtv ωωωω =⇒=  (3) 

Removing the time parameter between Equations 2 
and 3 provides the equation of the curve in the FD 
diagram : 
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This well-known elliptic equation characterizing 
a linear dash-pot is plotted on figure 1. 

 

 
Figure 1. Characteristic curve of a linear damper in the Force-
Displacement diagram 

 
Let us consider now a non linear damper 

characterized by the power law : 

[ ]α)()( tvCtF =  (5) 
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The equation of the characteristic curve in the FD 
diagram is then given by : 
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As an illustration, Figure 2 represents the constitu-
tive law and the FD curve of a non linear damper. 

 

 
Figure 2. Representation of a power constitutive law ( α = 0.25 
; C = 50 kN / (mm/s)0.25 and the corresponding FD curve. 

 
In equation (6), the linear behavior can be ob-

tained by setting α = 1. When the parameter α ap-
proaches 0, the behavior becomes “rigid perfectly 
viscous” and the shape of the FD curve tends to-
wards a rectangle. 

Here comes the first advantage of non linear 
dampers : as the area enclosed inside the FD curve 
represents the amount of energy dissipated per cycle, 
a non linear damper can dissipate a larger amount of 
energy than a linear one for identical maximum 
force and displacement. 

The maximum benefit corresponding to a “rigid 
perfectly viscous” damper can be easily computed 
by comparing the area of an ellipse with the area of 
the rectangle circumscribing this ellipse :  
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Another reason for which non linear dampers are 
used is not based on energy considerations but rather 
on a security design. As this kind of device is gener-
ally designed to improve the behavior of a structure 
under probabilistic actions (earthquake, wind,…), 
the maximum level of the solicitation cannot be de-
termined exactly. 

As a consequence, the maximum velocity of any 
point of the structure cannot be determined either. 
The maximum force applied by a linear damper is 
then unknown whereas the maximum force applied 
by a non linear damper can be limited as much as 
wanted by choosing a sufficiently low value for pa-
rameter α. So, in case of unexpected increase of the 
external forces, a non linear damper won’t apply in-
tolerable forces on the structure. 

3 ANALYSIS OF SDOF SYSTEMS 

The equation of motion corresponding to a single 
degree of freedom system with constant mass and 
stiffness and with power law damping is represented 
by this non linear second order differential equation: 

[ ] )()()()( tptuktuctum =++ α���  (8) 

The two main characters of this equation (differ-
ential and non linear) are generally considered the 
one after each other. 

3.1 The differential character 

The large number of methods allowing to solve the 
well-known linear equation is of course beyond the 
scope of this paper. 

This paragraph presents however a short sum-
mary of the resolution methods in the time domain. 

Basically, this first method considers the external 
force as a succession of short impulses. For each of 
these, the response can be computed and the total re-
sponse at time t is then obtained as a sum of all the 
contributions associated to the effects of each im-
pulse. 

Analytically, the duration of each impulse tends 
towards zero and the sum becomes an integral. The 
method explained here above leads to the well 
known Duhamel integral : 
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whereξ  is the damping coefficient and dω  is the 
damped pulsation of the system. 

Regarding the kind of problem that has to be 
treated here, this method has the great disadvantage 
of being based on the superposition principle, which 
is only valid for linear structures. 

Numerically, it is possible to develop methods 
which are not based on the superposition principle. 
The so-called “step by step” methods are not based 
on a superposition of different contributions any-
more, but rather on a discretization of time in small 
time steps. Assumptions are then made regarding 
displacement, velocity and acceleration at the end of 
each time step. Together with the discretized equa-
tion of motion, it is then possible to compute the re-
sponse at the end of the time step. A huge number of 
techniques have been developed amongst which the 
most famous are : constant or linear acceleration 
method, central difference method, Newmark 
method, Houbolt’s method, Wilson-θ method, HHT 
method. 

Since the purpose of the paper deals with solving 
a non linear equation, a step by step method has 
been chosen. The developments are made with New-
mark method. 



Classical linear Newmark method can be adapted 
for solving the non linear Equation 8. The displace-
ment at the end of a time step is then given by : 
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                              [ ]αttuC ∆+�  (10) 

where the subscripts t and t + ∆t denote respectively 
the response at the beginning and at the end of the 
time step. 

As the velocity at the end of the time step can be 
expressed in terms of the displacement at the end of 
the step, Equation 10 can be rewritten in the form : 
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The second part of the equation is a known quantity 
and the function F is defined by : 
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3.2 The non linear character 

The first considerations related to the differential 
character of the equation allow to transform the 
original problem to the resolution of a series of 
equations like Equation 11. This latter is the non lin-
ear equation that has to be solved. The next para-
graphs illustrate different methods to solve it. For 
convenience, Equation 11 will be rewrited : 

[ ] fxF =  (13) 

where x represents the unknown ttu ∆+ . 

3.2.1 The Newton-Raphson method 
The most famous method for solving such prob-

lems is the Newton-Raphson (NR) method summa-
rized in figure 3. 

Starting from an approximation x(0) of the solu-
tion, the method consists in considering the intersec-
tion x(1) of the tangent to the function F(x) at point 
x(0) with the horizontal F(x) = f as a better approxi-
mation of the solution. Mathematically, this can be 
expressed by : 
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At each iteration the remainder, difference be-
tween the target value f and the function F(x(i)), 
should decrease until a convergence criterion is veri-
fied : 

precision
i

f

R −≤10
)(

 (15) 

 

 
Figure 3 : Illustration of the Newton-Raphson method for solv-
ing non linear equations 

 
 This method encounters several problems with 

Equation 11 which has to be solved. They result 
mainly from the vertical slope inflexion point in the 
function F. Indeed, the first term in this function (see 
Eq. 12) is linear whereas the second one has the 
same shape as the constitutive law. The function F 
exhibits therefore a vertical slope inflexion point. 

Despite its very fast convergence (2nd order), the 
NR method misbehaves in the vicinity of inflexion 
points. This is illustrated in figure 4. 

 

 
Figure 4 : Convergence problems of the Newton-Raphson 
method around inflexion points 

 
The original method is then in general replaced 

by the modified-NR method which, in case of non 
convergence, continues the iterations with a fixed 
slope larger than the slope at the inflexion point; this 
enables then to reach the convergence. 

3.2.2 The Regula Falsi method 
As in the equation to solve, the slope at the 

inflexion point is vertical, it is impossible to find a 
larger slope and to proceed to the modified-NR 
method. It is then necessary to use another method. 

Only first order methods can succeed in crossing 
inflexion points. To this scope, the regula falsi 
method can be used. 

The basic idea is to turn around a reference point 
at each iteration and, during the iterative procedure, 
to modify the position of this point in order to opti-
mise the convergence. The method works always 



with the reference point and with a moving point ob-
tained by the intersection of the horizontal F = f with 
the line going through the reference point and the 
previous point. Mathematically, it  is expressed by : 
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Figure 5 shows an example where the reference 
point xf is not modified, whereas Figure 6 shows an-
other one where the reference point xf is modified at 
each iteration. The condition for changing the refer-
ence point is simple : if the new remainder has the 
same sign as the remainder at the reference point, 
then it should be changed to the previous point, else 
it must be kept unchanged. 

 

 
Figure 5 : Regula Falsi method. The reference point is un-
changed from beginning till end of the iterations 

 
Figure 6 :  Regula Falsi method. The reference point is changed 
at each iteration. 

 
The regula falsi method is also an iterative 

method and the convergence criterion used to stop 
can be expressed by Equation 15 as for the NR 
method. 

3.2.3 Conclusion 
The regula falsi is a method which will always 

lead to convergence but slowlier than the NR 
method. So, combining these two methods, the best 
is to use NR where the convergence can be reached 
by this method and to use the regula falsi elsewhere. 

In practice, this can be achieved by always begin-
ning with the NR method; once the solutions are go-
ing back and forth a limit value, we switch to the 
regula falsi method. 

3.3 Example 

Here is the response of a single degree of freedom 
characterized by the following parameters : 
− Mass : m = 1 
− Stiffness : k = 1 
− Damping : C = 10 ; α = 0.1 
− External Force : Harmonic with a pulse ω = 0,5 

rad/s during 20 s. 
− ∆t = 0.01 s [ Newmark method : α = ¼ ; δ = ½ ]  
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Figure 7 : Displacement of the generalized degree of freedom 

 
Figure 8 : Acceleration of the generalized degree of freedom 

 
Figure 9 : Phase diagram and FD diagram of the dash-pot 

3.4 Observations 

− In Figure 7, the free displacement looks ‘classic’ 
between 20 s and 30 s. After this, the oscillator 
seems to be frozen but this is of course not a re-
sidual displacement. The system doesn’t have 
enough energy anymore to go beyond the elbow 
of the constitutive law of the dash-pot. For the 
rest of the computation the viscosity is then very 
high and it takes a very long time to reach a zero 
displacement.  

− In Figure 8, the acceleration seems to be discon-
tinuous. In fact, this is the result of passing trough 
the elbow : the acceleration is of course perfectly 
continuous but varying very fast. Further investi-
gation, using a non constant time step, allows to 



compute more precisely the points in the fast 
varying zone. 

− In Figure 9, it is possible to recognize the classi-
cal rectangular shape of a non linear dash-pot in 
the FD diagram. Several curves are covered, be-
cause the response is not harmonic. Furthermore, 
because of the constant time step, the response in 
the fast varying zone is less precise than for 
higher velocities. 

− With a precision factor (See Eq. 15) of 8, the 
mean number of iterations was 3 iterations per 
time step for which the NR method converged 
and 15 to 20 iterations otherwise (in these are in-
cluded the NR iterations which did not converge). 

4 ANALYSIS OF MDOF SYSTEMS 

Basic developments concerning the differential and 
non linear characters of Equation 8 can be adapted in 
order to solve a multi-degree of freedom system. 

Obviously, the main difference lies in the great 
number of degrees of freedom, implying a large sys-
tem to solve. For complex structures, the size of the 
system can often reach 104 or 105 DOF. 

Amongst these degrees of freedom, only a small 
part is concerned with the non linear dampers. The 
rest of the structure can generally be considered to 
behave linearly. This could be for example the case 
in the design of damping devices for a structure en-
countering troubles due to wind. 

4.1 The equation of motion 

Similarly to the SDOF system, a step-by-step 
method is first used to transform the non linear dif-
ferential system to several systems of non linear 
equations. With the Newmark method, this system 
can be written in the following form (to compare to 
Equation 11) : 
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in which [ SC ] and [ linDC , ] represent respectively the 

structural Rayleigh damping matrix and the concen-
trated linear damping matrix (linear dash-pots). 

Equation 16 represents the non linear system of 
equations to be solved with the NR method. The or-
der of this system is the total number of degrees of 
freedom in the structure. Written like this, the addi-
tional iterations required by the non linearity’s imply 
to iterate on the full system. To avoid this, it is inter-
esting to reduce the number of equations to handle in 
the NR iterations through a static condensation.   

4.2 Static condensation 

Let us qualify by the term ‘non linear’ a degree of 
freedom which is directly related to a non linear 
damper (i.e. a translation of a node at which a non 
linear dash-pot is attached). For example, in figure 
10, the non linear degrees of freedom are the DOF 
1,2,7 and 8. 

 

 
Figure 10 . Illustration of the definition of the non linear DOF 

 
We can now sort the equations in the system (Eq. 

17) by placing the non linear DOF above the others : 
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(19) 
The subscripts ‘L’ and ‘N’ are used respectively for 
linear and non linear DOF. In Equation 19, only the 
group of equations corresponding to the first line is 
non linear. The other equations remain linear since 
the non linear term is zero (the damper do not apply 
any direct force on these nodes). 

The second line of this 2 x 2 system gives : 

{ } [ ] { } [ ]{ }( )NLNLLLL uAbAu .1 −= −  (20) 

After substitution of Equation 20 in Equation 19, we 
obtain a new reduced system: 
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where [ ] [ ] [ ] [ ] [ ]LNLLNLNN AAAAA ..* 1−−=  and 

{ } { } [ ] [ ] { }LLLNLN bAAbf .. 1−−= . 

The order of the new system (Eq. 21) is thus reduced 
to its minimum value i.e. the number of non linear 
degrees of freedom. The NR (or regula falsi) method 
can then be applied to compute the response of the 
non linear degrees of freedom at the end of the time 
step. 

Then, equation 20 can be used to compute the re-
sponse of the linear degrees of freedom. This huge 



amount of values are computed only after conver-
gence and not at each iteration of the NR method ! 

Going further into the developments is of course 
beyond the scope of this paper. Interested readers 
can found the full developments and discussions 
about this method in Reference 1. 

4.3 Example 

The example consists in determining the response of 
a 37 meter high bridge pier modelled by 11 beam 
elements (A=14.3 m² ; I=38.3 m4 ; E = 23600 MPa) 
This pier is subjected to a very particular ground 
motion shaking characterized by this acceleration : 
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Two different dampers are placed at the head of 
the pier in order to reduce the effects of the ground 
motion : 
− A first one with a bilinear constitutive law (C1 = 

4.5E8 N.s/m ; C2=4E6 N.s/m ; vlim = 8E-4 m/s ) 
− A second one with the classic power law (C = 

1E6 N.(s/m)0.2 ; α = 0.2 ) 
In order to investigate the possibility of replacing 

a power law damper by a bilinear law damper, the 
two dash-pots have been chosen in such a way that 
their behavior is the most similar. 
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Figure 11 : Displacement at the head of the pier (for both 
dampers) 
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Figure 12 : FD diagrams of the dash-pots. 
 

Figure 11 represents the displacement at the head 
of the pier (for both dampers), whereas Figure 13 
represents their FD curve. 

4.4 Observations 

− The FD diagram has the classical shape, excepted 
in the corners where inertial effects (participation 
of the second vibration mode) modify slightly the 
shape which would be obtained with a SDOF sys-
tem ; 

− Results related to the power law damper can be 
approached quite precisely with a bilinear damper 
which is consuming 2.8 times less iterations than 
the power law dash-pot. Advantage could then be 
taken of the bilinear law, provided a good equiva-
lence is ensured. 

5 CONCLUSIONS 

This document first presented solutions to the nu-
merical problems encountered during the analysis of 
structures including power law dampers, problems 
related to the vertical inflexion point in the constitu-
tive law. 

In a second step, by considering SDOF systems, 
the paper points out the characteristics of the re-
sponse of structures constituted of non linear damp-
ers (pseudo-residual displacement; pseudo-
discontinuous acceleration). 

Furthermore, through the analysis of MDOF sys-
tems, it introduces and justifies the use of the static 
condensation method for linear structures with con-
centrated non linearity’s. This method reduces the 
size of the system to its minimum, which enables a 
huge decrease of the computation time. 

Finally, through an example, the paper shows 
that, provided good equivalence is chosen, a power 
law dash-pot can be efficiently replaced by a bilinear 
law dash-pot. In this case the numerical approach is 
much easier since the vertical inflexion point disap-
pears. 
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