

ON THE CONCRETE COMPLEXITY OF THE SUCCESSOR FUNCTION

M. Rigo

joint work with V. Berthé, Ch. Frougny, J. Sakarovitch

<http://www.discmath.ulg.ac.be/>

<http://orbi.ulg.ac.be/handle/2268/130094>

Let's start with a quite naïve question.

Just add one.

Given the **representation** of the integer n ,
*compute the **representation** of $n + 1$.*

GENERAL FRAMEWORK

DEFINITION

Let L be a language over a finite (totally) ordered alphabet $(A, <)$. We order the words in L by increasing genealogical (or radix) order:

$$w_0 \prec w_1 \prec w_2 \prec \cdots \prec w_n \prec w_{n+1} \prec \cdots$$

The *successor function* on L is

$$\text{Succ}_L : L \rightarrow L, w_n \mapsto w_{n+1}.$$

$$\text{Succ}_L(x) = y \Leftrightarrow (x \prec y) \wedge (\forall z \in L) ((x \prec z) \Rightarrow ((y = z) \vee (y \prec z))).$$

CONNECTION WITH ABSTRACT NUMERATION SYSTEMS

An *abstract numeration system* is a triple $\mathcal{S} = (L, A, <)$ where L is an infinite regular language over the ordered alphabet $(A, <)$
[P. Lecomte, M.R., 2001].

EXAMPLE (CLASSICAL)

Take $L = 1\{0, 01\}^* \cup \{\varepsilon\}$.

ε	1000	\vdots
1	1001	\vdots
10	1010	101001010
100	\vdots	101010000
101	\vdots	101010001

We get back to the usual Zeckendorf numeration system based on the Fibonacci sequence.

THEOREM [CH. FROUGNY (1997)]

Let L be a regular language.

The successor function Succ_L is realized by a letter-to-letter transducer.

THEOREM [P.-Y. ANGRAND, J. SAKAROVITCH (2010)]

Let L be a regular language.

The successor function Succ_L is **piecewise right sequential**.

sequential right transducer = co-sequential transducer

- ▶ transducer with **deterministic** underlying input automaton,
- ▶ reads and writes words from the **right to the left**.
- ▶ A function which is a finite union of (co-)sequential functions with pairwise disjoint domains is called a **piecewise (co-)sequential function**.

THEOREM [M.-P. SCHÜTZENBERGER (1975)]

One can decide whether or not a transducer is functional
(i.e., is realizing a rational function).

THEOREM [CH. CHOFRUT (1977)]

One can decide whether or not a functional transducer
is realizing a sequential function.

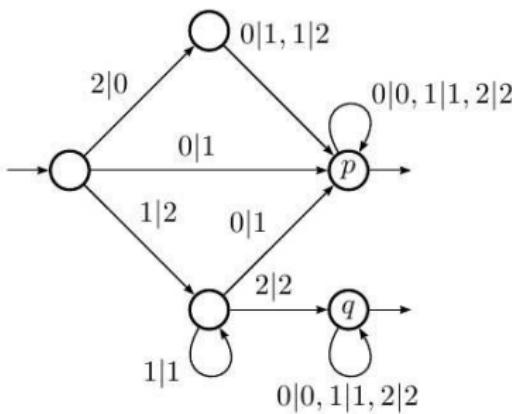
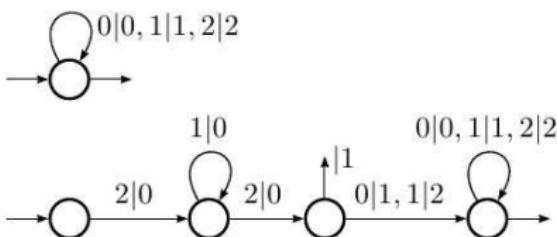
THEOREM [P.-Y. ANGRAND, J. SAKAROVITCH (2010)]

A rational function is piecewise right sequential if and only if it can be realized by a *cascade* of sequential right transducers of height 1 or 2.

SQUARE OF THE GOLDEN RATIO

$$X^2 - 3X + 1, \beta = \frac{3+\sqrt{5}}{2}, d_\beta(1) = 21^\omega, (U_n)_{n \geq 0} = 1, 3, 8, 21, \dots$$

$\text{rep}(\mathbb{N}) = \{\varepsilon, 1, 2, 10, 11, 12, 20, 21, \dots\}$ forbidden factors: 21^*2 ;
here Succ_L is neither (left) sequential nor right sequential.



P.-Y. Angrand [Ph.D. thesis (2012), p. 128]

$$2102 \longrightarrow 2110(p)$$

$$2111 \longrightarrow 2112(q) \longrightarrow 10000$$

One of the motivations stems from combinatorial, metrical, topological, dynamics, sequential properties of **odometers**.

... 010010100 **01010**

... 010010100 **10000**

- ▶ A. M. Vershik, A theorem on the Markov periodical approximation in ergodic theory, *J. Sov. Math.* **28** (1985) 667–674.
- ▶ P. G. Grabner, P. Liardet, R. F. Tichy, Odometers and systems of numeration, *Acta Arith.* **70** (1995) 103–123.
- ▶ G. Barat, T. Downarowicz, P. Liardet, Dynamiques associées à une échelle de numération, *Acta Arith.* **103** (2002), 41–78.
- ▶ Ch. Frougny, On-line odometers for two-sided symbolic dynamical systems, *Proc. Lect. Notes in Comput. Sci.* **2450** (2002) 405–416.
- ▶ V. Berthé, M. Rigo, Odometers on regular languages, *Theory Comput. Syst.* **40** (2007) 1–31.

We can **compute**, but **how** do we compute?

ORIGINAL PROBLEM (WORDS 2005)

E. Barcucci, R. Pinzani, M. Poneti, *Exhaustive generation of some regular languages by using numeration systems.*

For numeration systems built on some linear recurrent sequences of order 2, the “amortized cost” for computing $\text{rep}(n + 1)$ from $\text{rep}(n)$ is bounded by a constant (CAT).

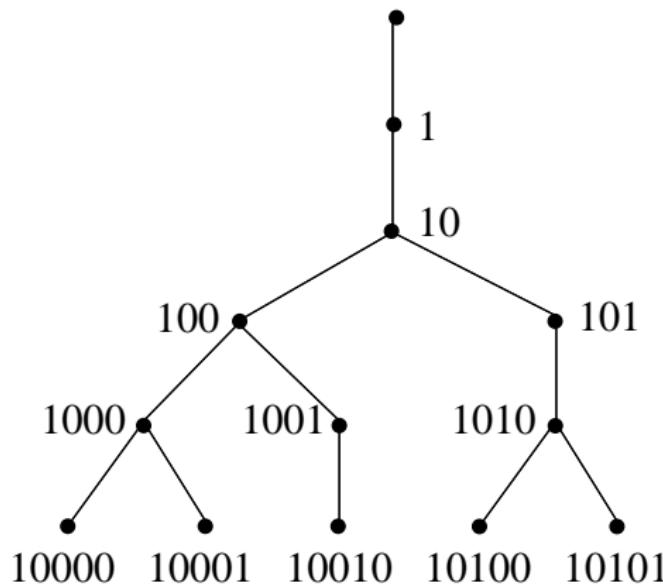
- ▶ Estimate the length of the carry propagation when applying the successor map on the first n words in L .
→ *amortized (or average) carry propagation.*
- ▶ A computational issue: estimate the number of operations (in terms of Turing machines complexity) required to compute the representations of the first n integers from the first one by applying n times the successor function.
→ *(amortized) complexity*, i.e., the average amount of computations required to obtain the successor of an element.

FRAMEWORK

We assume that L is *right essential*:

- ▶ L is *prefix-closed*;
- ▶ L is *right extendable*, $\forall w \in L, \exists u \neq \varepsilon : wu \in L$.

Example: Trie for the Zeckendorf system



PART I — CARRY PROPAGATION

$$\Delta(x, y) = \begin{cases} \max(|x|, |y|) & \text{if } |x| \neq |y|, \\ \min\{|v| \mid \exists u, w, x = uv, y = uw\} & \text{if } |x| = |y|. \end{cases}$$

The *carry propagation* in the computation of $\text{Succ}_L(\text{rep}(i))$ is

$$\Delta(\text{rep}(i), \text{rep}(i + 1)).$$

EXAMPLE (ZECKENDORF SYSTEM)

	Δ		Δ		Δ
ε	—	1000	4	10010	2
1	1	1001	1	10100	3
10	2	1010	2	10101	1
100	3	10000	5	100000	6
101	1	10001	1	100001	1

DEFINITION

The (amortized) *carry propagation of* Succ_L is defined as the following limit if it exists

$$\text{CP}(\text{Succ}_L) = \lim_{N \rightarrow \infty} \frac{1}{N} \sum_{i=0}^{N-1} \Delta(\text{rep}(i), \text{rep}(i+1)).$$

- ▶ The limit might be infinite (e.g., language with polynomial growth, simple case: a^*).
- ▶ The limit might not exist even for a right essential language.

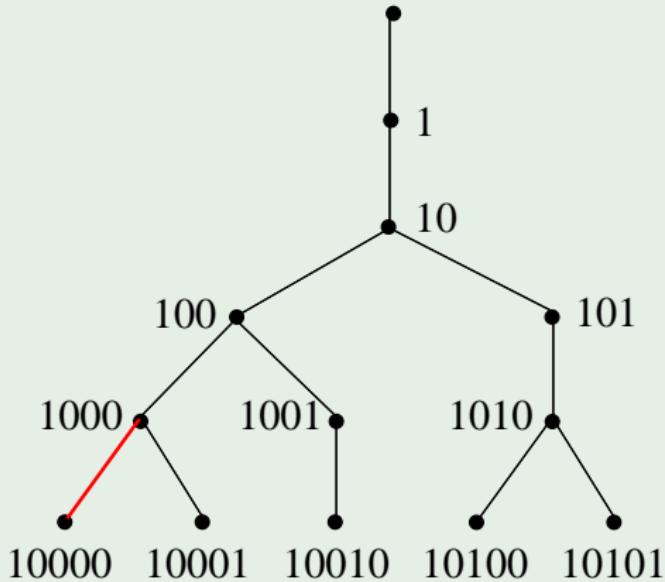
$$\mathbf{u}_L(n) = \#(L \cap A^n) \quad \mathbf{v}_L(n) = \#(L \cap A^{\leq n})$$

PROPOSITION

Let L be a right essential language. The carry propagation for computing Succ_L for all words of L of length $n \geq 0$ is $\mathbf{v}_L(n)$.

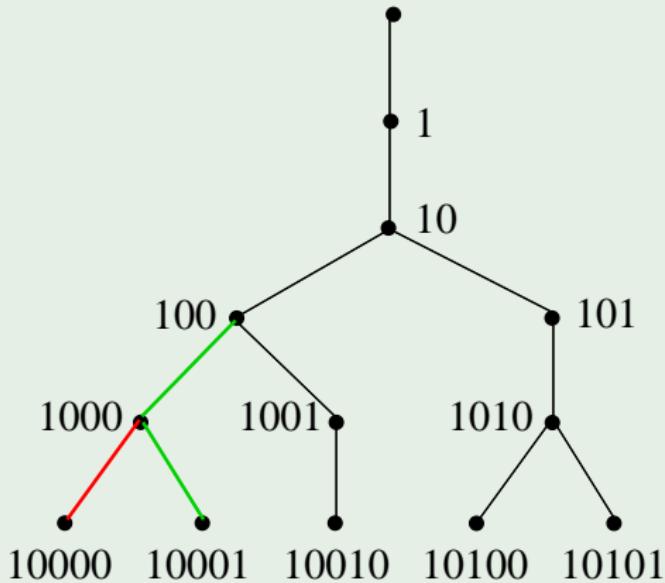
Let's have a look at the trie, $v_L(5) = 13$.

FIBONACCI WORDS OF LENGTH 5



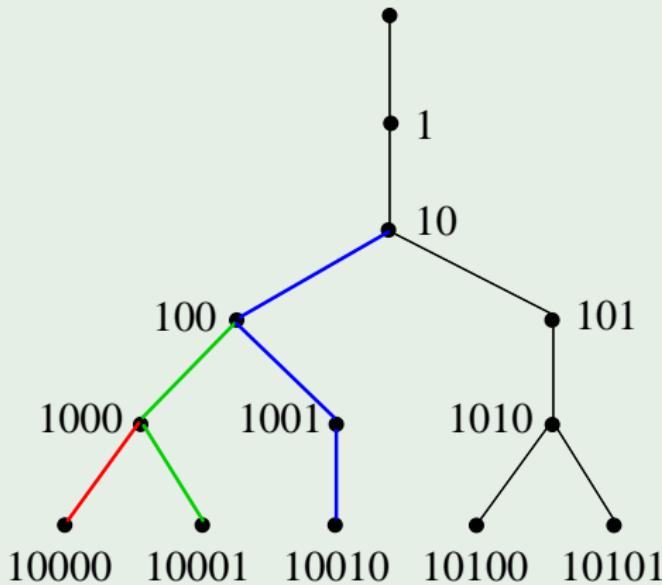
Let's have a look at the trie, $v_L(5) = 13$.

FIBONACCI WORDS OF LENGTH 5



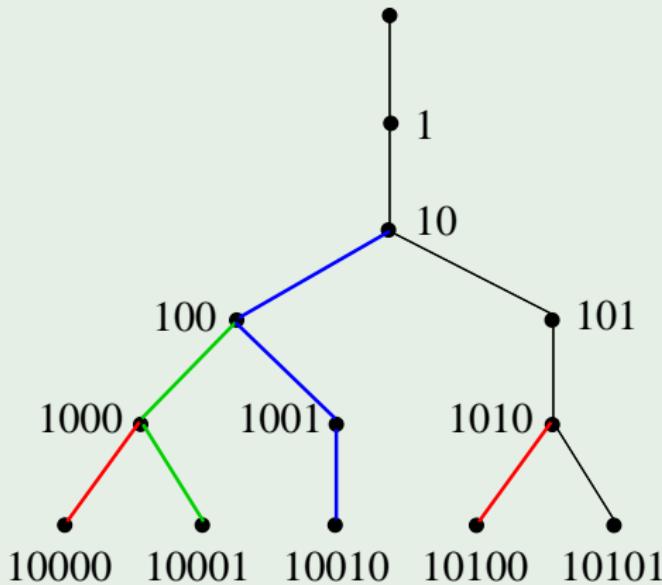
Let's have a look at the trie, $v_L(5) = 13$.

FIBONACCI WORDS OF LENGTH 5



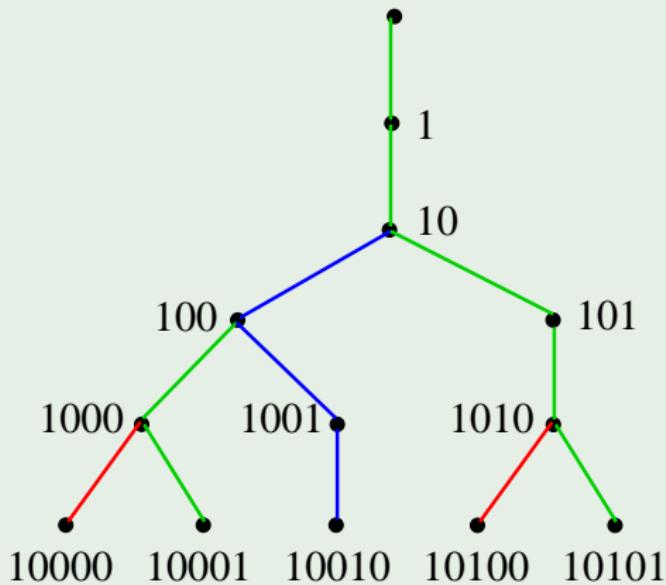
Let's have a look at the trie, $v_L(5) = 13$.

FIBONACCI WORDS OF LENGTH 5



Let's have a look at the trie, $v_L(5) = 13$.

FIBONACCI WORDS OF LENGTH 5



THEOREM

Let L be a right essential language.

Suppose that

$$\lim_{n \rightarrow \infty} \mathbf{u}_L(n+1)/\mathbf{u}_L(n), \text{ or } \lim_{n \rightarrow \infty} \mathbf{v}_L(n+1)/\mathbf{v}_L(n),$$

exists and equals some $\gamma_L > 1$.

Suppose that $\lim_{N \rightarrow \infty} \frac{1}{N} \sum_{i=0}^{N-1} \Delta(\text{rep}(i), \text{rep}(i+1))$ exists.

Then

$$\text{CP}(\text{Succ}_L) = \frac{\gamma_L}{\gamma_L - 1}.$$

Can be applied to many classical numeration systems, for instance:

- ▶ trim minimal automaton \mathcal{M} of L with a unique dominating eigenvalue $\gamma_L > 1$,
- ▶ primitiveness of the trim minimal automaton,
- ▶ beta-numeration.

PART II — CONCRETE COMPLEXITY

Suppose that P is a program (i.e., a Turing machine) which, for every $i \geq 0$, computes $\text{Succ}_L(\text{rep}(i))$ in $\text{Op}(P, \text{rep}(i))$ operations. The (amortized) *complexity* of P is

$$\text{comp}(P) = \lim_{N \rightarrow \infty} \frac{1}{N} \sum_{i=0}^{N-1} \text{Op}(P, \text{rep}(i)).$$

The (amortized) *complexity* of Succ_L is

$$\text{Comp}(\text{Succ}_L) = \inf \{ \text{comp}(P) \mid P \text{ computes } \text{Succ}_L \}.$$

REMARK

If L is a regular language, then $\text{Comp}(\text{Succ}_L) \geq \text{CP}(\text{Succ}_L)$.

At least the number of head moves corresponding to carry propagation.

EXISTENCE OF A SURCHARGE...

Consider again the “square of the Golden ratio”: forbid $21*2$

$$\text{Succ}(2111111111) = 100000000000 \quad CP = Comp = 12$$

$$\text{Succ}(1111111111) = 11111111112 \quad CP = 1 \quad Comp \geq 11$$

→ *The needed information to take a decision of move or writing.*

Carry propagation is not the only one that matters!

- ▶ $CP(x)$ is the carry propagation,
- ▶ $Comp(x)$ is the total number of operations needed to compute $\text{Succ}_L(x)$,
- ▶ The *surcharge* is the difference $SC(x) = Comp(x) - CP(x)$.

The (amortized) *surcharge* for computing Succ_L is

$$SC(\text{Succ}_L) = \lim_{N \rightarrow \infty} \frac{1}{N} \sum_{i=0}^{N-1} SC(\text{rep}(i)) = \text{Comp}(\text{Succ}_L) - \text{CP}(\text{Succ}_L).$$

PROPOSITION

If Succ_L is realized by a right sequential letter-to-letter finite transducer, then

$$\text{Comp}(\text{Succ}_L) = \text{CP}(\text{Succ}_L).$$

each move in the transducer is determined only by the input letter and produces an output letter, so there is no surcharge.

CASE OF BETA-NUMERATION

$\beta > 1$ real number

Let $d_\beta(1) = (t_n)_{n \geq 1}$ be the (greedy) β -expansion of 1.

$$1 = \sum_{i=1}^{\infty} t_i \beta^{-i}.$$

- ▶ If the β -expansion of 1 is *finite*, $d_\beta(1) = t_1 \cdots t_m$, then set $v_0 = 1$, $v_n = t_1 v_{n-1} + \cdots + t_n v_0 + 1$ for $1 \leq n \leq m-1$, and $v_n = t_1 v_{n-1} + \cdots + t_m v_{n-m}$ for $n \geq m$.
- ▶ If the β -expansion of 1 is *infinite*, $d_\beta(1) = (t_n)_{n \geq 1}$, then set $v_0 = 1$, and $v_n = t_1 v_{n-1} + \cdots + t_n v_0 + 1$ for $n \geq 1$.

The sequence $V_\beta = (v_n)_{n \geq 0}$ with $A_\beta = \{0, \dots, \lceil \beta \rceil - 1\}$ is the *canonical numeration system associated with β* .

Note that $\lim_{n \rightarrow \infty} v_{n+1}/v_n = \beta$.

- ▶ If $d_\beta(1)$ is finite, β is a *simple Parry number*, or
- ▶ if $d_\beta(1)$ is ult. periodic, β is a (non-simple) *Parry number*

then

- ▶ $V_\beta = (v_n)_{n \geq 0}$ is a linear recurrent sequence;
- ▶ the language $L(V)$ of the greedy expansions of all the non-negative integers is regular.

PROPOSITION [CH. FROUGNY (1997)]

Let V be a linear recurrent sequence with dominant root β such that $L(V)$ is regular. Then $\text{Succ}_{L(V)}$ is right sequential IFF

- the β -expansion of 1 is finite, of the form $d_\beta(1) = t_1 \cdots t_m$,
- V is defined by $v_n = t_1 v_{n-1} + \cdots + t_m v_{n-m}$ for $n \geq n_0 \geq m$ and $1 = v_0 < v_1 < \cdots < v_{n_0-1}$.

$\text{Succ}_{L(V)}$ is right sequential, but cannot be realized by a *letter-to-letter* right sequential transducer whenever $\beta \notin \mathbb{N}$.

SKETCH

In the case of a simple Parry number, we can (algorithmically) build a *specific* right sequential transducer that computes $\text{Succ}_{L(V)}$ in such a way that we can derive a formula of the kind

$$\text{SC}(\text{Succ}_{L_\beta}) = \lim_{n \rightarrow \infty} \frac{1}{v_n} \sum_{e \in J} \sum_{i=0}^{n-1} \mathcal{W}_i(\text{src}(e)) \delta(\text{src}(e)) \mathcal{V}_{n-i-1}(\text{trg}(e)).$$

where the quantities \mathcal{W}_ℓ and \mathcal{V}_ℓ refer to the **number of particular paths of length ℓ** in the transducer and $\delta(e)$ is a known weight associated with particular edges in the construction.

Take the Pisot number $\beta > 1$ being dominating root of the polynomial $X^4 - 3X^3 - 3X^2 - 2X - 2$; $d_\beta^*(1) = (3321)^\omega$.
 $M = \{\varepsilon, 3, 33, 332, 3321, 33213, 332133, \dots\}$ is the set of finite prefixes of $d_\beta^*(1)$ = **maximal** representations for each length.

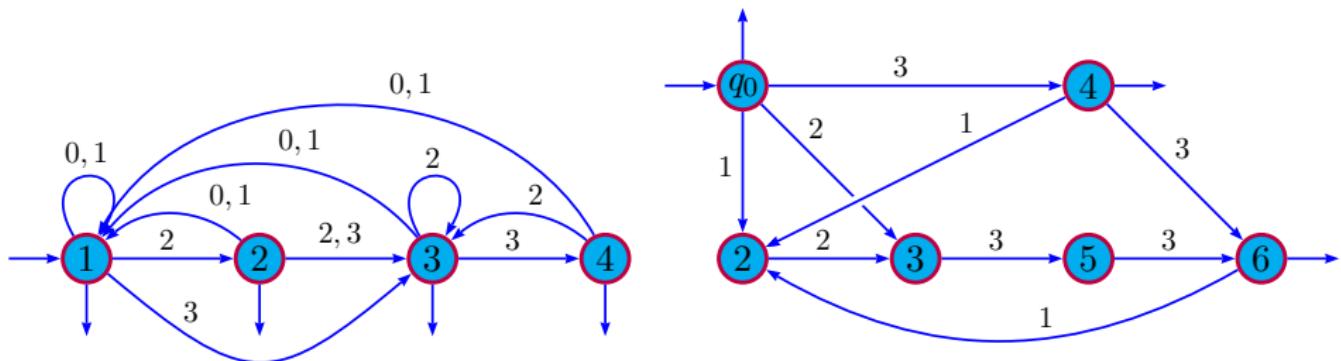
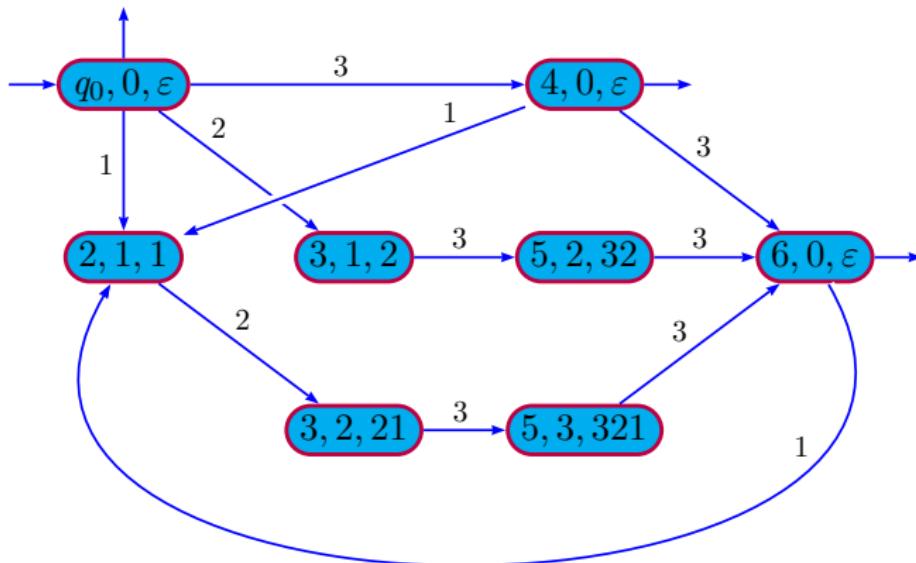


FIGURE: Right automata \mathcal{L} and \mathcal{M} .

Strategy : determine when the right-factor just being read is no more a maximal one.

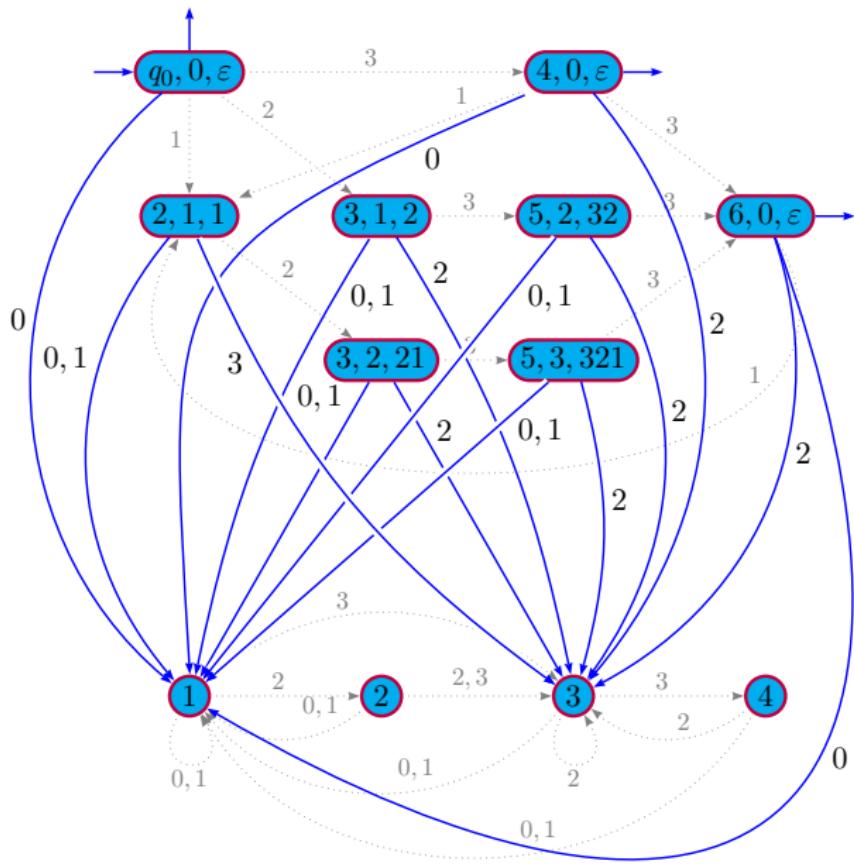
$\widehat{\mathcal{M}}$: in-splitting of \mathcal{M} , $(p, \delta(p), \lambda(p)) = (\text{state}, \text{valuation}, \text{label})$

$\text{Succ}_L(\cdots 0\textcolor{red}{2}) = 03$, $\text{Succ}_L(\cdots 0\textcolor{red}{2}1) = 022$ but both reach state 3



Valuations give some information on the length of the right-factor read before detecting that a word does not belong to M .

The “final” transducer (needs outputs, edges of J in blue)



OUTPUTS ON THE EDGES

The right-factor processed so far seems maximal:

- (A1) in $\widehat{\mathcal{M}}$, for each edge $p \xrightarrow{a} q$ with $p \neq s, q \neq s$ where q is a terminal state, the corresponding edge in \mathcal{T} is $p \xrightarrow{a|0^{\delta(p)+1}} q$;
- (A2) in $\widehat{\mathcal{M}}$, for each edge $p \xrightarrow{a} q$ where q is not a terminal state, the corresponding edge in \mathcal{T} is $p \xrightarrow{a|\varepsilon} q$.

We have just discovered that the right-factor is no more maximal:

- (A3) for each edge $p \xrightarrow{a} t$ in \mathcal{J} such that p is a terminal state of $\widehat{\mathcal{M}}$, there is an edge $p \xrightarrow{a|a+1} t$ in \mathcal{T} ;
- (A4) for each edge $p \xrightarrow{a} t$ in \mathcal{J} such that p is not a terminal state of $\widehat{\mathcal{M}}$, there is an edge $p \xrightarrow{a|\text{Succ}(\lambda(p))} t$ in \mathcal{T} .

Nothing has to be done any more:

- (A5) for each edge $r \xrightarrow{a} t \in \mathcal{L}$ the output is just the copy of the input, namely $r \xrightarrow{a|a} t \in \mathcal{T}$.

For non-simple Parry number, we have developed a similar strategy with similar results about the amortized surcharge.