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Abstract 

Turbulent wind is a natural and therefore random phenomenon. The analysis of flexible structures 

subjected to turbulent wind requires, in a finite element approach, the resolution of a system of 

stochastic differential equations. It is supposed that the characteristics of the structure are perfectly 

known; thus the stochastic aspect of the problem comes from the random loading only. As the 

turbulent wind is most commonly characterized by its frequency content, the resolution of this 

equation is generally performed in the frequency domain. All governing equations must therefore 

be linear. If this can be reasonably supposed for the structure, this hypothesis is not mathematically 

justified for the wind loading. 

When the non linear behaviour of any part of the structure has to be accounted for, the resolution 

in the frequency domain is not valid anymore. It is then necessary to compute, with a step-by-step 

dynamic analysis, the response of the structure to a series of generated wind histories. In a finite 

element approach, this is for example achieved thanks to Newmark’s or Wilson’s methods. 

Averaging across the ensemble of the computed time-varying responses allows then to recover 

statistical results that a stochastic analysis would provide. This analysis method is known as a 

stochastic Monte Carlo simulation. 

After having emphasised the need to represent correctly the coherence between wind pressures at 

different points of the structure, this paper will present a method for generating a set of correlated 

wind histories that must be used in a finite element analysis. Finally an example of application of 

the presented method will prove its efficiency. 

Generation, coherent, correlated, multidimensional, target power spectral density 

Introduction 

Structures studied in the civil engineering field are subjected to natural 

phenomena as wind pressures, ground accelerations, thermal effects or wave 

pressures. The main characteristic of these loadings is their randomness. 

Depending on the kind of random properties which are taken into account 
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(variables or functions), the imperfectly defined character of the loading is treated 

by means of random variables, e.g. wave height, or random processes, e.g. ground 

acceleration. In this paper, we will focus only on this latter kind of randomness. 

The main scope of application of these not perfectly defined functions is the 

dynamic analysis of light soft structures. Indeed, for such analyses, the loading 

(earthquake, wind pressures) is time dependent and has a fixed frequency content. 

The loading as well as the displacements or internal forces of the structure are 

random processes and are then characterized by power spectral densities (psd). 

The purpose of the analysis is to determine, from the psd of the applied force, the 

psd’s of the displacements and internal forces.  

This kind of dynamic analysis can be realized trough two very different ways. 

The first one is the stochastic approach studying the structure in the frequency 

domain. Frequency after frequency the multiplication of the transfer function by 

the psd of the applied force gives the psd of the displacements. This method 

allows to appreciate very fast the random characteristics of the response but has 

the great disadvantage to be limited to the analysis of linear structures. 

When non linearity’s have to be accounted for, the analysis in the frequency 

domain is not valid anymore and it must be replaced by a step-by-step analysis in 

the time domain. Samples of the random process are generated in order to 

correspond the best to the (target) psd of the applied force. For each of these 

samples, a dynamic analysis is performed. The statistical structure of the response 

is finally obtained by averaging the psd’s computed from each response. 

This paper presents a method to generate a set of samples of correlated random 

processes. The examples are presented in the context of the generation of 

correlated wind histories but the method could also be applied to the generation of 

different (but correlated) ground accelerations at distant piles of a long span 

bridge. Other applications are the generation of the surface roughness along a road 

or the evolution of the water level. 

The finite element method is not directly present but the sample generator 

developed will point out all its efficiency when coupled with a finite element 

program. Indeed a Monte Carlo simulation needs to loop outside the finite 

element program, going from the generator (to create the applied forces) to the 

finite element analysis. 
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Generation of 1-dimensional processes 

Before trying to generate a set of samples, we will briefly see how to generate one 

sample only. Two methods are generally presented : the Fourier decomposition 

and the autoregressive (AR) - and sometimes with a moving average (ARMA) - 

filtering of a white noise. These methods are nowadays commonly used and then 

presented more into details in many reference books of fundamental dynamics 

([1], [2]). 

Fourier decomposition 

The power spectral density of a sample can be expressed in terms of its Fourier 

transform : 
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where N , nΔ  and iX  represent respectively the number of points in the sample, 

the frequency step and the Fourier transform of the signal at frequency 

nini Δ−= )1( . This relation shows that the psd of a sample is an image of its 

frequency content. It seems then obvious to do the generation in the frequency 

domain. 

Let us note arg)(tS  the target psd of the random process and let us represent it for 

N  discretized frequencies. For example, if the generation concerns the wind 

velocity, this discretized target psd can be expressed by : 
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where uL , uσ  and U  represent respectively the length scale, the standard 

deviation of the wind velocity and the mean wind speed. 

The sample can then be generated by choosing : 
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where iϕ  is a random delay uniformly distributed between 0 and 2π. The psd of 

the so-generated signal matches exactly the target psd at the discretized 

frequencies. 
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Generally, the sample must be expressed in the time domain, which can be done 

by Fourier-inverting the signal generated in the frequency domain : 

( )ii Xifftx =  (4) 

Since there is a good matching between target and generated psd’s, this method is 

very accurate but it could be criticized to be quite slow. 

ARMA-filtering 

As the sample to generate must usually be expressed in the time domain, 

generation methods have also been imagined in this domain. The most general 

one is the ARMA-filtering of an existing signal. It is nevertheless often presented 

with two simplifications : an AR filter is used instead of an ARMA filter and the 

existing signal is a white noise, which is of course very easy to generate. The 

signal to generate iy  is expressed in terms of this white noise iw  : 
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where 0b  and paa ,...1  are the autoregression parameters. This way of expressing 

the new sample allows to connect the psd’s of the white noise w
iS  and of the 

process to generate y
iS  : 
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is the transfer function between the white noise and the target process. 

The key of the generation consists then in finding the autoregression parameters 

such that the squared norm of the transfer function 2
iH  corresponds the best to 

the target psd arg)(tS . Once these parameters are determined, a white noise of a 

sufficient length has to be generated and then filtered. The most time-consuming 

part of this method consists in the optimisation. This method is thus useful when 

several samples have to be generated for the same process. 
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Generation of multi-dimensional processes 

This paragraph presents a method to generate correlated samples caracterized by 

their psd’s (which could be different from one to another sample) and coherence 

functions. The method presented here is based on a matrix eigenvalue 

decomposition. It is the numerical equivalent (and therefore adopted to finite 

element applications) of a continuous analytical approach presented by Carassale 

and Solari ([3], [4]) who develop, for simple analytical target fields, closer forms 

of the eigenvalue decomposition. 

For simplicity in the notations, this presentation will treat two samples only ; it 

could however be applied for the generation of a larger amount of correlated 

samples. 

Basic concepts 

The cross-psd between two samples x  and y  can be expressed in terms of their 

Fourier transforms : 
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where iY  represents the conjugate of the Fourier transform of signal y . This 

complex function of the frequency represents the coherence between signals x  

and y . Because it has more physical interest, the coherence function is generally 

preferred to this one : 

11; ≤≤−= xy
yx

xy
xy

i

ii

i

i SS

S
γγ  (9) 

For brevity in the notations, the psd’s and the cross-psd associated to samples x  

and y  are generally collected in the power spectral density matrix (psdm) : 
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Let us consider the eigen value decomposition of this target psdm : 

[ ] [ ][ ][ ]TxyS ΦΩΦ=  (11) 
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where [ ]Φ  and [ ]Ω  are respectively the matrix of the eigen modes and the diagonal 

matrix of the eigen values. As the psdm is a function of the frequency, both of 

these matrices are also frequency dependent. This modal decomposition is thus 

time consuming since it has to be repeated for a large number of frequency steps 

(N times). 

As the matrix [ ]Ω  is diagonal, its diagonal functions are power spectral densities 

of two uncoupled processes; they will be called the modal processes. Both 

methods presented here over for the generation of 1-dimensional processes can be 

used to generate separately two samples whose target psd’s are these modal ones : 
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Depending on the generation method used, the two modal samples are first 

expressed in the time ( )(1 tν , )(2 tν ) or in the frequency domain ( )(1 nN , )(2 nN ). 

These two expressions are anyway equivalent. 

Let us built now new samples by introducing nodal processes obtained as linear 

combinations of the modal processes : 
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It can be shown that the psd’s of these two couples of samples are connected by 

the relation : 

[ ] [ ][ ][ ] [ ][ ][ ]TTNNxy SS ΦΩΦ=ΦΦ= 21  (14) 

The comparison of Equations 11 and 14 shows thus than this way of forming 

samples x  and y  enables to give them the expected psd’s and the required 

coherence.  

Summary of the method 

1. Discretize the psdm of the target processes with N frequencies equally 

spaced (necessary for FFT-transforms); 

2. For each of these frequencies, make an eigenvalue decomposition of the 

psdm; 

3. Utilize the eigen values to generate modal (uncoupled) samples; 
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4. In the frequency domain, combine these samples with the coefficients of 

the eigen modes to obtained the expected correlated samples; 

5. If needed, come back to the time domain by FFT-inverting each sample 

generated. 

Example 1 

This first example consists in the generation of correlated samples whose psd’s 

(Figure 1) are given by : 
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The target correlation between the processes is given by this coherence function : 

2/)( nen −=γ  (16) 

It is desired to generate a 600-second sample discretized with N=213=8192 points. 

The frequency step and the cut-off frequency are then respectively equal to 

Hzn 310.67.1 −=Δ  and Hznc .65.13= . 

Figures 2 and 3 respectively show the eigen values, i.e. the target modal psd’s, 

and the eigen modes of the target psdm. 

The shape of the target coherence function is such that signals are perfectly 

coherent for low frequencies ( 1=γ ) and perfectly independents for high 

frequencies ( 0=γ ). This confirms the physical meaning of the coherence; it is 

then not amazing that an exponential shape is usually chosen for the coherence. 

Under these two conditions for the limit values of the coherence, it is possible to 

show that : 

 for low frequencies, one eigen value only is non zero; all the other (if 

more than two) are equal to zero. In other words, the rank of the target 

psdm is equal to 1; 

 for high frequencies, each eigen value corresponds to a target psd of a 

node. If all the target psd’s have the same asymptotic behaviour for 

high frequencies, the eigen values will thus all be the same. 

Figure 4 shows a Cartesian reproduction of the target modal psd’s and the psd’s of 

the modal samples generated. The 1-dimensional generation has been realized 
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with the Fourier decomposition method (presented here over) which gives 

accurate results. 

In the upper-right corner, the coherence function between these two signals is 

represented. As the samples have been generated separately, their coherence 

function is almost equal to zero. 

Equation 13 allows then to form the “nodal” samples which have now the 

expected coherence. Figure 5 is the nodal equivalent of Figure 3; it shows that 

both psd’s and the cross-psd of the generated samples correspond to the target 

ones. 

Improvement of the basic algorithm (1) 

The main objection which could be formulated to this method is that the target 

psdm has to be decomposed in its eigen values for a large amount of frequencies 

(8192 in the previous example !). With today’s computers, it is not really a 

problem for the generation of a small number of samples. It would however be 

desirable for this generation procedure to be also applicable to the generation of a 

larger amount of signals. This is for example important in the study of long-span 

bridges subjected to wind loading. A set of wind histories can for example be 

composed of about one thousand coherent signals !  

For these kinds of generation, it is obvious that one can’t afford to use the basic 

method presented before. 

The first idea to reduce the computation efforts is to work with a limited number 

of modes. Indeed, the first example presented has shown that, at least for lower 

frequencies, the first target modal psd was much larger than the second one. This 

second mode seems then to bring a small contribution to the formation of the 

nodal samples. 

Example 2 

The data’s relative to this second example are exactly the same as for the first 

example, excepted that, in this case, one mode only will be computed. Figure 6 

presents directly the nodal results of the generation. As expected, it shows that 

using a reduced number of modes doesn’t affect significantly the accuracy of the 

nodal psd’s. However, as the generated signals are now proportional to a same 
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third, they are perfectly coherent. Using a limited number of modes doesn’t allow 

to give the expected coherence to the target signals. 

The problem may look a bit simplistic here because one mode only (half of the 

number of modes) is kept for the generation. Generation of larger amounts of 

wind histories have shown that a reduction of the number of modes was 

conceivable but, if a good accuracy on the generated coherence is important, 90% 

of the modes at least must be computed and used. 

The above remarks on the shape of the coherence function can give a good 

interpretation of the modes. For low frequencies, one mode only is enough to 

represent the nodal sample but for higher frequencies, as the eigen values have a 

similar asymptotic bevahiour, several (and at the limit, all) modes a necessary to 

represent correctly the nodal sample and the coherence existing between them. 

We can then conclude that the first mode (or the first modes for the study of very 

large structures) gives their forms to the target nodal psd’s and that higher modes 

are only there to give small variations around the tendency imposed by the first 

one(s). These variations allows then to give the desired coherence between the 

generated processes. 

Improvement of the basic algorithm (2) 

Another improvement of the method can be imagined when looking at the shape 

of the eigen values and eigen modes of the psdm. For the previous two examples, 

the eigenvalue decomposition was realized for an important number of 

frequencies (8192 !). This number seems to be very large to represent correctly so 

slow-varying functions.  

A first idea is to systematically make the eigenvalue decomposition once every 

ten steps and then to interpolate the eigen values and eigen modes between the 

computed values. This allows to limit the number of decomposition (820).  

Another method has been imagined for which the user doesn’t have to choose the 

number of steps to skip between each decomposition ([5]). This method is based 

on the curvature of the target modal psd’s (eigen values). Indeed, as the 

intermediate values will be computed by interpolation, the optimum algorithm 

shouldn’t realize any decompositions in the linear zones (the beginning and the 

end are enough) and should realize more decompositions in the zones of large 

curvature.  
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Figure 7 illustrates the philosophy of this new procedure. f1, f2 and f3 are three 

frequencies for which the decomposition has been realized. The corresponding 

values V1, V2 and V3 represent one of the eigen values, computed for these three 

frequencies. The decomposition for frequency f3 would have been useless if the 

points (f1, V1), (f2, V2) and (f3, V3) were on the same line. An estimator of the 

interest of point 3 can be expressed by the ratio between the value for frequency f3 

obtained by extrapolation of the two previous ones (A) and the value really 

computed (B). For each mode, we define an error estimator : 
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Then, for each decomposition frequency, we can also define a general error 

estimator by : 

( )mεε max=  (18) 

If this estimator is small, then the eigen values are linear in the vicinity of 

frequency f3 and the frequency step (f4-f3) can be increased. On the contrary, if 

this estimator is large, at least one of the target modal psd’s has a larger curvature 

in the vicinity of f3 and the frequency step should be decreased. Regarding these 

physical desires, a frequency step amplification factor (Figure 8) has been 

imagined : 
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The choice of this function is justified by considering that : 

 it is important that the size of the step decreases quickly with 

increasing ε; 

 the value at the origin must be limited in such a way that the step 

doesn’t increase indefinitely when all eigen value are linear; 

 it is also important that the step increases in linear zones only; the 

relation has thus been designed so that the step is increased for values 

of ε smaller than 4%. 

So far, all the generations realized using this step amplification factor have proved 

good results. These generations concerned mainly wind histories which are 
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characterized by important curvatures. This relation could eventually be adapted 

for smoother target psd’s.  

Example 3 

The target characteristics of the generation are the same as for examples 1 (both 

eigen modes are computed and used). Figure 9 shows the eigenvalue 

decomposition : the decomposition frequencies are represented with crosses. This 

figure shows that the presented method enables to represent correctly the target 

modal psd’s. The optimisation is worthwhile because 110 frequencies only are 

used for representation of the functions. 

Figure 10 represents the size of the frequency step as a function of the frequency. 

It shows that the step grows from the original step (very small), tends to be 

reduced in the vicinity of the maximum in the first mode, increases then in the 

linear decreasing part and is finally reduced when the curvature increases again. 

Conclusions 

After having briefly summarized the 1-dimensional generation procedures 

commonly used, this paper has presented a numerical method for the generation 

of correlated samples of random fields. Unlike analytical developments, this 

method enables to treat any difficult shape of random processes. The numerical 

approach makes also this method well adapted to finite element analyses. 

When all is said and done, the basic procedure is quite laborious since it is based 

on a large number of eigenvalue decompositions. Two improvements have been 

proposed. An illustrated example have shown that the first one, concerning a 

reduction of the modal basis, should be done very carefully. The second 

improvement, based on a representation of the eigen values with a non constant 

frequency step, is much more efficient and allows to reduce drastically the 

number of modal decompositions. Thanks to this non uniform representation, this 

generation procedure can be applied to the generation of a very large number of 

correlated processes. 
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Figures Captions 

Figure 1 : Example 1 : Target power spectral densities 

Figure 2 : Example 1 : Target modal psd’s  

Figure 3 : Example 1 : Eigen modes of the target psdm 

Figure 4 : Example 1 : Frequency characteristics of the generated uncoupled samples 

Figure 5 : Example 1 : Frequency characteristics of the generated coupled samples 

Figure 6 : Example 2 : Illustration of the reduction of the size of the modal basis 

Figure 7 : Illustration of the error estimator 

Figure 8 : Frequency step amplification factor 

Figure 9 : Example 3 : Representation of the decomposition frequencies 

Figure 10 : Example 3 : Evolution of the frequency step for the representation of the eigenvalues 
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Figure 1 : Example 1 : Target power spectral densities 
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Figure 2 : Example 1 : Target modal psd’s  
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Figure 3 : Example 1 : Eigen modes of the target psdm 
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Figure 4 : Example 1 : Frequency characteristics of the generated uncoupled samples 
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Figure 5 : Example 1 : Frequency characteristics of the generated coupled samples 
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Figure 6 : Example 2 : Illustration of the reduction of the size of the modal basis 
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Figure 7 : Illustration of the error estimator 
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Figure 8 : Frequency step amplification factor 
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Figure 9 : Example 3 : Representation of the decomposition frequencies 
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Figure 10 : Example 3 : Evolution of the frequency step for the representation of the eigenvalues 

 


