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ABSTRACT

In order to amplify the resolution of the equation of motion, structural damping is generdly supposed to be
proportiond. Indeed, this coarse and unjustified hypothess leads to uncoupled equations of motion in the
modal bass. The aerodynamic and concentrated dampings (dashrpots) are accurately characterized by
mathematicad laws. These are such that the equations of motion are no longer uncoupled in the modd baesis.

After presenting the usud ways to solve coupled system of equations, the paper focuses on a method based on
Taylor series expangons which dlows to partidly account for the coupling. After developing the equations
related to this method, some examples of application are provided.

INTRODUCTION

Thanks to the improvements made these last decades in the design of civil engineering Structures under datic
loads, today’'s engineers are able to desgn much lighter and more flexible sructures than before. These
dructures are unfortunately more sensitive to dynamic loads. It is thus important to check their dynamic
behaviour. Sometimes specid devices have to be added in order to compensate for a poor dynamic behaviour.
For example, in order to increase the comfort in high-rise buildings, viscous dampers can be used to reduce
the vibration induced by the wind or smal earthquakes. These devices dso play an important role in case of
severe actions (like strong earthquakes) asthey can limit the damage levd.

Ancther important kind of damping is the aerodynamic damping which concerns the wind enginesring fidd. It
plays such an important role tha it would be impossble for example to design correctly a cable-stayed or
suspension bridge deck by neglecting this damping.

Two different types of damping have been introduced here. They both have the same particularity : they
couple the classcd modd equations of motion. Severa formulations are generaly proposed to solve this
problem. They will be briefly described in the next paragraphs, then another method based on Taylor
polynomia gpproximations will be presented and findly applied to a smple structure.

TREATING NON PROPORTIONAL DAMPING

Modal equations of motion
In the finite dement context, the equations of motion governing the dynamics of a linear Sructure can be
written :

[M}{s}+[CK4 + [k [t ={p} ()
where [M],[c] ad[k] are respectively the mass, damping and tiffness matrices. {p} is the vector of the
externd applied loads and {x}, {x} and {x} are the displacements, velocities and aceeraions of the structurd



degrees of freedom. The damping matrix is composed of different contributions : sructurd damping,
concentrated damping and aerodynamic damping :

[c]=[cs]+[col+ (el 2

For the big and complex sructures studied in practica cases, the size N of the systlem (the number of degrees
of freedom) can essily reach 10% to 10°. It is then convenient to change the unknowns to a limited number M
of moda coordinates (Clough, Penzien, 1993) :

M
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The equations of motion become::
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where M*|=[FT'M]F], |k*|=[FI"IK]F] and |c’|=[FT[c][F] are respectively the generalized mass, tiffness
and damping matrices. Provided the classcd mode shapes are used, the fird two are diagond and the
equations are then coupled by the damping terms only. This is the main reason for the proportiona damping
which supposes that the generdized damping matrix |c’| is dso diagona. This hypothesis is generaly
adopted for the structural damping because there is not enough information about it to characterize it with a
more complex law.

Concentrated and aerodynamic dampings are however characterized by precise mathematical laws. The moda
damping associated with these is no longer diagondl. The generdlized damping matrix [c*| is then a full
meatrix (semi-definite pogtive). Although the problem can be solved in the time domain, this paper will focus
on aresolution in the frequency domain only. In this domain, the equations become :

[ w?|m]+iwle’ |+ [« i =lew)liqt ={P'} (4)

where {Q} and {P*} are respectively the Fourier transforms of the moda coordinates and forces. The
impedance matrix [Gw)] is defined as a function of the frequency and, because of the non proportiond
damping, its off-diagona terms are not equd to zero.

The computation of the modal responses requires then now the inverson of this impedance matrix :

Q=lew]{F}=Hwir} ®)

even though only a diagond matrix has to be inverted when the system was uncoupled (Rayleigh structura
damping only). Egn. 5 introduces the inverse of the impedance matrix : the modal transfer matrix ([H(w)]).
Because of the non proportiond damping, it is now much more time-consuming particulally snce the

operation has to be repeated for each treated frequency !

Usual solutionsto non proportional damping
Severd solutions are generdly proposed to amalyze sructures with non proportiond damping. The adoption
of one or another depends of the kind of problem to be solved.

Classical eigenmodes and full matrix problem

The first method to solve the problem was presented here above. It is not redly a solution because it conssts
in keeping the classcd eigenmodes and working on the full matrix problem which requires then the inverson
of the impedance matrix. In generd, this is not so important because in many enginegring problems, a few
modes only are sufficient to represent the general behaviour of the structure.

This solution should of course be adopted only if the Size of the reduced problem is limited.

Classical eigenmodes and uncoupled problem

In a wide range of enginesring problems, the off-diagona terms are not as important as the diagona ones.
This is for example the case when the damping added by dash-pots or the aerodynamic damping is of the
same order asthe structural one.



In this case, engineers sometimes work with the classcd mode shapes, ded with a coupled system of
equations and smply drop the off-diagond terms. The supplementa damping (coming from dash-pots and
wind) isthen only taken into account viaits diagona termsin the modal basis (H. A. Buchholdt, 1997).

The results obtained in this case are no longer the exact results but depend of the formulated approximations.
However, this solution is probably the best when the off-diagond terms are smal compared to the diagond
ones.

Complex eigenmodes
In an other range of problems, it is necessary to work with uncoupled equations (Oliveto G., Santini A, 1996
). Mathematicians have then imagined to work with the complex eigenmodes. The classcd ones are estimated

by solving :
(1<]- w2mIkF} =0 (6)

which does not include any notion of damping a dl. Unlike the classicd ones, for the complex egenmodes,
the damping properties of the syssem areincluded in their determination :

(K]- w2lm]+iw[c]fF .} =0 (7)

This definition leads to complex eigenmodes and eigenvadlues which are of course more difficult to handle
than the classca red ones. Anyway, these new modes dlow to uncouple the equations of notions and make
then thar solution esser. However, imaginay modes remove thar physicd representation ; this
mathematical, radica and efficient solution should be used when the off-diagond terms of the generdized
damping matrix are important compared to the diagona ones.

Taylor series expansion
Here comes now another range of problems : the off-diagond terms are “smadl”(cf § 2.2.2) but it is desired to
take them into account, even in alimited way.

Firg of dl, let usremark that for a < x, the definition of the geometric series enables to write :
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which is aso the Taylor series development of the inverse of a scdar. This formula expresses the nverse of a
scdar (x+a) in terms of the inverse of its neighbor (x) (because a is supposed to be smdl). It would be
interesting to develop the same formulation for matrices. Let us split the impedance matrix in two parts:

[ew)] =[G, w)]+[c, w) ©)

[G, )] contains only the diagond terms whereas [G.(w)| contains only the off-diagond ones. For darity in
the notations, the argument will be dropped. Let us note again that :

Gy -G l=l6, G- 1)t =(6, (G +G,)- 151 =G, 6, G (10)
We can then write successvely :
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(11)
And soon, leading findly to
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The moda transfer matrix [Hw)| = [G(w)]* isthen obtained by the sum of the transfer matrix corresponding to
the uncoupled problem and successive corrections :
H=H4,;+DH,;+DH,+DH;+DH, +-- (13)

where pH, = (- 1" G;! (GCGg,l)”



This latter expression is the matrix equivdent of the scalar Taylor series expanson given here above.

Provided the off-diagond terms play a secondary role in the full impedance matrix ([G,w)]<<[cWw)]), the
inverse of the full matrix can be estimated with a few terms, as a function of the inverse of the diagond matrix
which isredly easy to compute.

The method for inverting a quas-diagond matrix was presented here in the context of a resolution in the
frequency domain. This method should be used when computing the moda transfer matrix of the gtructure.
Once thisis done the rest of the computation is of course the same as usud.

APPLICATION TO A SIMPLE STRUCTURE

Even though the method is devoted to bigger systems it is good to undergand its efficiency on a smple
structure.
The example concerns the 2-DOF gructure shown in figure 1. Two degrees of freedom are coupled by a
dructura gtiffness (eK ) and by alinear dashpot (viscosity c/KM ).
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Figure 1 : Sketch of the 2-DOF system

Within the structura coordinates, the equations of motion can be written :
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The classica elgen modes and frequencies are evauated on the free undamped structure. The two naturdl
frequencies are :
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where | =n(l+e)+d+e and c :JI 2. 4m(d +e +ce) ; the dasscd Euler-normaized mode shapes, are:
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The generdized mass, diffness and damping metrices are :
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The exposed case should be seen as a worst case scenario. Indeed, for any combination of the parameters, the
dash-pot provides a perfectly coherent damping :
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which means that for any diagond terms, the off diagona ones will be as big as they are dlowed to (the

exigence of such a maximum comes from the definite semi positive character of the matrices).
With the notations of the previous section., we can write :
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The corrections are expressed by :
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This close form of the corrections to the diagona transfer matrix shows that the corrections are negligible for
gmdl frequencies. The response is indeed mainly controlled by the giffness a low frequencies. Likewise, a
high frequencies, the response is mainly controlled by the mass. As the off diagond terms are related to
damping, the mgor modifications that the successve corrections will bring should then concern the
moderated frequencies in the vicinity of the resonance pesk. This statement will be clearly observable in the
numerica example.

Even if damping is relaed to imaginary numbers, it can however afect the red pat of the trandfer function. It
is here the case for the even corrections.

The minimum number of correction terms to keep in the development (Egn. 22) depends on the smdlness of
the off-diagona terms compared to the diagond ones. This explans why the inverson method based on
Taylor series expangons should be used in the moda coordinates only ; the off diagond terms concerns
indeed damping only.

NUMERICAL EXAMPLE

As introduced before, the efficiency of the method will be discussed on the evauation of the transfer matrix
only. Therest of the computation should happen as usud.

Let us condder the 2-DOF system presented in the previous section. The parameters will take these given
values:

M=1;K=1;mr=05;d=2 (23)

A gructurd damping x=0.02 will aso be added.

We will first congder that (@) the two degrees of freedom are completely uncoupled (e=0;c=0) and then
smultaneoudy re-linked via : (b) a spring only (e=05;c=0) , (c) a dash-pot only (e=0;¢c=0.35) and (d) a
mixed solution (e =0.5; ¢ =0.35).

As the diffness of the whole structure will be different from one case to another, the eigen modes will change.
The comparisons will then be made on the displacements of the Structurd degrees of freedom (i.e the
gructurd transfer matrix) rather than on the modal coordinates.

The comparisons will be drawn between the norms of the dements of the transfer matrix. Three terms have
then to be compared : both diagond terms (denoted hereunder DOF 1land DOF 2) and the off-diagond term
(denoted Coupling term).



The two degrees of freedom are completely uncoupled (e=0;c=0)

The natura frequencies of the 2DOF system are fi=1 rad/s and £=2 rad/s ; the moda damping coefficient are
the structura ones (k1= x ,=0.02). The trandfer functions have the usua shape with the resonance peek at the
natura frequencies of each degree of freedom. As the trandfer matrix is diagond in the moda coordinates, the

exact solution is the uncoupled one. The corrections expressed by Eqn. 22 are then dl zero in this particular
case.

Stiff link (e=05;c=0)

The egenvdue andyss is peformed on the re-linked sysem. As adding a rigid link between the masses
contributes to adding giffness to the whole dructure, natural frequencies are then shifted up (f1=1.167 rad/s
and f,=2.267 rad/s). The modd damping coefficient remain however unchanged (x1=X 2=0.02). As the only
damping (dructurd damping) is proportiond, the moda equations of motion are then uncoupl ed.

The exact solution 4ill corresponds to the uncoupled one and the successive corrections which should be
added are dl equal to zero.

As the degrees of freedom are now re-linked, both diagond terms present two resonant peaks. The first mode
(the softer) is anyway not much influenced by the second one.
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Figure 2 : Response of DOF 1 Figure 3 : Response of DOF 2 Figure 4 : Coupling term

The off diagond term in the moda transfer function is gill equd to zero (because the eigenvaue andyss has
been performed on the system linked with a spring). But, when projected back to the structural coordinates,
there is a coupling term which adso present resonant pesks. By definition, this term represents the
displacement at DOF 1 when forces are applied at DOF 2 and vice versa,

Viscouslink (e=0;c=0.35)

When as purdly viscous link is added between the two masses, the naturd frequencies of the Structure are not
affected (f;=1 rad/s and $=2 rad/s) but the modad damping coefficients are increased (x1= X »=0.195). The
positions of the resonant peaks seem to be changed ; this is a consequence of high damping coefficients.
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Figure5: Response of DOF 1 Figure 6 : Response of DOF 2 Figure 7 : Coupling term

Figures 5 and 6 show that for the highly damped structure k ~ 20 %), and for an unfavorable distribution of
the viscous effect, a second order approximation gives aready good results.

For the softer DOF, the approximation gives very good results and for the second one the estimated vaues are
gmdler in the vicinity of the resonant pesk and larger for higher frequencies. Compared to the exact solution
and in terms of integra of the norm of the trandfer function, there is a difference of 0.6 % only. This means



that the total energy will be correctly estimated but not perfectly digributed in the frequency range (lower
moments will be better gpproximated than higher ones).

As the link is now purdy viscous, neglecting the off diagond terms results in no sructurd coupling a dl. As
moda and dructurd basis corresponds, it can be shown easly that odd corrections contribute to the coupling
term while even corrections concern the diagond terms only.

Concerning this coupling effect, the second order gpproximation will give the same result than the first order
one, i.e. a difference of about 11 % on the integral. Depending upon the problem to be solved, this
gpproximation can be accurate enough or not. It should be kept in mind that this method has been imagined to
give a fag (and then less accurate) result. It dlows a least to edimate the coupling term ! Anyway, a third
correction term could be taken into account which would reduce the difference to less than 0.5 %.

Hybrid link (e=0.5;c=0.35)

When both masses are linked with a soring and a dashpot, natura frequencies and moda damping
coefficients are both affected : f1=1.167 rad/s ; f,=2.267 rad/s ; x1=0.096 ; x »=0.2125.

This solution is of course more likely to be experienced in practical cases. The eigen modes do not correspond
to one or another mass vibrating done anymore but rather to the piles vibrating in phase (mode 1) or 180° out-
of-phase (mode 2). It is then obvious for the second mode to be more damped than the first one.

Figures 8 and 9 show that the unilaterd responses of the degrees of freedom are well estimated. For the
second order correction method, the difference is 3 % only for the second degree of freedom.
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Figure 8 : Response of DOF 1 Figure9: Response of DOF 2 Figure 10 : Coupling term

The coupling term is dso very wel esimated with the second order gpproximation. The difference with the
exact solution is 0.34 % only ! For this term, figure 10 indicates that the exact solution is overestimated in the
vicinity of the peak and underestimated for higher frequencies.

PERFORMANCE TEST

Another series of computation has been performed in order to determine the relative errors as a function of the
moda damping coefficients. In order to represent a worst case scenario, the structural damping is st equd to
zero. Furthermore, in order to have the same damping coefficient for each mode, the link is supposed to be
perfectly viscous. We have just seen that this Stuation is the most unfavorable one,
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The use of Taylor series gpproximations for the computation of modd trandfer functions with coupled modes
is the mogt effective when the firs order correction only is sufficient. From the worst case described here
over, it can be seen that for damping coefficients up to 12 %, the errors committed on the integral of the norm
of the trander function are smaler than 5 %. Concerning the coupling terms, the error is a little bit higher but
the coupling effects are anyway taken into account.

If the modal damping was 4ill higher, it should be recommended to add aso the second correction term. This
is not a problem in itsdf but reduces the efficency of the method which should optimdly work with one
correction only.

If the modal damping was even more important, a third order correction method could be employed but the
time soent in inverting the impedance matrix (to have then the exact result) could become competitive
compared to the time needed to compute and add the first three correction terms.

CONCLUDING REMARKS

From inveting a full marix to meking use of the complex egen modes, severd solutions are generdly
proposed to treat non proportional damping. The choice of one or another method depends on the damping
characterigtics.

This paper has presented a method based on Taylor polynomid approximations. It proposes to compute the
actud trandfer matrix by adding correction terms to the transfer matrix obtained with the diagona terms only.
The method requires then neither matrix inverson nor estimation of complex eigen modes.

The method turns the andysis to its advantage when the structure needs many eigen modes to be represented
correctly and when the modal off diagond terms play a secondary role.

Even though it should be applied to big structures, the method has been applied here to a very smple one in
order to show its efficiency.

Generdly spesking the method is very efficient when one correction term is enough to represent correctly the
behaviour of the Structure. For a worst case scenario congdered on the smple structure, the method gives
accurate results for damping coefficients up to 12%.

The gpplication range of the method is very wide. It concerns indeed the computation of the transfer matrix
which is necessary for any andyss in the frequency domain. Furthermore, it could aso be applied in a time
domain anadlyss where an inversion of aquas-diagona matrix isaso required.
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