
On the concrete complexity of

the successor function (long abstract)

V. Berthé, Ch. Frougny∗, M. Rigo†, J. Sakarovitch‡

June 3, 2012

Deeply linked with numeration systems and the representation of numbers (real numbers or
integers), the so-called odometers or “adding machines” play a central role in various fields
of mathematics and theoretical computer science: in approximation of ergodic systems, in
symbolic dynamics or in fractal geometry. They have also been studied from a combinatorial
and topological point of view. From a dynamical point of view, it is natural to consider
an odometer as a map acting on infinite words over a finite alphabet of digits. By putting
an infinite sequence of zeroes in front of any finite word, the set of representations of all
the integers is embedded into the set of infinite words onto which the odometer acts. We
focus in this talk on the action of the odometer on finite words. The function acting on
finite words representing integers and which maps the representation of an integer n onto the
representation of n + 1 is usually called the successor function. In the context of abstract
numeration systems where a language L over a totally ordered alphabet (A,<) is ordered
by the radix order, the successor function SuccL maps the n-th word in L onto the (n +
1)-th word. For positional numeration systems, addition of 1 to compute the successor of
the representation of a non-negative integer n leads to the apparition of a carry which can
propagate to the left (as usual integers are represented most significant digit first). The
representation of n + 1 is obtained when there is no more carry to take into account. The
unaffected prefix (if any) of the representation of n is then copied as prefix of the representation
of n+ 1.

Recall the following results. Let L be a rational language. The successor function SuccL is
realized by a (left) letter-to-letter finite transducer. It can also be realized by a right letter-to-
letter finite transducer. Recently, P.-Y. Angrand and J. Sakarovitch have show the following
result (for precise definitions, see the corresponding paper).

Theorem 1. Let L be a rational language. The successor function SuccL is piecewise right

sequential.

It is quite natural to consider two kinds of questions about the successor function. The first
one is concerned with the estimation of the length of the carry propagation when applying
the successor map on the first n integers (or more generally on the first n elements in a

∗LIAFA, CNRS UMR 7089, Université Paris-Diderot
†Université de Liège
‡LTCI, ENST/CNRS

given language). This leads to the notion of amortized (or average) carry propagation when
applying the successor function. The second question is a computational issue: estimating the
number of operations (in classical terms of Turing machines complexity) required to compute
the representations of the first n integers from the first one by applying n times the successor
function. This leads to the notion of (amortized) complexity, i.e., the average amount of
computations required to obtain the successor of an element.

1 Preliminaries

Let (A,<) be a finite alphabet, totally ordered. The set of all words over A is denoted by A∗.
The empty word is denoted by ε. The set of words of length ≤ n is denoted by A≤n. The
length of a word x of A∗ is denoted by |x|. If x = uv, u is a prefix (or a left-factor) of x, and
v is a suffix (or a right-factor) of x.

The radix order (also called the genealogical order or the short-lex order), denoted by ≺, is
defined as follows. Let x and y be two words in A∗; x ≺ y if |x| < |y|, or |x| = |y| and x = pas,
y = pbt with a and b in A, a < b (i.e., for two words of same length, the radix order coincides
with the usual lexicographic order).

In all what follows, L ⊆ A∗ stands for a language ordered by the radix order. Without loss of
generality, we can always assume that A is made of consecutive integers starting with 0 and
naturally ordered, A = {0, 1, . . . , r− 1}. The set of largest words of each length for the radix
ordering of L is denoted by maxlg(L). In particular, the results presented in this paper can
also be expressed in terms of abstract numeration systems.

Let i be a non-negative integer; the (i+1)-th word of L in the radix order is denoted as 〈i〉L.
The successor of a word x in L is the unique word y of L such that

(x ≺ y) ∧ (∀z ∈ L) ((x ≺ z) ⇒ ((y = z) ∨ (y ≺ z))).

The successor function on L is the function SuccL : A∗ → A∗ that maps a word x = 〈i〉L of
L onto its successor y = 〈i + 1〉L in L. The odometer is an extension to infinite words or to
bi-infinite words of the successor function.

A language L is said to be prefix-closed if every prefix of a word of L is in L. Moreover, L
is said to be right extendable if, for all w ∈ L, there exists a non-empty word u such that
wu ∈ L. A language L is right essential if it is prefix-closed and right extendable.

The number of words in L of length n is denoted as uL(n) and the number of words in L of
length ≤ n is denoted as vL(n).

An automaton over A, A = (Q,A,E, I, T), is a directed graph labeled by elements of A.
The set of vertices, traditionally called states, is denoted by Q, I ⊂ Q is the set of initial
states, T ⊂ Q is the set of terminal states and E ⊂ Q × A × Q is the set of labeled edges.
If (p, a, q) ∈ E, we write p

a
→ q. The automaton is finite if Q is finite. The automaton A

is deterministic if E is the graph of a (partial) function from Q × A into Q, and if there is
a unique initial state. A subset L of A∗ is said to be recognizable by a finite automaton or
rational if there exists a finite automaton A such that L is equal to the set |A| of labels of
paths starting in an initial state and ending in a terminal state. The set of rational languages
over A is denoted as Rat(A∗).

Let L in Rat(A∗) having M as a minimal automaton. We suppose that M is trim, i.e.,
accessible and co-accessible. It is said to be primitive if its adjacency matrix M is primitive,
i.e., there exists some k such that Mk > 0. If q is a state of M, we denote by uq(n) (resp.
vq(n)) the number of words of length n (resp. at most n) accepted from state q. In particular,
if q0 stands for the initial state of M, we write either uq0(n) or uL(n) to stand for #(L∩An).
In the same way, we use both vq0(n) or vL(n) denoting #(L ∩ A≤n). It is well-known
that all the sequences (uq(n))n≥0 satisfy the same recurrence relation whose characteristic
polynomial is the one of M . In particular, if γ1, . . . , γt are the roots of this polynomial, then
using a standard result about the general form of linear recurrence sequences, there exist
polynomials Pq,1, . . . , Pq,t such that

uq(n) = Pq,1(n) γ
n
1 + · · ·+ Pq,t(n) γ

n
t . (1)

2 Carry propagation

Let L be a language ordered by the radix order. Given two words x and y, we set

∆(x, y) =

{

max(|x|, |y|) if |x| 6= |y|,
min{|v| | ∃u,w, x = uv, y = uw} if |x| = |y|.

With this notation, we define the carry propagation when computing the successor as follows:

Definition 1. The carry propagation in the computation of SuccL(〈i〉L) is ∆(〈i〉L, 〈i+ 1〉L).
If the language L is clear from the context, we simply write ∆(x) as a shorthand and for
∆(x,SuccL(x)), for all x ∈ L.

Definition 2. The (amortized) carry propagation of SuccL is defined as the following limit
if it exists

CP(SuccL) = lim sup
N→∞

1

N

N−1
∑

i=0

∆(〈i〉L, 〈i + 1〉L).

Note that the amortized carry propagation might be infinite (for instance, for a language
having a polynomial growth, the simplest example being L = a∗). Furthermore, the limit
might not exist even for a right essential language.

Proposition 2. Let L be a right essential language. The carry propagation for computing

the successor of all the words of L of length n ≥ 0 is given by vL(n).

Theorem 3. Let L be a right essential language. Suppose that limn→∞ uL(n+ 1)/uL(n), or
limn→∞ vL(n+1)/vL(n), exists and is equal to some γL > 1. Suppose moreover that the limit

limN→∞
1

N

∑N−1

i=0
∆(〈i〉L, 〈i+ 1〉L) exists. Then

CP(SuccL) =
γL

γL − 1
.

Lemma 1. Let L be a rational right essential language. Suppose that the adjacency matrix

M of the the trim minimal automaton M of L has a unique dominating eigenvalue γL > 1,

i.e., for any other eigenvalue γ2, . . . , γt, we have |γj | < γL < 1. Then, for all states q of M,

there exist polynomials Pq,1, Pq,2, . . . , Pq,t such that

uq(n) = Pq,1(n) γ
n
L +

t
∑

j=2

Pq,t(n) γ
n
j , (2)

Pq0,1 6= 0 and degPq0,1 ≥ degPq,1, for all states q, (3)

if Pq,1 6= 0, then lim
n→∞

vq(n)

Pq,1(n) γnL
=

γL
γL − 1

; otherwise lim
n→∞

vq(n)

γnL
= 0. (4)

In that case, the limit limN→∞
1

N

∑N−1

i=0
∆(〈i〉L, 〈i + 1〉L) exists.

Proposition 4. Let L be a rational right essential language. Suppose that the adjacency

matrix M of the the trim minimal automaton M of L has a unique dominating eigenvalue

γL > 1, i.e., for any other eigenvalue γ2, . . . , γt, we have |γj | < γL < 1. Then, the limit

limN→∞
1

N

∑N−1

i=0
∆(〈i〉L, 〈i+ 1〉L) exists.

3 Concrete complexity of the successor function

Suppose that P is a program (i.e., a Turing machine) which, for every i ≥ 0, computes
SuccL(〈i〉L) in Op(P, 〈i〉L) operations.

Definition 3. The (amortized) complexity of P is

comp(P) = lim
N→∞

1

N

N−1
∑

i=0

Op(P, 〈i〉L).

The (amortized) complexity of SuccL is

Comp(SuccL) = inf{comp(P) | P computes SuccL}.

A finite transducer can be seen as a program, but it is not sequential in general.

Proposition 5. If L is a rational language then Comp(SuccL) ≥ CP(SuccL).

To compute precisely the complexity, we must take into account what is the needed infor-
mation to take a decision of move or writing. If x is in L, we denote by CP (x) the carry
propagation and Comp(x) the total number of operations needed to compute SuccL(x). Note
that we do not consider the prefix of x which is invariant under the successor function. The
surcharge SC(x) is the difference SC(x) = Comp(x)−CP (x).

The (amortized) surcharge for computing SuccL is

SC(SuccL) = lim
N→∞

1

N

N−1
∑

i=0

SC(〈i〉L) = Comp(SuccL)− CP(SuccL).

When the successor function is realized by a right sequential letter-to-letter finite transducer,
each move in the transducer is determined only by the input letter and produces an output
letter, so there is no surcharge.

Proposition 6. If SuccL is realized by a right sequential letter-to-letter finite transducer,

then

Comp(SuccL) = CP(SuccL).

Note that this result does not hold anymore when the successor function is left sequential,
but not right sequential.

4 Results for beta-numeration

Let V = (vn)n≥0 be an increasing sequence of integers with v0 = 1, V is called a basis. By a
greedy algorithm, every non-negative integer N is given a V -expansion of the form ak · · · a0,
with digits 0 ≤ ai < vi+1/vi, such that N =

∑k
i=0

aivi. On the set L(V) of the greedy
V -expansions of the non-negative integers the successor function is defined as above. By
definition of the greedy expansions, the number of words of length ≤ n, vL(n), is equal to vn.

We now recall some definitions and results on the so-called beta-numeration. Let β > 1 be
a real number. Any real number z ∈ [0, 1] can be represented by a greedy algorithm as
z =

∑

+∞
i=1

ziβ
−i with zi ∈ Aβ = {0, . . . , ⌈β⌉ − 1} for all i ≥ 1. The greedy sequence (zi)i≥1

corresponding to a given real number z is the greatest in the lexicographical order, and is
said to be the β-expansion of z. It is denoted by dβ(z) = (zi)i≥1. When the expansion ends
in infinitely many 0’s, it is said finite, and the 0’s are omitted.

Let dβ(1) = (tn)n≥1 be the β-expansion of 1. If dβ(1) is finite, of the form dβ(1) = t1 · · · tm,
tm 6= 0, let d∗β(1) = (t1 · · · tm−1(tm−1))ω be the quasi-greedy expansion of 1. If the β-expansion
of 1 is infinite, set d∗β(1) = dβ(1).

Definition 4. Let β > 1 be a real number.
If the β-expansion of 1 is finite, of the form dβ(1) = t1 · · · tm, then set v0 = 1, vn = t1vn−1 +
· · ·+ tnv0 + 1 for 1 ≤ n ≤ m− 1, and vn = t1vn−1 + · · · + tmvn−m for n ≥ m.
If the β-expansion of 1 is infinite, dβ(1) = (tn)n≥1, then set v0 = 1, and vn = t1vn−1 + · · · +
tnv0 + 1 for n ≥ 1.
The sequence Vβ = (vn)n≥0 of integers with the alphabet Aβ forms the canonical numeration

system associated with β.

It is well known that limn→∞ vn+1/vn = β. Then from Theorem 3 follows.

Theorem 7. If β > 1, the carry propagation of the successor function for the canonical

numeration system Vβ associated with β is

CP(SuccLβ
) =

β

β − 1
.

We will explain for the cases of simple and non-simple Parry number, how to obtain a spe-
cific transducer to compute the successor function for beta-numeration. In particular, an
important part of this talk is to show that our construction permits to compute
and estimate precisely the (amortized) surcharge and thus, the complexity of the
successor function for the canonical numeration system Vβ associated with β.

References

[1] S. Akiyama, Ch. Frougny, J. Sakarovitch, Powers of rationals modulo 1 and rational base number
systems, Israël J. Math. 168 (2008) 53–91.

[2] P.-Y. Angrand, J. Sakarovitch, Radix enumeration of rational languages, RAIRO - Theoret. In-

formatics and Appl. 44 (2010) 19–36.

[3] A. Bertrand-Mathis, Comment écrire les nombres entiers dans une base qui n’est pas entière, Acta
Math. Acad. Sci. Hungar. 54 (1989) 237–241.

[4] E. Barcucci, R. Pinzani, M. Poneti, Exhaustive generation of some regular languages by using
numeration systems, Proc. Words 2005 (Montréal), Monographies du LaCIM 36, UQaM, (2005)
119–127.

[5] V. Berthé, Ch. Frougny, M. Rigo, J. Sakarovitch, On the cost and complexity of the successor
function, in: P. Arnoux, N. Bédaride, and J. Cassaigne (Eds.), Proc. Words 2007, Tech. Rep.,
Institut de mathématiques de Luminy (Marseille) (2007) 43–56.

[6] V. Berthé, M. Rigo, Odometers on regular languages, Theory Comput. Syst. 40 (2007) 1–31.

[7] Ch. Frougny, On the sequentiality of the successor function, Inform. and Comput. 139 (1997)
17–38.

[8] Ch. Frougny, On-line odometers for two-sided symbolic dynamical systems, Proc. DLT 2002, Lect.
Notes in Comput. Sci. 2450 (2002) 405–416.

[9] Ch. Frougny, J. Sakarovitch, Synchronized relations of finite and infinite words, Theoret. Computer

Sci. 18 (1993) 45–82.

[10] Ch. Frougny, J. Sakarovitch, Number representation and finite automata, Chapter 2 in Combina-

torics, Automata and Number Theory, V. Berthé, M. Rigo (Eds), Encyclopedia of Mathematics
and its Applications 135, Cambridge University Press (2010).

[11] Ch. Frougny, B. Solomyak, On the representation of integers in linear numeration systems, in
Ergodic theory of Zd actions (Warwick, 1993–1994), 345–368, London Math. Soc. Lecture Note

Ser. 228, Cambridge Univ. Press, Cambridge, 1996.

[12] P. J. Grabner, P. Liardet, and R. F. Tichy, Odometers and systems of numeration, Acta Arith.

70 (1995) 103–123.

[13] P. Lecomte, M. Rigo, Numeration systems on a regular language, Theory Comput. Syst. 34 (2001)
27–44.

[14] P. Lecomte, M. Rigo, Abstract numeration systems, Chapter 3 in Combinatorics, Automata and

Number Theory, V. Berthé, M. Rigo (Eds), Encyclopedia of Mathematics and its Applications
135, Cambridge University Press (2010).

[15] M. Lothaire, Algebraic combinatorics on words, Encyclopedia of Mathematics and its Applica-
tions, no. 90, Cambridge University Press, Cambridge, 2002.

[16] W. Parry, On the β-expansions of real numbers, Acta Math. Acad. Sci. Hung. 11 (1960) 401–416.

[17] J. Sakarovitch, Eléments de théorie des automates, Vuibert, 2003. English corrected edition:
Elements of Automata Theory, Cambridge University Press, 2009.

