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Abstract

Turbulent wind is a natural and therefore random phenomenon. The analysis of flexible structures
subjected to turbulent wind requires, in a finite element approach, the resolution of a system of
stochastic differential equations. It is supposed that the characteristics of the structure are perfectly
known; thus the stochastic aspect of the problem comes from the random loading only. As the
turbulent wind is most commonly characterized by its frequency content, the resolution of this
equation is generally performed in the frequency domain. All governing equations must therefore
be linear. If this can be reasonably supposed for the structure, this hypothesis is not mathematically

justified for the wind loading.

When the non linear behaviour of any part of the structure has to be accounted for, the resolution
in the frequency domain is not valid anymore. It is then necessary to compute, with a step-by-step
dynamic analysis, the response of the structure to a series of generated wind histories. In a finite
element approach, this is for example achieved thanks to Newmark’s or Wilson’s methods.
Averaging across the ensemble of the computed time-varying responses allows then to recover
statistical results that a stochastic analysis would provide. This analysis method is known as a

stochastic Monte Carlo simulation.

After having emphasised the need to represent correctly the coherence between wind pressures at
different points of the structure, this paper will present a method for generating a set of correlated
wind histories that must be used in a finite element analysis. Finally an example of application of

the presented method will prove its efficiency.
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Introduction

Structures studied in the civil engineering field are subjected to natural
phenomena as wind pressures, ground accelerations, thermal effects or wave
pressures. The main characteristic of these loadings is their randomness.

Depending on the kind of random properties which are taken into account



(variables or functions), the imperfectly defined character of the loading is treated
by means of random variables, e.g. wave height, or random processes, e.g. ground
acceleration. In this paper, we will focus only on this latter kind of randomness.
The main scope of application of these not perfectly defined functions is the
dynamic analysis of light soft structures. Indeed, for such analyses, the loading
(earthquake, wind pressures) is time dependent and has a fixed frequency content.
The loading as well as the displacements or internal forces of the structure are
random processes and are then characterized by power spectral densities (psd).
The purpose of the analysis is to determine, from the psd of the applied force, the
psd’s of the displacements and internal forces.

This kind of dynamic analysis can be realized trough two very different ways.
The first one is the stochastic approach studying the structure in the frequency
domain. Frequency after frequency the multiplication of the transfer function by
the psd of the applied force gives the psd of the displacements. This method
allows to appreciate very fast the random characteristics of the response but has
the great disadvantage to be limited to the analysis of linear structures.

When non linearity’s have to be accounted for, the analysis in the frequency
domain is not valid anymore and it must be replaced by a step-by-step analysis in
the time domain. Samples of the random process are generated in order to
correspond the best to the (target) psd of the applied force. For each of these
samples, a dynamic analysis is performed. The statistical structure of the response
is finally obtained by averaging the psd’s computed from each response.

This paper presents a method to generate a set of samples of correlated random
processes. The examples are presented in the context of the generation of
correlated wind histories but the method could also be applied to the generation of
different (but correlated) ground accelerations at distant piles of a long span
bridge. Other applications are the generation of the surface roughness along a road
or the evolution of the water level.

The finite element method is not directly present but the sample generator
developed will point out all its efficiency when coupled with a finite element
program. Indeed a Monte Carlo simulation needs to loop outside the finite
element program, going from the generator (to create the applied forces) to the

finite element analysis.



Generation of 1-dimensional processes

Before trying to generate a set of samples, we will briefly see how to generate one
sample only. Two methods are generally presented : the Fourier decomposition
and the autoregressive (AR) - and sometimes with a moving average (ARMA) -
filtering of a white noise. These methods are nowadays commonly used and then

presented more into details in many reference books of fundamental dynamics

([11. [2D).
Fourier decomposition

The power spectral density of a sample can be expressed in terms of its Fourier

transform :
s*=—2|x,? (1)

where N, An and X; represent respectively the number of points in the sample,
the frequency step and the Fourier transform of the signal at frequency

n, = (i—-1)An. This relation shows that the psd of a sample is an image of its
frequency content. It seems then obvious to do the generation in the frequency
domain.

Let us note st the target psd of the random process and let us represent it for
N discretized frequencies. For example, if the generation concerns the wind

velocity, this discretized target psd can be expressed by :
2
s(tar) — 4L, ;o =(i-1)An (2)
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where L,, o, and U represent respectively the length scale, the standard

deviation of the wind velocity and the mean wind speed.

The sample can then be generated by choosing :

NAN [targ) - io
X, = > Si(targ)el(/’- (3)

where ¢; is a random delay uniformly distributed between 0 and 2x. The psd of

the so-generated signal matches exactly the target psd at the discretized

frequencies.



Generally, the sample must be expressed in the time domain, which can be done

by Fourier-inverting the signal generated in the frequency domain :
x; = ifft(X;) 4)

Since there is a good matching between target and generated psd’s, this method is

very accurate but it could be criticized to be quite slow.

ARMA-filtering

As the sample to generate must usually be expressed in the time domain,
generation methods have also been imagined in this domain. The most general
one is the ARMA-filtering of an existing signal. It is nevertheless often presented
with two simplifications : an AR filter is used instead of an ARMA filter and the
existing signal is a white noise, which is of course very easy to generate. The

signal to generate y; is expressed in terms of this white noise w; :
p
Yi =bow; _Zak Yik (5)
k=1

where b, and a;,..a, are the autoregression parameters. This way of expressing

the new sample allows to connect the psd’s of the white noise S; and of the

process to generate s :

Y =|Hi*s" = |Hy|° (6)
where
Hi = i % i (7)

is the transfer function between the white noise and the target process.

The key of the generation consists then in finding the autoregression parameters
such that the squared norm of the transfer function |H;|* corresponds the best to

the target psd s, Once these parameters are determined, a white noise of a
sufficient length has to be generated and then filtered. The most time-consuming
part of this method consists in the optimisation. This method is thus useful when

several samples have to be generated for the same process.



Generation of multi-dimensional processes

This paragraph presents a method to generate correlated samples caracterized by
their psd’s (which could be different from one to another sample) and coherence
functions. The method presented here is based on a matrix eigenvalue
decomposition. It is the numerical equivalent (and therefore adopted to finite
element applications) of a continuous analytical approach presented by Carassale
and Solari ([3], [4]) who develop, for simple analytical target fields, closer forms
of the eigenvalue decomposition.

For simplicity in the notations, this presentation will treat two samples only ; it
could however be applied for the generation of a larger amount of correlated

samples.

Basic concepts

The cross-psd between two samples x and y can be expressed in terms of their

Fourier transforms :

2 —
SY =2 X,V 8
¢ Nan (8)

where Y; represents the conjugate of the Fourier transform of signal y . This

complex function of the frequency represents the coherence between signals x

and y . Because it has more physical interest, the coherence function is generally

preferred to this one :

s
y=—i—; -1sy¥<l ©)
i sty i

For brevity in the notations, the psd’s and the cross-psd associated to samples x

and y are generally collected in the power spectral density matrix (psdm) :

ol SX g¥
SN (10

s
Let us consider the eigen value decomposition of this target psdm :

[s¥ )= [olofeT (11)



where [@] and [Q] are respectively the matrix of the eigen modes and the diagonal
matrix of the eigen values. As the psdm is a function of the frequency, both of
these matrices are also frequency dependent. This modal decomposition is thus
time consuming since it has to be repeated for a large number of frequency steps
(N times).

As the matrix [Q] is diagonal, its diagonal functions are power spectral densities
of two uncoupled processes; they will be called the modal processes. Both
methods presented here over for the generation of 1-dimensional processes can be
used to generate separately two samples whose target psd’s are these modal ones :

Ql 0 N Nl(n) < Vl(t) (12)
0 Q, N, (n) <> v, (t)

Depending on the generation method used, the two modal samples are first
expressed in the time (v, (t),v,(t)) or in the frequency domain (N,(n), N,(n)).
These two expressions are anyway equivalent.

Let us built now new samples by introducing nodal processes obtained as linear

combinations of the modal processes :

X(n| N, (n)
{Y (n)} = [@(n)){Nz (n)} (13)
It can be shown that the psd’s of these two couples of samples are connected by
the relation :

[ ]=[o)s"™ JoT ~[o]e]o] (14)

The comparison of Equations 11 and 14 shows thus than this way of forming

samples x and y enables to give them the expected psd’s and the required

coherence.

Summary of the method

1. Discretize the psdm of the target processes with N frequencies equally
spaced (necessary for FFT-transforms);

2. For each of these frequencies, make an eigenvalue decomposition of the
psdm;

3. Utilize the eigen values to generate modal (uncoupled) samples;



4. In the frequency domain, combine these samples with the coefficients of
the eigen modes to obtained the expected correlated samples;
5. If needed, come back to the time domain by FFT-inverting each sample

generated.

Example 1

This first example consists in the generation of correlated samples whose psd’s

(Figure 1) are given by :

S,;(n)=ne™"

S,(n)=ne™"

(15)

The target correlation between the processes is given by this coherence function :
y(ny=e""? (16)

It is desired to generate a 600-second sample discretized with N=2'°=8192 points.
The frequency step and the cut-off frequency are then respectively equal to

An=1.67.10"Hz and n, =13.65.Hz .

Figures 2 and 3 respectively show the eigen values, i.e. the target modal psd’s,
and the eigen modes of the target psdm.
The shape of the target coherence function is such that signals are perfectly

coherent for low frequencies ( =1) and perfectly independents for high
frequencies (y =0). This confirms the physical meaning of the coherence; it is

then not amazing that an exponential shape is usually chosen for the coherence.
Under these two conditions for the limit values of the coherence, it is possible to
show that :
= for low frequencies, one eigen value only is non zero; all the other (if
more than two) are equal to zero. In other words, the rank of the target
psdm is equal to 1;
= for high frequencies, each eigen value corresponds to a target psd of a
node. If all the target psd’s have the same asymptotic behaviour for
high frequencies, the eigen values will thus all be the same.
Figure 4 shows a Cartesian reproduction of the target modal psd’s and the psd’s of
the modal samples generated. The 1-dimensional generation has been realized



with the Fourier decomposition method (presented here over) which gives
accurate results.

In the upper-right corner, the coherence function between these two signals is
represented. As the samples have been generated separately, their coherence
function is almost equal to zero.

Equation 13 allows then to form the “nodal” samples which have now the
expected coherence. Figure 5 is the nodal equivalent of Figure 3; it shows that
both psd’s and the cross-psd of the generated samples correspond to the target

ones.

Improvement of the basic algorithm (1)

The main objection which could be formulated to this method is that the target
psdm has to be decomposed in its eigen values for a large amount of frequencies
(8192 in the previous example !). With today’s computers, it is not really a
problem for the generation of a small number of samples. It would however be
desirable for this generation procedure to be also applicable to the generation of a
larger amount of signals. This is for example important in the study of long-span
bridges subjected to wind loading. A set of wind histories can for example be
composed of about one thousand coherent signals !

For these kinds of generation, it is obvious that one can’t afford to use the basic
method presented before.

The first idea to reduce the computation efforts is to work with a limited number
of modes. Indeed, the first example presented has shown that, at least for lower
frequencies, the first target modal psd was much larger than the second one. This
second mode seems then to bring a small contribution to the formation of the

nodal samples.

Example 2

The data’s relative to this second example are exactly the same as for the first
example, excepted that, in this case, one mode only will be computed. Figure 6
presents directly the nodal results of the generation. As expected, it shows that
using a reduced number of modes doesn’t affect significantly the accuracy of the

nodal psd’s. However, as the generated signals are now proportional to a same



third, they are perfectly coherent. Using a limited number of modes doesn’t allow
to give the expected coherence to the target signals.

The problem may look a bit simplistic here because one mode only (half of the
number of modes) is kept for the generation. Generation of larger amounts of
wind histories have shown that a reduction of the number of modes was
conceivable but, if a good accuracy on the generated coherence is important, 90%
of the modes at least must be computed and used.

The above remarks on the shape of the coherence function can give a good
interpretation of the modes. For low frequencies, one mode only is enough to
represent the nodal sample but for higher frequencies, as the eigen values have a
similar asymptotic bevahiour, several (and at the limit, all) modes a necessary to
represent correctly the nodal sample and the coherence existing between them.
We can then conclude that the first mode (or the first modes for the study of very
large structures) gives their forms to the target nodal psd’s and that higher modes
are only there to give small variations around the tendency imposed by the first
one(s). These variations allows then to give the desired coherence between the
generated processes.

Improvement of the basic algorithm (2)

Another improvement of the method can be imagined when looking at the shape
of the eigen values and eigen modes of the psdm. For the previous two examples,
the eigenvalue decomposition was realized for an important number of
frequencies (8192 !). This number seems to be very large to represent correctly so
slow-varying functions.

A first idea is to systematically make the eigenvalue decomposition once every
ten steps and then to interpolate the eigen values and eigen modes between the
computed values. This allows to limit the number of decomposition (820).
Another method has been imagined for which the user doesn’t have to choose the
number of steps to skip between each decomposition ([5]). This method is based
on the curvature of the target modal psd’s (eigen values). Indeed, as the
intermediate values will be computed by interpolation, the optimum algorithm
shouldn’t realize any decompositions in the linear zones (the beginning and the
end are enough) and should realize more decompositions in the zones of large

curvature.



Figure 7 illustrates the philosophy of this new procedure. f;, f, and f; are three
frequencies for which the decomposition has been realized. The corresponding
values V1, V, and V3 represent one of the eigen values, computed for these three
frequencies. The decomposition for frequency f; would have been useless if the
points (f;, V1), (f2, V2) and (f3, V3) were on the same line. An estimator of the
interest of point 3 can be expressed by the ratio between the value for frequency f;
obtained by extrapolation of the two previous ones (A) and the value really

computed (B). For each mode, we define an error estimator :

V, -V
AB Vi + fz_ fl (fs_ fl)_VS

Ep =—= 2 1 (17)
BC Vs

Then, for each decomposition frequency, we can also define a general error

estimator by :
&= max(]gm|) (18)

If this estimator is small, then the eigen values are linear in the vicinity of
frequency f3 and the frequency step (fs-f3) can be increased. On the contrary, if
this estimator is large, at least one of the target modal psd’s has a larger curvature
in the vicinity of f3 and the frequency step should be decreased. Regarding these
physical desires, a frequency step amplification factor (Figure 8) has been

imagined :

f4 — f3 :1.5e—108 (20)
f3 - f2

The choice of this function is justified by considering that :
= it is important that the size of the step decreases quickly with
increasing ¢;
= the value at the origin must be limited in such a way that the step
doesn’t increase indefinitely when all eigen value are linear;
= itisalso important that the step increases in linear zones only; the
relation has thus been designed so that the step is increased for values
of & smaller than 4%.
So far, all the generations realized using this step amplification factor have proved

good results. These generations concerned mainly wind histories which are
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characterized by important curvatures. This relation could eventually be adapted

for smoother target psd’s.

Example 3

The target characteristics of the generation are the same as for examples 1 (both
eigen modes are computed and used). Figure 9 shows the eigenvalue
decomposition : the decomposition frequencies are represented with crosses. This
figure shows that the presented method enables to represent correctly the target
modal psd’s. The optimisation is worthwhile because 110 frequencies only are
used for representation of the functions.

Figure 10 represents the size of the frequency step as a function of the frequency.
It shows that the step grows from the original step (very small), tends to be
reduced in the vicinity of the maximum in the first mode, increases then in the

linear decreasing part and is finally reduced when the curvature increases again.

Conclusions

After having briefly summarized the 1-dimensional generation procedures
commonly used, this paper has presented a numerical method for the generation
of correlated samples of random fields. Unlike analytical developments, this
method enables to treat any difficult shape of random processes. The numerical
approach makes also this method well adapted to finite element analyses.

When all is said and done, the basic procedure is quite laborious since it is based
on a large number of eigenvalue decompositions. Two improvements have been
proposed. An illustrated example have shown that the first one, concerning a
reduction of the modal basis, should be done very carefully. The second
improvement, based on a representation of the eigen values with a non constant
frequency step, is much more efficient and allows to reduce drastically the
number of modal decompositions. Thanks to this non uniform representation, this
generation procedure can be applied to the generation of a very large number of

correlated processes.
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Figures Captions

Figure 1 : Example 1 : Target power spectral densities

Figure 2 : Example 1 : Target modal psd’s

Figure 3 : Example 1 : Eigen modes of the target psdm

Figure 4 : Example 1 : Frequency characteristics of the generated uncoupled samples
Figure 5 : Example 1 : Frequency characteristics of the generated coupled samples
Figure 6 : Example 2 : lllustration of the reduction of the size of the modal basis
Figure 7 : lllustration of the error estimator

Figure 8 : Frequency step amplification factor

Figure 9 : Example 3 : Representation of the decomposition frequencies

Figure 10 : Example 3 : Evolution of the frequency step for the representation of the eigenvalues
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Figure 1 : Example 1 : Target power spectral densities
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Figure 2 : Example 1 : Target modal psd’s
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Figure 5 : Example 1 : Frequency characteristics of the generated coupled samples
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Figure 6 : Example 2 : lllustration of the reduction of the size of the modal basis
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Figure 7 : lllustration of the error estimator
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Figure 9 : Example 3 : Representation of the decomposition frequencies
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Figure 10 : Example 3 : Evolution of the frequency step for the representation of the eigenvalues
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