
On the concrete complexity of
the successor function

M. Rigo
joint work with V. Berthé, Ch. Frougny, J. Sakarovitch

http://www.discmath.ulg.ac.be/

http://orbi.ulg.ac.be/handle/2268/130094

Let’s start with a quite näıve question.
Just add one.

Given the representation of the integer n,
compute the representation of n + 1.

General framework

Definition

Let L be a language over a finite (totally) ordered alphabet (A, <).
We order the words in L by increasing genealogical (or radix) order:

w0 ≺ w1 ≺ w2 ≺ · · · ≺ wn ≺ wn+1 ≺ · · ·

The successor function on L is

SuccL : L → L,wn 7→ wn+1.

SuccL(x) = y ⇔ (x ≺ y)∧(∀z ∈ L) ((x ≺ z) ⇒ ((y = z)∨(y ≺ z))).

Connection with abstract numeration systems

An abstract numeration system is a triple S = (L,A, <) where L is
an infinite regular language over the ordered alphabet (A, <)
[P. Lecomte, M.R., 2001].

Example (classical)

Take L = 1{0, 01}∗ ∪ {ε}.

ε
1
10

100
101

1000
1001
1010
...

...
101001010
101010000
101010001

We get back to the usual Zeckendorf numeration system based on
the Fibonacci sequence.

Theorem [Ch. Frougny (1997)]

Let L be a regular language.
The successor function SuccL is realized by a letter-to-letter
transducer.

Theorem [P.-Y. Angrand, J. Sakarovitch (2010)]

Let L be a regular language.
The successor function SuccL is piecewise right sequential.

sequential right transducer = co-sequential transducer

◮ transducer with deterministic underlying input automaton,

◮ reads and writes words from the right to the left.

◮ A function which is a finite union of (co-)sequential functions
with pairwise disjoint domains is called a piecewise
(co-)sequential function.

Theorem [M.-P. Schützenberger (1975)]

One can decide whether or not a transducer is functional
(i.e., is realizing a rational function).

Theorem [Ch. Choffrut (1977)]

One can decide whether or not a functional transducer
is realizing a sequential function.

Theorem [P.-Y. Angrand, J. Sakarovitch (2010)]

A rational function is piecewise right sequential if and only if
it can be realized by a cascade of sequential right transducers of
height 1 or 2.

Square of the Golden ratio

X 2 − 3X + 1, β = 3+
√
5

2 , dβ(1) = 21ω, (Un)n≥0 = 1, 3, 8, 21, . . .

rep(N) = {ε, 1, 2, 10, 11, 12, 20, 21, . . .} forbidden factors: 21∗2;
here SuccL is neither (left) sequential nor right sequential.

P.-Y. Angrand [Ph.D. thesis (2012), p. 128]

2102 −→ 2110(p) 2111 −→ 2112(q) −→ 10000

One of the motivations stems from combinatorial, metrical,
topological, dynamics, sequential properties of odometers.

· · · 01001010001010 · · · 01001010010000

◮ A. M. Vershik, A theorem on the Markov periodical approximation
in ergodic theory, J. Sov. Math. 28 (1985) 667–674.

◮ P. G. Grabner, P. Liardet, R. F. Tichy, Odometers and systems of
numeration, Acta Arith. 70 (1995) 103–123.

◮ G. Barat, T. Downarowicz, P. Liardet, Dynamiques associées à une
échelle de numération, Acta Arith. 103 (2002), 41–78.

◮ Ch. Frougny,On-line odometers for two-sided symbolic dynamical
systems, Proc. Lect. Notes in Comput. Sci. 2450 (2002) 405–416.

◮ V. Berthé, M. Rigo, Odometers on regular languages, Theory
Comput. Syst. 40 (2007) 1–31.

We can compute, but how do we compute?

Original problem (Words 2005)

E. Barcucci, R. Pinzani, M. Poneti, Exhaustive generation of some
regular languages by using numeration systems.
For numeration systems built on some linear recurrent sequences of
order 2, the“amortized cost” for computing rep(n + 1) from
rep(n) is bounded by a constant (CAT).

◮ Estimate the length of the carry propagation when applying
the successor map on the first n words in L.

−→ amortized (or average) carry propagation.

◮ A computational issue: estimate the number of operations (in
terms of Turing machines complexity) required to compute
the representations of the first n integers from the first one by
applying n times the successor function.

−→ (amortized) complexity, i.e., the average amount of
computations required to obtain the successor of an element.

Framework

We assume that L is right essential:

◮ L is prefix-closed;

◮ L is right extendable, ∀w ∈ L, ∃u 6= ε : wu ∈ L.

Example: Trie for the Zeckendorf system

10000 10001 10010 10100 10101

1000 1001 1010

100 101

1

10

Part I — carry propagation

∆(x , y) =

{
max(|x |, |y |) if |x | 6= |y |,
min{|v | | ∃u,w , x = uv , y = uw} if |x | = |y |.

The carry propagation in the computation of SuccL(rep(i)) is

∆(rep(i), rep(i + 1)).

Example (Zeckendorf system)

∆

ε −
1 1
10 2
100 3
101 1

∆

1000 4
1001 1
1010 2
10000 5
10001 1

∆

10010 2
10100 3
10101 1
100000 6
100001 1

Definition

The (amortized) carry propagation of SuccL is defined as the
following limit if it exists

CP(SuccL) = lim
N→∞

1

N

N−1∑

i=0

∆(rep(i), rep(i + 1)).

◮ The limit might be infinite (e.g., language with polynomial
growth, simple case: a∗).

◮ The limit might not exist even for a right essential language.

uL(n) = #(L ∩An) vL(n) = #(L ∩ A≤n)

Proposition

Let L be a right essential language. The carry propagation for
computing SuccL for all words of L of length n ≥ 0 is vL(n).

Let’s have a look at the trie, vL(5) = 13.

Fibonacci words of length 5

10000 10001 10010 10100 10101

1000 1001 1010

100 101

1

10

Let’s have a look at the trie, vL(5) = 13.

Fibonacci words of length 5

10000 10001 10010 10100 10101

1000 1001 1010

100 101

1

10

Let’s have a look at the trie, vL(5) = 13.

Fibonacci words of length 5

10000 10001 10010 10100 10101

1000 1001 1010

100 101

1

10

Let’s have a look at the trie, vL(5) = 13.

Fibonacci words of length 5

10000 10001 10010 10100 10101

1000 1001 1010

100 101

1

10

Let’s have a look at the trie, vL(5) = 13.

Fibonacci words of length 5

10000 10001 10010 10100 10101

1000 1001 1010

100 101

1

10

Theorem

Let L be a right essential language.
Suppose that

lim
n→∞

uL(n + 1)/uL(n), or lim
n→∞

vL(n + 1)/vL(n),

exists and equals some γL > 1.
Suppose that limN→∞ 1

N

∑N−1
i=0 ∆(rep(i), rep(i + 1)) exists.

Then
CP(SuccL) =

γL
γL − 1

.

Can be applied to many classical numeration systems, for instance:

◮ trim minimal automaton M of L with
a unique dominating eigenvalue γL > 1,

◮ primitiveness of the trim minimal automaton,

◮ beta-numeration.

Part II — Concrete complexity

Suppose that P is a program (i.e., a Turing machine) which, for
every i ≥ 0, computes SuccL(rep(i)) in Op(P , rep(i)) operations.
The (amortized) complexity of P is

comp(P) = lim
N→∞

1

N

N−1∑

i=0

Op(P , rep(i)).

The (amortized) complexity of SuccL is

Comp(SuccL) = inf{comp(P) | P computes SuccL}.

Remark

If L is a regular language, then Comp(SuccL) ≥ CP(SuccL).

At least the number of head moves corresponding to carry propagation.

Existence of a surcharge...

Consider again the“square of the Golden ratio”: forbid 21∗2

Succ(21111111111) = 100000000000 CP = Comp = 12

Succ(11111111111) = 11111111112 CP = 1 Comp ≥ 11

−→ The needed information to take a decision of move or writing.
Carry propagation is not the only one that matters!

◮ CP(x) is the carry propagation,

◮ Comp(x) is the total number of operations needed to
compute SuccL(x),

◮ The surcharge is the difference SC (x) = Comp(x) − CP(x).

The (amortized) surcharge for computing SuccL is

SC(SuccL) = lim
N→∞

1

N

N−1∑

i=0

SC (rep(i)) = Comp(SuccL)−CP(SuccL).

Proposition

If SuccL is realized by a right sequential letter-to-letter finite
transducer, then

Comp(SuccL) = CP(SuccL).

each move in the transducer is determined only by the input letter
and produces an output letter, so there is no surcharge.

Case of beta-numeration

β > 1 real number
Let dβ(1) = (tn)n≥1 be the (greedy) β-expansion of 1.

1 =

∞∑

i=1

ti β
−i .

◮ If the β-expansion of 1 is finite, dβ(1) = t1 · · · tm , then set
v0 = 1, vn = t1vn−1 + · · ·+ tnv0 + 1 for 1 ≤ n ≤ m − 1, and
vn = t1vn−1 + · · ·+ tmvn−m for n ≥ m.

◮ If the β-expansion of 1 is infinite, dβ(1) = (tn)n≥1, then set
v0 = 1, and vn = t1vn−1 + · · ·+ tnv0 + 1 for n ≥ 1.

The sequence Vβ = (vn)n≥0 with Aβ = {0, . . . , ⌈β⌉ − 1} is the
canonical numeration system associated with β.
Note that limn→∞ vn+1/vn = β.

◮ If dβ(1) is finite, β is a simple Parry number, or

◮ if dβ(1) is ult. periodic, β is a (non-simple) Parry number

then

◮ Vβ = (vn)n≥0 is a linear recurrent sequence;

◮ the language L(V) of the greedy expansions of all the
non-negative integers is regular.

Proposition [Ch. Frougny (1997)]

Let V be a linear recurrent sequence with dominant root β such
that L(V) is regular. Then SuccL(V) is right sequential IFF
(i) the β-expansion of 1 is finite, of the form dβ(1) = t1 · · · tm ,
(ii) V is defined by vn = t1vn−1 + · · · + tmvn−m for n ≥ n0 ≥ m

and 1 = v0 < v1 < · · · < vn0−1.

SuccL(V) is right sequential, but cannot be realized by a
letter-to-letter right sequential transducer whenever β 6∈ N.

Sketch

In the case of a simple Parry number, we can (algorithmically)
build a specific right sequential transducer that computes SuccL(V)

in such a way that we can derive a formula of the kind

SC(SuccLβ
) = lim

n→∞
1

vn

∑

e∈J

n−1∑

i=0

Wi(src(e)) δ(src(e))Vn−i−1(trg(e)).

where the quantities Wℓ and Vℓ refer to the number of particular
paths of length ℓ in the transducer and δ(e) is a known weight
associated with particular edges in the construction.

Take the Pisot number β > 1 being dominating root of the
polynomial X 4 − 3X 3 − 3X 2 − 2X − 2; d∗

β(1) = (3321)ω .
M = {ε, 3, 33, 332, 3321, 33213, 332133, . . .} is the set of finite
prefixes of d∗

β(1) = maximal representations for each length.

1 2 3 4
2 2, 3 3

0, 1 2
0, 1

0, 1

0, 1

2

3

q0

2 3

4

5 6

1
2

3

2

3

33

1

1

Figure: Right automata L and M.

Strategy : determine when the right-factor just being read is no
more a maximal one.

M̂: in-splitting of M, (p, δ(p), λ(p)) = (state,valuation,label)
SuccL(· · · 02) = 03, SuccL(· · · 021) = 022 but both reach state 3

q0, 0, ε

2, 1, 1 3, 1, 2

3, 2, 21

4, 0, ε

5, 2, 32

5, 3, 321

6, 0, ε

1
2

3

2

3

3

3

3

3

1

1

Valuations give some information on the length of the right-factor
read before detecting that a word does not belong to M .

The“final”transducer (needs outputs, edges of J in blue)

q0, 0, ε

2, 1, 1 3, 1, 2

3, 2, 21

4, 0, ε

5, 2, 32

5, 3, 321

6, 0, ε

1 2 3 4

1
2

3

2

3

3

3

3

3

2 2, 3 3

0, 1 2

0, 1

0, 1

0, 1

2

3

1

1

0
0, 1

0, 1

0, 1

2

2

2

2

2

2

0

0

0, 1

0, 1

3

Outputs on the edges

The right-factor processed so far seems maximal:

(A1) in M̂, for each edge p
a

−→ q with p 6= s, q 6= s where q is a

terminal state, the corresponding edge in T is p
a|0δ(p)+1

−→ q ;

(A2) in M̂, for each edge p
a

−→ q where q is not a terminal state,

the corresponding edge in T is p
a|ε
−→ q .

We have just discovered that the right-factor is no more maximal:

(A3) for each edge p
a

−→ t in J such that p is a terminal state of

M̂, there is an edge p
a|a+1
−→ t in T ;

(A4) for each edge p
a

−→ t in J such that p is not a terminal state

of M̂, there is an edge p
a|a Succ(λ(p))

−→ t in T .

Nothing has to be done any more:

(A5) for each edge r
a

−→ t ∈ L the output is just the copy of the

input, namely r
a|a
−→ t ∈ T .

For non-simple Parry number, we have developed a similar strategy
with similar results about the amortized surcharge.

