Accounting for coherence in wind forces in finite element models
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ABSTRACT: The behaviour of civil engineering structures subjected to wind forces is generally approached
by means of finite element models. These numerical models are necessary since the shape of the structure as
well as the representation of the applied forces are difficult to handle in closed forms.

In stochastic dynamic analyses, the coherence of the applied forces — in this context coming from the wind
flow — is represented by the off-diagonal terms in the power spectral density matrix. This matrix is obtained
by assembling elementary matrices, each of them corresponding to a stochastically loaded finite element.
Even though the unique rigorous approach is not so complicated, simplified formulations are generally used
to set up these elementary matrices. These simplifications result in a bad estimation of the high frequency
content of the applied forces. Comparing these approached power spectral density’s to the actual ones en-
ables to determine numerical admittance functions which allow correcting the bad estimation of the forces.
This paper presents several finite element formulations for the estimation of the applied forces and derives the

corresponding expressions of the numerical admittance functions.

1 INTRODUCTION

Dynamic forces acting on structures are not always
perfectly determined. This is for instance the case
when the loading comes from natural phenomena
(earthquake, wind, waves...) or from human activi-
ties (walk, traffic ...). The force acting at a point of
the structure must therefore be described in a prob-
abilistic way. Moreover, it is necessary to character-
ize the coherence that may exist between forces act-
ing at different points.

The analysis of the structure, which consists es-
sentially in computing its displacements, must take
this coherence into account. For very simple struc-
tures and simple coherence fields, this can be
achieved in an analytical way. For more complex
structures, the analysis must necessarily be realized
with a numerical procedure.

The goal of this paper is to discuss the precision
that can be achieved with finite element models in
the representation of the coherence field.

The first paragraph is dedicated to the presenta-
tion of the wind loading. This domain of application
has been chosen but the developments presented in
this paper could also be applied to other domains
where the coherence of pressures has to be ac-
counted for.

In a second step, we will present analytical devel-
opments on a very simple structure and an example
of a particular finite element formulation. Finally,
we will compare results obtained with these two
methods and discuss the limit of applicability of the
finite element method.

2 STATISTICAL CHARACTERIZATION OF
WIND PRESSURES

The power spectral density (PSD) of the wind pres-
sure acting in a section of a structure can be ex-
pressed in terms of the PSD of the wind velocity in
the same section:

S, (n,s)=7S,(n,s) €)

where y=0.5pC,BU represents the aerodynamic
properties of the cross section, n represents the fre-
quency (in Hz) and s stands for the section abscissa.

The coherence of wind pressures applied at two
different sections of the structure can be expressed
by the cross-correlation:
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where T'(n,s,,s,) represents the coherence function
between pressures (and hence wind speeds) at sec-
tions s, and s, .

n sl,s2



In wind applications, it is generally assumed that
the coherence function is exponentially shaped
(Dyrbye and Hansen 1997):
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where C and U are respectively the coherence co-
efficient and the mean wind speed. Note that this
shape is physically acceptable since the coherence
function is equal to unity (I"=1) for quasi-static
components (n=0) or for identical sections
(s, =s,) and is monotonically decreasing with the
distance between two points and with the frequency.

3 ANALYTICAL DEVELOPMENTS

We will limit our developments to a wind field with
uniform probabilistic characteristics: let us suppose
that the mean wind velocity and the PSD of the wind
velocity are the same at every point of the structure.

The structure that will be studied is a beam lying
on simple supports and its transverse displacements
only will be computed. Let us also suppose that the
cross section is symmetric in such a way that the
drag forces only have to be taken into account.

If the pressures applied on the structure p(z)
were deterministic, i.e. if the evolution in time of the
pressures was known, their projection into the modal
basis could be obtained by:

=Ip(l,s)sin %Bds @)

where i is the mode in which the projection is real-
ized. In a stochastic analysis context, this projection
must be realized in terms of power spectral densities.
The elements of the PSD matrix (PSDM) of the gen-
eralized forces can be expressed by:
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With the limitations of the wind field considered in
this paper, this relation is:

S, (n)=7"S,(n) L%, (n) (6)
where
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is a non dimensional function representing the re-
duction of the applied pressures when they are pro-
jected to modes i and ;. These functions are called
“mechanical admittances” (Fig. 1).

This figure shows for example that the projection
of the pressures applied on the beam in the first

mode (i=j=1) will result in a reduction of the higher
frequency content.
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Fig. 1: Examples of mechanical admittances

When the PSDM of the generalized forces is known
(Eqg. 6), the PSDM of the generalized coordinates
can then be expressed (Clough, Penzien 1993) as a
function of the transfer functions in each mode. We
will however limit the presentation here since, in the
following, we will compare the PSD’s of the gener-
alized forces only.

4 FINITE ELEMENT MODEL

Equation (1) shows that the force applied at a node
of the finite element model can be expressed by:

plt,s)=pult,s) ©)

It is usual, in a finite element context, to consider the
global displacements and deformations of a whole
structure in terms of what happens at the nodes. It is
thus tempting to consider wind velocities u(z) at the
nodes of the model only. The knowledge of the wind
velocity at these points allows determining the wind
pressures at the nodes of the structure. In a stochas-
tic analysis, the PSDM of these forces can be ex-
pressed in a very simple way
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Fig. 2: Examples of hypotheses on the pressure distribution
along a finite element - (a) Constant mean pressure (b) Linear
variation (c) Bi-rectangular variation.

Since the wind pressures are known at the nodes
of the finite element only, hypotheses must be for-
mulated concerning the pressure distribution along
the element. Fig. 2 represents some examples.

Further developments are based on a bi-
rectangular variation of the pressure (Fig. 2-c). The
nodal forces are thus expressed by:
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where / stands for the length of the finite element, p;
and p, represent wind pressures at the nodes and F;
and F’; are the nodal forces. After rotation and local-
ization (usual procedures in finite elements devel-
opments, Zienkiewicz 2000), these relations allows
to express the nodal forces in terms of the wind ve-
locities. The PSDM of the nodal forces can thus be
expressed in terms of the PSDM of the wind veloci-
ties at the nodes of the structure:

(Fi=IMfuj=[s,]=[m]s,Jm] (11)

As in the analytical procedure, the PSDM of the
generalized forces can then be obtained:

s, ]=[@][s, Jo] (12)

where [®@] is the eigen-mode matrix.
5 NUMERICAL ADMITTANCE

5.1 Comparison of numerical and analytical
methods

Equations (6) and (12) give an analytical and a nu-
merical estimation of the power spectral densities of
the generalized forces. In this section, we will com-
pare the results obtained with these two approaches.

The comparison will be realized on the simple
structure that was considered in analytical develop-
ments. The wind velocity is supposed to be repre-
sented by Davenport’s PSD (Davenport 1961) and
the coherence coefficient C is taken equal to 8. The
length of the beam is 350 meters and it is repre-
sented by 7 finite elements of 50 meters each.
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Fig. 3: Ratio between analytical and numerical PSD’s of the
generalized force in the first mode

These data are actually useless since the differ-
ence between analytical and numerical develop-
ments can be expressed in terms of the ratio
Cnl/2U only! The subsequent results are then valid
for any (constant) aerodynamic coefficient or for any
statistics of turbulence. The problem that is enlight-

ened in this paper is based on the representation of
the structure with finite elements.

Figure 3 shows that the PSD’s of the generalized
forces in the first mode are not the same. In more de-
tail, it can be seen that

e the quasi-static behavior is well estimated
by the numerical model

e the numerical model roughly overesti-
mates the exact PSD

This overestimation comes from a bad representa-
tion of the coherence in the wind field. Indeed, at
low frequencies, the eddies take a long time to cross
the structure. Their size is much larger than the size
of a finite element. Therefore the assumption
concerning the distribution of wind pressures along
the finite element is valid.

Nevertheless, the eddies corresponding to higher
frequencies have a size of the same order than the
size of a finite element. The assumption of constant
wind pressure along a half of the finite element is
not valid anymore. Since the high frequency pres-
sures actually compensate each other from one point
of the finite element to another, the simplified model
results in an overestimation of the nodal forces re-
sulting from these pressures. Figure 3 shows that this
overestimation is approximately represented by a
factor 10 when the ratio Cn//2U is equal to 20!

5.2 First correction

This first comparison shows clearly that the simpli-
fied pressure distribution along a finite element
should be used for low frequency problems. The
PSD of the nodal shear force resulting from the as-
sumed pressures can be computed (from Equ. 10):
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On the other hand, the effects of the real pressure
distribution can be taken into account by considering
that the nodal shear force can be expressed by:

F= J.OLp(S)L(S)dS (14)

where L(s) represents the influence line (or the in-
terpolation function) of the nodal shear force. The
exact PSD of this force can thus be obtained by:

Se(m) = [ [S, (515, ML(s)L(s;)dsyds, — (15)

Using Eqgs (2) and (3) and after some mathematical
developments, this relation can be written:

S,.(n)=S, (n)lzx(g—ln]lj (16)

Sp(n) =S, (n)l

where xis now the exact function representing
the reduction of the force resulting from wind pres-
sures on the element (the exact analytical form of



this function is quite complicated and is not given in
this paper). Functions « and x are represented at
figure 4. It can be seen one more time that using the
simplified method results in an overestimation of the
nodal forces.
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Fig. 4: Non dimensional functions representing the reduction of
the nodal shear force resulting from wind pressures on the ele-
ment

In order to give a better representation of the
forces, the PSDM of the nodal forces computed with
the simplified method could be modified by a cor-
rection factor:
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This correction factor enables a better representation
of the reduction of the forces in the high frequency
range. We propose therefore to call it numerical ad-
mittance. The usual procedure can then continue
with the modified PSDM of nodal forces. It seems
obvious that the PSDM of the generalized forces
will also be modified with the same correction fac-
tor.

In order to estimate the benefits of this numerical
admittance, figure 3 can be completed by adding the
ratio of the analytical result (unchanged) and the
new PSD of the generalized force in the first mode
(Fig. 5). It can be seen that this first correction gives
a better result but not precise enough yet.
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Fig. 5: Ratio between analytical and numerical PSD’s of the
generalized force in the first mode

5.3 Second correction

The first correction that does not give exact results
because the nodal force resulting from wind pres-
sures does not result from pressures on one element
only but on contiguous elements. Figure 6 illustrates
the problem for a straight structure. In this case, the
force F results from the pressures applied on two
elements.

In the simplified method, the wind pressures are
supposed to be constant on half of elements. In this
case, the resulting nodal force can be computed by
(see Equ. 10):

/
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and then the PSD of the nodal force is given by:
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Fig 6: Illustration of the second correction

On the other hand, if the exact pressure distribution
is taken into account, we can see that the nodal force
is expressed by:

F=F"+R" = jL(X)p(X)dX+jL(y)p(y)dy (20)

This relation gives a better approximation of the
PSD of the nodal force. It can be obtained by con-
sidering combinations of pressures along both con-
tiguous finite elements:

S, (n) =Sp<n)mo(§—fjj (21)

In this relation function A, is used to represent the
exact reduction of the nodal force resulting from the
coherence in wind pressures. This relation should be
compared to its approximate A, obtained with the
simplified method. These functions can be seen as
an upgrade of the functions presented in the previous
paragraph. Figure 7 gives a graphical representation
of these new functions. The conclusions that can be



drawn from the observation of this figure are identi-
cal to those formulated for figure 4.
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Fig. 7: Non dimensional functions representing the reduction of
the nodal force resulting from wind pressures on two elements

The comparison of these two functions allows de-
fining a new (and more precise) numerical admit-
tance:
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Exactly as we did in the previous paragraph, this
correction function could be used in order to correct
the PSDM of the applied nodal forces.

This correction gives a better representation of the
coherence field. Indeed, figure 8 represents the ratio
between analytical and numerical analyses. We can
see that the new “nodal correction” gives a better
approximation of the generalized force in the first
mode.
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Fig. 8: Ratio between analytical and numerical PSD’s of the
generalized force in the first mode

5.4 Third correction

Even if the second correction gives a better ap-
proximation of the coherence field, it is however not
perfect yet. The reason of this comes from the fact
that the last result was obtained by correcting the
whole PSDM (of nodal forces) by the same numeri-
cal admittance.

Actually, this correction was valid for the diago-
nal terms (the PSD of the nodal forces) since they
have been computed in such a context; but, there is
no reason to apply the same correction function to

off-diagonal terms (cross PSD’s between forces at
different nodes). We will now show that these terms
have to be corrected by different numerical admit-
tances. These new functions can be computed by
considering successively the cross-PSD’s obtained
by the simplified method and by the exact one.

The developments must be realized for any “dis-
tance” between the considered forces. Let us con-
sider for instance that it is desired to compute the
cross-PSD between forces acting & finite elements
from each other (Fig. 9).
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Fig. 9: lllustration of the third correction (k=2)

On one hand, in the simplified method, each of
these two forces results from the evaluation of wind
pressures at three points only (see § 5.3, Fig. 6). In
the more general case, the cross-PSD between F;
and F, is then expressed as a function of wind pres-
sures at six points of the structure. Let us also re-
member that, in this method, the pressures are sup-
posed to be constant on half of the finite elements.
This formulation leads to a complex expression:

S, (1) = S, ()17, [g—(jj (23)

which is equivalent to Equ. 19, but for cross-PSD’s
in this case. The new function A, introduced in this
relation allows taking into account (in a limited way
I) the force reduction resulting from the coherence
of the wind along the structure.

On the other hand, the exact cross-PSD between
forces acting at two different nodes can be ex-
pressed. The developments are quite heavy and are
therefore not presented here. They are based on the
same reasoning than in the previous paragraph: an
exact estimation of the forces (Equ. 20) must be
considered for F; and for F; and then the cross-PSD
(cf Equ. 21) of these two values can be estimated.
After some mathematical developments, this leads
to:

Sy (1) :Sp(nmk(%lj (24)

where 4, is now the exact function accounting for
the reduction in wind forces. Note that expressions
A, and A, reduce to A4, and A, when unilateral
PSD’s are considered. These functions can thus be
seen as a generalization of the developments of the
previous paragraph.

Figure 10 represents the new functions. Exactly
as for unilateral PSD’s, it can be seen that the high
frequency content is not well estimated with the



simplified method. This overestimation of the coher-
ence between nodal forces comes from a bad ac-
counting of the coherence of wind pressures along
the structure.
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Fig. 10: Non dimensional functions representing the reduction
of the coherence between different nodal forces

These new functions can be used to define a new
numerical admittance that is appropriated to the pair
of forces that are considered. In this way, we can
thus define numerical admittances for:

e unilateral PSD’s (k=0, Equ.22)

e forces that are one element away from
each other (k=1);

e forces that are two elements away from
each other (k=2);

e efc.

In the simple case of a straight structure whose
elements have the same size, it is interesting to no-
tice that numerical admittances for k>2 are all the
same. The analysis of the simple beam with these
new numerical admittances can thus be realized by
correcting the PSDM of the nodal force with differ-
ent functions:

e one for diagonal elements;

e one for off-diagonal elements that are one
element away from the diagonal

e and a last one for the rest of the matrix;

On Figure 11, we have added a last comparison
between analytical and numerical approaches. On
this figure, it can be seen that using different nu-
merical admittances for the different elements of the
PSDM of the nodal forces can lead to very accurate
results.
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Fig. 11: Ratio between analytical and numerical PSD’s of the
generalized force in the first mode

6 CONCLUSIONS

The coherence of wind forces must be taken care-
fully into account in finite element developments. It
is well known that the size of the finite elements
should be small compared to the length scale of the
wind turbulence (small Cn//2U in the context of
this paper).

Indeed, most finite elements formulations are
simplified and do not allow a good representation of
the high frequency content. As a first step, we have
shown the limitation of such a simplified method.
For typical analysis (mean wind velocity: U=25m/s,
finite element size: /=15m, coherence coefficient:
C=38), it can be seen that the power spectral densities
of the forces are not well estimated above / Hz.

In this paper we have presented a method allow-
ing a better representation of the coherence in the
wind field. This method could be applied in a more
complex finite element in order to account for this
coherence correctly, even with very large finite ele-
ments.

For practical applications, it could be interesting
to work with the simplified model and to use correc-
tion functions in order to allow this better represen-
tation. We have also presented these correction func-
tions: the numerical admittances. As a last level of
complexity, we have introduced numerical admit-
tances that must be used to correct the different
terms of the power spectral density matrix estab-
lished with the simplified procedure.

These correction terms give a very good accuracy
when the structure is straight and is represented with
finite elements of equal length. For more complex
structures (in shape), other admittance functions can
be used. The method using numerical admittances
can thus be applied in a wide range of applications.
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