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ABSTRACT: The behaviour of civil engineering structures subjected to wind forces is generally approached 
by means of finite element models.  These numerical models are necessary since the shape of the structure as
well as the representation of the applied forces are difficult to handle in closed forms. 
In stochastic dynamic analyses, the coherence of the applied forces  – in this context coming from the wind 
flow –  is represented by the off-diagonal terms in the power spectral density matrix.  This matrix is obtained
by assembling elementary matrices, each of them corresponding to a stochastically loaded finite element. 
Even though the unique rigorous approach is not so complicated, simplified formulations are generally used
to set up these elementary matrices.  These simplifications result in a bad estimation of the high frequency
content of the applied forces.  Comparing these approached power spectral density’s to the actual ones en-
ables to determine numerical admittance functions which allow correcting the bad estimation of the forces. 
This paper presents several finite element formulations for the estimation of the applied forces and derives the
corresponding expressions of the numerical admittance functions. 

 
 

1 INTRODUCTION 

Dynamic forces acting on structures are not always 
perfectly determined. This is for instance the case 
when the loading comes from natural phenomena 
(earthquake, wind, waves…) or from human activi-
ties (walk, traffic …). The force acting at a point of 
the structure must therefore be described in a prob-
abilistic way. Moreover, it is necessary to character-
ize the coherence that may exist between forces act-
ing at different points. 

The analysis of the structure, which consists es-
sentially in computing its displacements, must take 
this coherence into account. For very simple struc-
tures and simple coherence fields, this can be 
achieved in an analytical way. For more complex 
structures, the analysis must necessarily be realized 
with a numerical procedure.  

The goal of this paper is to discuss the precision 
that can be achieved with finite element models in 
the representation of the coherence field. 

The first paragraph is dedicated to the presenta-
tion of the wind loading. This domain of application 
has been chosen but the developments presented in 
this paper could also be applied to other domains 
where the coherence of pressures has to be ac-
counted for. 

In a second step, we will present analytical devel-
opments on a very simple structure and an example 
of a particular finite element formulation. Finally, 
we will compare results obtained with these two 
methods and discuss the limit of applicability of the 
finite element method. 

2 STATISTICAL CHARACTERIZATION OF 
WIND PRESSURES 

The power spectral density (PSD) of the wind pres-
sure acting in a section of a structure can be ex-
pressed in terms of the PSD of the wind velocity in 
the same section: 

( ) ( )snSsnS up ,, 2γ=  (1) 

where BUCDργ 5.0=  represents the aerodynamic 
properties of the cross section, n  represents the fre-
quency (in Hz) and s  stands for the section abscissa. 

The coherence of wind pressures applied at two 
different sections of the structure can be expressed 
by the cross-correlation: 

( ) ( ) ( ) ( )212121 ,,,,,, ssnsnSsnSssnS ppp Γ=  (2) 

where ( )21 ,, ssnΓ  represents the coherence function 
between pressures (and hence wind speeds) at sec-
tions 1s  and 2s . 



In wind applications, it is generally assumed that 
the coherence function is exponentially shaped 
(Dyrbye and Hansen 1997): 
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where C  and U  are respectively the coherence co-
efficient and the mean wind speed. Note that this 
shape is physically acceptable since the coherence 
function is equal to unity ( 1=Γ ) for quasi-static 
components ( 0=n ) or for identical sections 
( 21 ss = ) and is monotonically decreasing with the 
distance between two points and with the frequency. 

3 ANALYTICAL DEVELOPMENTS 

We will limit our developments to a wind field with 
uniform probabilistic characteristics: let us suppose 
that the mean wind velocity and the PSD of the wind 
velocity are the same at every point of the structure. 

The structure that will be studied is a beam lying 
on simple supports and its transverse displacements 
only will be computed. Let us also suppose that the 
cross section is symmetric in such a way that the 
drag forces only have to be taken into account. 

If the pressures applied on the structure ( )tp  
were deterministic, i.e. if the evolution in time of the 
pressures was known, their projection into the modal 
basis could be obtained by: 
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where i  is the mode in which the projection is real-
ized. In a stochastic analysis context, this projection 
must be realized in terms of power spectral densities. 
The elements of the PSD matrix (PSDM) of the gen-
eralized forces can be expressed by: 
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With the limitations of the wind field considered in 
this paper, this relation is: 
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is a non dimensional function representing the re-
duction of the applied pressures when they are pro-
jected to modes i  and j . These functions are called 
“mechanical admittances” (Fig. 1). 

This figure shows for example that the projection 
of the pressures applied on the beam in the first 

mode (i=j=1) will result in a reduction of the higher 
frequency content. 

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

C n L / 2 U

i = j = 1
i = j = 2
i = j = 3
i = j = 4

 
Fig. 1: Examples of mechanical admittances 
When the PSDM of the generalized forces is known 
(Eq. 6), the PSDM of the generalized coordinates 
can then be expressed (Clough, Penzien 1993) as a 
function of the transfer functions in each mode. We 
will however limit the presentation here since, in the 
following, we will compare the PSD’s of the gener-
alized forces only. 

4 FINITE ELEMENT MODEL 

Equation (1) shows that the force applied at a node 
of the finite element model can be expressed by: 

( ) ( )stustp ,, γ=  (9) 

It is usual, in a finite element context, to consider the 
global displacements and deformations of a whole 
structure in terms of what happens at the nodes. It is 
thus tempting to consider wind velocities u(t) at the 
nodes of the model only. The knowledge of the wind 
velocity at these points allows determining the wind 
pressures at the nodes of the structure. In a stochas-
tic analysis, the PSDM of these forces can be ex-
pressed in a very simple way. 
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Fig. 2: Examples of hypotheses on the pressure distribution 
along a finite element - (a) Constant mean pressure (b) Linear 
variation (c) Bi-rectangular variation. 

 
Since the wind pressures are known at the nodes 

of the finite element only, hypotheses must be for-
mulated concerning the pressure distribution along 
the element. Fig. 2 represents some examples. 

Further developments are based on a bi-
rectangular variation of the pressure (Fig. 2-c). The 
nodal forces are thus expressed by: 
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where l stands for the length of the finite element, p1 
and p2 represent wind pressures at the nodes and F1 
and F2 are the nodal forces. After rotation and local-
ization (usual procedures in finite elements devel-
opments, Zienkiewicz 2000), these relations allows 
to express the nodal forces in terms of the wind ve-
locities. The PSDM of the nodal forces can thus be 
expressed in terms of the PSDM of the wind veloci-
ties at the nodes of the structure: 

{ } [ ]{ } [ ] [ ][ ][ ]T
uF MSMSuMF =⇒=  (11) 

As in the analytical procedure, the PSDM of the 
generalized forces can then be obtained: 

[ ] [ ] [ ][ ]ΦΦ= F
T

F
SS *  (12) 

where [ ]Φ  is the eigen-mode matrix. 

5 NUMERICAL ADMITTANCE 

5.1 Comparison of numerical and analytical 
methods 

Equations (6) and (12) give an analytical and a nu-
merical estimation of the power spectral densities of 
the generalized forces. In this section, we will com-
pare the results obtained with these two approaches. 

The comparison will be realized on the simple 
structure that was considered in analytical develop-
ments. The wind velocity is supposed to be repre-
sented by Davenport’s PSD (Davenport 1961) and 
the coherence coefficient C is taken equal to 8. The 
length of the beam is 350 meters and it is repre-
sented by 7 finite elements of 50 meters each. 
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Fig. 3: Ratio between analytical and numerical PSD’s of the 
generalized force in the first mode 

 
These data are actually useless since the differ-

ence between analytical and numerical develop-
ments can be expressed in terms of the ratio 

UCnl 2/  only! The subsequent results are then valid 
for any (constant) aerodynamic coefficient or for any 
statistics of turbulence. The problem that is enlight-

ened in this paper is based on the representation of 
the structure with finite elements. 

Figure 3 shows that the PSD’s of the generalized 
forces in the first mode are not the same. In more de-
tail, it can be seen that 

• the quasi-static behavior is well estimated 
by the numerical model  

• the numerical model roughly overesti-
mates the exact PSD 

This overestimation comes from a bad representa-
tion of the coherence in the wind field. Indeed, at 
low frequencies, the eddies take a long time to cross 
the structure. Their size is much larger than the size 
of a finite element. Therefore the assumption 
concerning the distribution of wind pressures along 
the finite element is valid. 

Nevertheless, the eddies corresponding to higher 
frequencies have a size of the same order than the 
size of a finite element. The assumption of constant 
wind pressure along a half of the finite element is 
not valid anymore. Since the high frequency pres-
sures actually compensate each other from one point 
of the finite element to another, the simplified model 
results in an overestimation of the nodal forces re-
sulting from these pressures. Figure 3 shows that this 
overestimation is approximately represented by a 
factor 10 when the ratio UCnl 2/  is equal to 20! 

5.2 First correction 
This first comparison shows clearly that the simpli-
fied pressure distribution along a finite element 
should be used for low frequency problems. The 
PSD of the nodal shear force resulting from the as-
sumed pressures can be computed (from Equ. 10): 
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On the other hand, the effects of the real pressure 
distribution can be taken into account by considering 
that the nodal shear force can be expressed by: 

∫=
L

dssLspF
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where )(sL  represents the influence line (or the in-
terpolation function) of the nodal shear force. The 
exact PSD of this force can thus be obtained by: 

20 120 121 )()(),,()( dsdssLsLnssSnS
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Using Eqs (2) and (3) and after some mathematical 
developments, this relation can be written: 
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where κ is now the exact function representing 
the reduction of the force resulting from wind pres-
sures on the element (the exact analytical form of 



this function is quite complicated and is not given in 
this paper). Functions κ  and κ̂  are represented at 
figure 4. It can be seen one more time that using the 
simplified method results in an overestimation of the 
nodal forces. 
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Fig. 4: Non dimensional functions representing the reduction of 
the nodal shear force resulting from wind pressures on the ele-
ment 

In order to give a better representation of the 
forces, the PSDM of the nodal forces computed with 
the simplified method could be modified by a cor-
rection factor: 

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

=⎟
⎠
⎞

⎜
⎝
⎛

U
Cnl

U
Cnl

U
Cnl

2
ˆ

2
2 κ

κ
χ   (17) 

This correction factor enables a better representation 
of the reduction of the forces in the high frequency 
range. We propose therefore to call it numerical ad-
mittance. The usual procedure can then continue 
with the modified PSDM of nodal forces. It seems 
obvious that the PSDM of the generalized forces 
will also be modified with the same correction fac-
tor.  

In order to estimate the benefits of this numerical 
admittance, figure 3 can be completed by adding the 
ratio of the analytical result (unchanged) and the 
new PSD of the generalized force in the first mode 
(Fig. 5). It can be seen that this first correction gives 
a better result but not precise enough yet. 
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Fig. 5: Ratio between analytical and numerical PSD’s of the 
generalized force in the first mode 

5.3 Second correction 
The first correction that does not give exact results 
because the nodal force resulting from wind pres-
sures does not result from pressures on one element 
only but on contiguous elements. Figure 6 illustrates 
the problem for a straight structure. In this case, the 
force F results from the pressures applied on two 
elements. 

In the simplified method, the wind pressures are 
supposed to be constant on half of elements. In this 
case, the resulting nodal force can be computed by 
(see Equ. 10):  
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and then the PSD of the nodal force is given by: 
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Fig 6:  Illustration of the second correction 

 
On the other hand, if the exact pressure distribution 
is taken into account, we can see that the nodal force 
is expressed by: 
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This relation gives a better approximation of the 
PSD of the nodal force. It can be obtained by con-
sidering combinations of pressures along both con-
tiguous finite elements: 
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In this relation function 0λ  is used to represent the 
exact reduction of the nodal force resulting from the 
coherence in wind pressures. This relation should be 
compared to its approximate 0λ̂  obtained with the 
simplified method. These functions can be seen as 
an upgrade of the functions presented in the previous 
paragraph. Figure 7 gives a graphical representation 
of these new functions. The conclusions that can be 



drawn from the observation of this figure are identi-
cal to those formulated for figure 4. 
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Fig. 7: Non dimensional functions representing the reduction of 
the nodal force resulting from wind pressures on two elements 

 
The comparison of these two functions allows de-

fining a new (and more precise) numerical admit-
tance: 
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Exactly as we did in the previous paragraph, this 
correction function could be used in order to correct 
the PSDM of the applied nodal forces. 
This correction gives a better representation of the 
coherence field. Indeed, figure 8 represents the ratio 
between analytical and numerical analyses. We can 
see that the new “nodal correction” gives a better 
approximation of the generalized force in the first 
mode. 
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Fig. 8: Ratio between analytical and numerical PSD’s of the 
generalized force in the first mode 

5.4 Third correction 
Even if the second correction gives a better ap-

proximation of the coherence field, it is however not 
perfect yet. The reason of this comes from the fact 
that the last result was obtained by correcting the 
whole PSDM (of nodal forces) by the same numeri-
cal admittance. 

Actually, this correction was valid for the diago-
nal terms (the PSD of the nodal forces) since they 
have been computed in such a context; but, there is 
no reason to apply the same correction function to 

off-diagonal terms (cross PSD’s between forces at 
different nodes). We will now show that these terms 
have to be corrected by different numerical admit-
tances. These new functions can be computed by 
considering successively the cross-PSD’s obtained 
by the simplified method and by the exact one. 

The developments must be realized for any “dis-
tance” between the considered forces. Let us con-
sider for instance that it is desired to compute the 
cross-PSD between forces acting k finite elements 
from each other (Fig. 9). 
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Fig. 9: Illustration of the third correction (k=2) 

 
On one hand, in the simplified method, each of 

these two forces results from the evaluation of wind 
pressures at three points only (see § 5.3, Fig. 6). In 
the more general case, the cross-PSD between F1 
and F2 is then expressed as a function of wind pres-
sures at six points of the structure. Let us also re-
member that, in this method, the pressures are sup-
posed to be constant on half of the finite elements. 
This formulation leads to a complex expression: 
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which is equivalent to Equ. 19, but for cross-PSD’s 
in this case. The new function kλ̂  introduced in this 
relation allows taking into account (in a limited way 
!) the force reduction resulting from the coherence 
of the wind along the structure. 

On the other hand, the exact cross-PSD between 
forces acting at two different nodes can be ex-
pressed. The developments are quite heavy and are 
therefore not presented here. They are based on the 
same reasoning than in the previous paragraph: an 
exact estimation of the forces (Equ. 20) must be 
considered for F1 and for F2 and then the cross-PSD 
(cf Equ. 21) of these two values can be estimated. 
After some mathematical developments, this leads 
to: 
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where kλ  is now the exact function accounting for 
the reduction in wind forces. Note that expressions 

kλ̂  and kλ  reduce to 0̂λ  and 0λ  when unilateral 
PSD’s are considered. These functions can thus be 
seen as a generalization of the developments of the 
previous paragraph. 

Figure 10 represents the new functions. Exactly 
as for unilateral PSD’s, it can be seen that the high 
frequency content is not well estimated with the 



simplified method. This overestimation of the coher-
ence between nodal forces comes from a bad ac-
counting of the coherence of wind pressures along 
the structure. 

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C n l / 2U

 λ

Simplified method
Exact function

k=2
1

λ1k=3

k=1

 
Fig. 10: Non dimensional functions representing the reduction 
of the coherence between different nodal forces 

 
These new functions can be used to define a new 

numerical admittance that is appropriated to the pair 
of forces that are considered. In this way, we can 
thus define numerical admittances for: 

• unilateral PSD’s (k=0, Equ.22) 
• forces that are one element away from 

each other (k=1); 
• forces that are two elements away from 

each other (k=2); 
• etc. 

In the simple case of a straight structure whose 
elements have the same size, it is interesting to no-
tice that numerical admittances for k≥2 are all the 
same. The analysis of the simple beam with these 
new numerical admittances can thus be realized by 
correcting the PSDM of the nodal force with differ-
ent functions: 

• one for diagonal elements; 
• one for off-diagonal elements that are one 

element away from the diagonal 
• and a last one for the rest of the matrix; 

On Figure 11, we have added a last comparison 
between analytical and numerical approaches. On 
this figure, it can be seen that using different nu-
merical admittances for the different elements of the 
PSDM of the nodal forces can lead to very accurate 
results. 
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Fig. 11: Ratio between analytical and numerical PSD’s of the 
generalized force in the first mode 

6 CONCLUSIONS 

The coherence of wind forces must be taken care-
fully into account in finite element developments. It 
is well known that the size of the finite elements 
should be small compared to the length scale of the 
wind turbulence (small UCnl 2/  in the context of 
this paper). 

Indeed, most finite elements formulations are 
simplified and do not allow a good representation of 
the high frequency content. As a first step, we have 
shown the limitation of such a simplified method. 
For typical analysis (mean wind velocity: U=25m/s, 
finite element size: l=15m, coherence coefficient: 
C=8), it can be seen that the power spectral densities 
of the forces are not well estimated above 1 Hz. 

In this paper we have presented a method allow-
ing a better representation of the coherence in the 
wind field. This method could be applied in a more 
complex finite element in order to account for this 
coherence correctly, even with very large finite ele-
ments. 

For practical applications, it could be interesting 
to work with the simplified model and to use correc-
tion functions in order to allow this better represen-
tation. We have also presented these correction func-
tions: the numerical admittances. As a last level of 
complexity, we have introduced numerical admit-
tances that must be used to correct the different 
terms of the power spectral density matrix estab-
lished with the simplified procedure. 

These correction terms give a very good accuracy 
when the structure is straight and is represented with 
finite elements of equal length. For more complex 
structures (in shape), other admittance functions can 
be used. The method using numerical admittances 
can thus be applied in a wide range of applications. 
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