Analysisof Linear Structures With Non Linear Dampers
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ABSTRACT: This paper provides information about the numerical simulation of the dynamic behaviour of
linear structures including non linear dampers, for which the relation between the damping force and the ve-
locity is described by a power law. A first part of the paper deals with single degree of freedom (SDOF) sys-
tems, with a particular emphasis on the resolution of the non linear equation allowing to compute the damping
force corresponding to a given velocity. A second part deals with multi degree of freedom (MDOF) systems,
and presents a special algorithm to study the behaviour of structures with a very small number of non linear

components.

1 INTRODUCTION

In many cases, special devices such as viscous
dampers must be added to structures, in order to
compensate for their bad dynamic behaviour.

Viscous dampers are nowadays commonly used
in wind and seismic engineering. Some of them can
sometimes be assumed to exhibit a linear behaviour,
whereas other damping devices are characterised by
a non linear behaviour, most of the time described
by a power law (F = C.V® - a<1). Compared to lin-
ear dampers, such devices present the advantage to
dissipate a significantly greater amount of energy for
identical maximum forces and displacements. How-
ever they are obviously more complicated to manage
in the context of numerical simulations.

2 NON LINEAR DAMPERS

The most basic test that can be realized to deter-
mine the behavior of a dash-pot consists in forcing
the ends of the device to move with a harmonic rela-
tive displacement. A first characterization can then
be obtained by varying the frequency of the periodic
imposed displacement.

After stabilization of the response, the dash-pot
describes a characteristic curve in a Force
Displacement (FD) diagram. For example, for a per-
fectly linear dash-pot, the force is proportional to the
relative velocity :

F(t) =Cv(t) (1)

Hence, a harmonic imposed displacement would
give:

d(t) = Asin(et) )

V(t) = Awcos(wt) O F(t) =C Awcos(at) ©)]

Removing the time parameter between Equations 2
and 3 provides the equation of the curve in the FD
diagram :
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This well-known elliptic equation characterizing
alinear dash-pot is plotted on figure 1.
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Figure 1. Characteristic curve of alinear damper in the Force-
Displacement diagram

Let us consider now a non linear damper
characterized by the power law :

F(t) =Clv®)]’ 5)



The equation of the characteristic curve in the FD
diagram isthen given by :
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As an illustration, Figure 2 represents the constitu-
tive law and the FD curve of anon linear damper.
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Figure 2. Representation of a power constitutive law (o = 0.25
: C=50kN / (mnm/s)®* and the corresponding FD curve.

In equation (6), the linear behavior can be ob-
tained by setting a = 1. When the parameter a ap-
proaches 0, the behavior becomes “rigid perfectly
viscous’ and the shape of the FD curve tends to-
wards arectangle.

Here comes the first advantage of non linear
dampers : as the area enclosed inside the FD curve
represents the amount of energy dissipated per cycle,
anon linear damper can dissipate a larger amount of
energy than a linear one for identical maximum
force and displacement.

The maximum benefit corresponding to a “rigid
perfectly viscous” damper can be easily computed
by comparing the area of an ellipse with the area of
the rectangle circumscribing this ellipse:

Q= 4'7” =27,3% @)

Another reason for which non linear dampers are
used is not based on energy considerations but rather
on a security design. As this kind of device is gener-
ally designed to improve the behavior of a structure
under probabilistic actions (earthquake, wind,...),
the maximum level of the solicitation cannot be de-
termined exactly.

As a consequence, the maximum velocity of any
point of the structure cannot be determined either.
The maximum force applied by a linear damper is
then unknown whereas the maximum force applied
by a non linear damper can be limited as much as
wanted by choosing a sufficiently low value for pa-
rameter a. So, in case of unexpected increase of the
external forces, a non linear damper won't apply in-
tolerable forces on the structure.

3 ANALYSIS OF SDOF SYSTEMS

The equation of motion corresponding to a single
degree of freedom system with constant mass and
stiffness and with power law damping is represented
by this non linear second order differential equation:

mui(t) + ¢ [u)]” +k ut) = p(t) ®

The two main characters of this equation (differ-
ential and non linear) are generally considered the
one after each other.

3.1 Thedifferential character

The large number of methods allowing to solve the
well-known linear equation is of course beyond the
scope of this paper.

This paragraph presents however a short sum-
mary of the resolution methods in the time domain.

Basically, this first method considers the externa
force as a succession of short impulses. For each of
these, the response can be computed and the total re-
sponse at time t is then obtained as a sum of al the
contributions associated to the effects of each im-
pulse.

Analytically, the duration of each impulse tends
towards zero and the sum becomes an integral. The
method explained here above leads to the well
known Duhamel integral :

u(t) = j[ p(r) e sin(w,7)dr (9)

ma,

whereé is the damping coefficient and w, is the
damped pulsation of the system.

Regarding the kind of problem that has to be
treated here, this method has the great disadvantage
of being based on the superposition principle, which
isonly valid for linear structures.

Numerically, it is possible to develop methods
which are not based on the superposition principle.
The so-called “step by step” methods are not based
on a superposition of different contributions any-
more, but rather on a discretization of time in small
time steps. Assumptions are then made regarding
displacement, velocity and acceleration at the end of
each time step. Together with the discretized equa-
tion of motion, it is then possible to compute the re-
sponse at the end of the time step. A huge number of
techniques have been developed amongst which the
most famous are : constant or linear acceleration
method, central difference method, Newmark
method, Houbolt’s method, Wilson-8 method, HHT
method.

Since the purpose of the paper deals with solving
a non linear equation, a step by step method has
been chosen. The developments are made with New-
mark method.



Classical linear Newmark method can be adapted
for solving the non linear Equation 8. The displace-
ment at the end of atime step isthen given by :

gam
Ept t+At

4
U, +—U, +U
At

= Pun t m%‘? t H

Clual” (10)

where the subscriptst and t + At denote respectively
the response at the beginning and at the end of the
time step.

As the velocity at the end of the time step can be
expressed in terms of the displacement at the end of
the step, Equation 10 can be rewritten in the form :

(11)
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The second part of the equation is a known quantity
and the function F is defined by :

Flu.a] = %rﬁktw+cmwwMﬂ” (12)

3.2 Thenon linear character

The first considerations related to the differential
character of the equation allow to transform the
origina problem to the resolution of a series of
equations like Equation 11. This latter is the non lin-
ear equation that has to be solved. The next para-
graphs illustrate different methods to solve it. For
convenience, Equation 11 will be rewrited :

Fx] = f (13)

where x represents the unknown u,, , .

3.2.1 The Newton-Raphson method

The most famous method for solving such prob-
lems is the Newton-Raphson (NR) method summa-
rized in figure 3.

Starting from an approximation x'” of the solu-
tion, the method consists in considering the intersec-
tion x? of the tangent to the function F(x) at point
x@ with the horizontal F(x) = f as a better approxi-
mation of the solution. Mathematically, this can be
expressed by :

R(X")
F(x")

At each iteration the remainder, difference be-
tween the target value f and the function F(x®),

should decrease until a convergence criterion is veri-
fied :

X0 = 4O 4

(14)
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R < 10 preCISlOf'I (15)
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Figure 3: IIIusxranon of the Newton-Raphson method for solv-
ing non linear equations

This method encounters several problems with
Equation 11 which has to be solved. They result
mainly from the vertical slope inflexion point in the
function F. Indeed, the first term in this function (see
Eqg. 12) is linear whereas the second one has the
same shape as the congtitutive law. The function F
exhibits therefore a vertical slope |aneX|on point.

Despite its very fast convergence (2n order), the
NR method misbehaves in the vicinity of inflexion
points. Thisisillustrated in figure 4.
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Figure 4: Convergence problems of the Newton-Raphson
method around inflexion points

The origina method is then in general replaced
by the modified-NR method which, in case of non
convergence, continues the iterations with a fixed
slope larger than the slope at the inflexion point; this
enables then to reach the convergence.

3.2.2 The Regula Fals method

As in the equation to solve, the slope at the
inflexion point is vertical, it is impossible to find a
larger slope and to proceed to the modified-NR
method. It is then necessary to use another method.

Only first order methods can succeed in crossing
inflexion points. To this scope, the regula fals
method can be used.

The basic ideais to turn around a reference point
at each iteration and, during the iterative procedure,
to modify the position of this point in order to opti-
mise the convergence. The method works aways



with the reference point and with a moving point ob-
tained by the intersection of the horizontal F =f with
the line going through the reference point and the
previous point. Mathematically, it is expressed by :

R(x")

R(x") = R(x;)

(16)

Figure 5 shows an example where the reference
point x: is not modified, whereas Figure 6 shows an-
other one where the reference point x; is modified at
each iteration. The condition for changing the refer-
ence point is simple : if the new remainder has the
same sign as the remainder at the reference point,
then it should be changed to the previous point, else
it must be kept unchanged.
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Figure 5 : Regula Fals method. The reference point is un-
changed from beginning till end of the iterations
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Figure 6 : Regula Falsi method The reference point is changed
at each iteration.

The regula fals method is also an iterative
method and the convergence criterion used to stop
can be expressed by Equation 15 as for the NR
method.

3.2.3 Conclusion

The regula fals is a method which will always
lead to convergence but dlowlier than the NR
method. So, combining these two methods, the best
is to use NR where the convergence can be reached
by this method and to use the regulafals elsewhere.

In practice, this can be achieved by always begin-
ning with the NR method; once the solutions are go-
ing back and forth a limit value, we switch to the
regulafalsi method.
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3.3 Example

Here is the response of a single degree of freedom

characterized by the following parameters :

- Mass:m=1

- Stiffness: k=1

— Damping:C=10;a=0.1

— External Force : Harmonic with a pulse w = 0,5
rad/s during 20 s.

— At =0.01s[ Newmark method : o = %4; & = %]
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Figure 7 : Displacement of the generalized degree of freedom
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Figure 8 : Acceleration of the generalized degree of freedom
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Figure 9 : Phase diagram and FD diagram of the dash-pot

3.4 Observations

— In Figure 7, the free displacement looks ‘classiC’
between 20 s and 30 s. After this, the oscillator
seems to be frozen but this is of course not a re-
sidual displacement. The system doesn’'t have
enough energy anymore to go beyond the elbow
of the constitutive law of the dash-pot. For the
rest of the computation the viscosity is then very
high and it takes a very long time to reach a zero
displacement.

— In Figure 8, the acceleration seems to be discon-
tinuous. In fact, thisisthe result of passing trough
the elbow : the acceleration is of course perfectly
continuous but varying very fast. Further investi-
gation, using a non constant time step, alows to



compute more precisely the points in the fast
varying zone.

— In Figure 9, it is possible to recognize the classi-
cal rectangular shape of a non linear dash-pot in
the FD diagram. Several curves are covered, be-
cause the response is not harmonic. Furthermore,
because of the constant time step, the response in
the fast varying zone is less precise than for
higher velocities.

— With a precision factor (See Eq. 15) of 8, the
mean number of iterations was 3 iterations per
time step for which the NR method converged
and 15 to 20 iterations otherwise (in these are in-
cluded the NR iterations which did not converge).

4 ANALYSIS OF MDOF SYSTEMS

Basic developments concerning the differential and
non linear characters of Equation 8 can be adapted in
order to solve amulti-degree of freedom system.

Obviously, the main difference lies in the great
number of degrees of freedom, implying a large sys-
tem to solve. For complex structures, the size of the
system can often reach 10" or 10° DOF.

Amongst these degrees of freedom, only a small
part is concerned with the non linear dampers. The
rest of the structure can generally be considered to
behave linearly. This could be for example the case
in the design of damping devices for a structure en-
countering troubles due to wind.

4.1 The equation of motion

Similarly to the SDOF system, a step-by-step
method is first used to transform the non linear dif-
ferential system to several systems of non linear
equations. With the Newmark method, this system
can be written in the following form (to compare to
Equation 11) :

[AHubcne +1Feo o {0 ucac DD
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where [A =A;:2[M1+[K] ([M]and [K] are the
mass and stiffness matrices of the structure) and

A8 o ML oA

2
([CS] + [CD,Iin])'Q‘Tt{L}t +{ ¢| t E (18)

inwhich[Cg] and [ C,, ;] represent respectively the

structural Rayleigh damping matrix and the concen-
trated linear damping matrix (linear dash-pots).

Equation 16 represents the non linear system of
equations to be solved with the NR method. The or-
der of this system is the total number of degrees of
freedom in the structure. Written like this, the addi-
tional iterations required by the non linearity’ s imply
to iterate on the full system. To avoid this, it isinter-
esting to reduce the number of equationsto handlein
the NR iterations through a static condensation.

4.2 Satic condensation

Let us qualify by the term ‘non linear’ a degree of
freedom which is directly related to a non linear
damper (i.e. a trandation of a node at which a non
linear dash-pot is attached). For example, in figure
10, the non linear degrees of freedom are the DOF
1,2,7 and 8.

Figure 10 . lllustration of the definition of the non linear DOF

We can now sort the equations in the system (Eq.
17) by placing the non linear DOF above the others::

daw] [Admudn | CFop i funhes)o_ oy}
{ad [aJHuE., "B 0 %m%
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(19)
The subscripts ‘L’ and ‘N’ are used respectively for
linear and non linear DOF. In Equation 19, only the
group of equations corresponding to the first line is
non linear. The other equations remain linear since
the non linear term is zero (the damper do not apply
any direct force on these nodes).

The second line of this 2 x 2 system gives:

{UL} = [ALL]_l({bL} - [ALN ]{UN}) (20)

After substitution of Equation 20 in Equation 19, we
obtain a new reduced system:

[A*){u} +{Feomominfiy =1} (21)

where [A*] =[A [-[Al[A ] [A, ] and
{ f} = {bN} - [ANL ][ALL ]_1'{bL} :

The order of the new system (Eqg. 21) is thus reduced
to its minimum value i.e. the number of non linear
degrees of freedom. The NR (or regula falsi) method
can then be applied to compute the response of the
non linear degrees of freedom at the end of the time
step.

Then, equation 20 can be used to compute the re-
sponse of the linear degrees of freedom. This huge



amount of values are computed only after conver-
gence and not at each iteration of the NR method !

Going further into the developments is of course
beyond the scope of this paper. Interested readers
can found the full developments and discussions
about this method in Reference 1.

4.3 Example

The example consists in determining the response of
a 37 meter high bridge pier modelled by 11 beam
elements (A=14.3m?; 1=38.3 m" ; E = 23600 MPa)
This pier is subjected to a very particular ground
motion shaking characterized by this acceleration :

(jg = gnL
8.At
Two different dampers are placed at the head of
the pier in order to reduce the effects of the ground
motion :
— A first one with a bilinear constitutive law (C; =
4.5E8 N.s/m ; C,=4E6 N.9/m ; Vjj, = 8E-4 m/s)
— A second one with the classic power law (C =
1E6 N.(§m)*?; a =0.2)
In order to investigate the possibility of replacing
a power law damper by a bilinear law damper, the
two dash-pots have been chosen in such a way that
their behavior isthe most similar.

(22)

0,002

0,0015

‘€ 0001 - \ (T \'-.,\ ‘,
g ooos+---F-F-4-4--+-+--F-F-4-1--+-t--F-F-1
% 0 : : - L S S S S -
%_ -0,0005 0l _ .*'5 L _ " 1 L _F15% 2 | _[25 ,",3, h_ .'3,5, _i 4
O o0 /.-' Fooy / /

00151 |\ )7 . i - -

Y
-0,002
Time[g]
— Bilinear law ------ Power law

Figure 11 : Displacement at the head of the pier (for both
dampers)
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Figure 12 : FD diagrams of the dash-pots.
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Figure 11 represents the displacement at the head
of the pier (for both dampers), whereas Figure 13
represents their FD curve.

4.4 Observations

— The FD diagram has the classical shape, excepted
in the corners where inertial effects (participation
of the second vibration mode) modify slightly the
shape which would be obtained with a SDOF sys-
tem ;

— Results related to the power law damper can be
approached quite precisely with a bilinear damper
which is consuming 2.8 times less iterations than
the power law dash-pot. Advantage could then be
taken of the bilinear law, provided a good equiva-
lenceis ensured.

5 CONCLUSIONS

This document first presented solutions to the nu-
merical problems encountered during the analysis of
structures including power law dampers, problems
related to the vertical inflexion point in the constitu-
tive law.

In a second step, by considering SDOF systems,
the paper points out the characteristics of the re-
sponse of structures constituted of non linear damp-
ers  (pseudo-residual  displacement;  pseudo-
discontinuous accel eration).

Furthermore, through the analysis of MDOF sys-
tems, it introduces and justifies the use of the static
condensation method for linear structures with con-
centrated non linearity’s. This method reduces the
size of the system to its minimum, which enables a
huge decrease of the computation time.

Finally, through an example, the paper shows
that, provided good equivalence is chosen, a power
law dash-pot can be efficiently replaced by a bilinear
law dash-pot. In this case the numerical approach is
much easier since the vertical inflexion point disap-
pears.
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