Mid-infrared predictions of milk titratable acidity and its genetic variability in first-parity cows

Colinet F.G.1, Vanlierde A.1,2, Vanden Bossche S.2, Sindic M.3, Dehareng F.3, Sinnaeve G.4, Vandenplas J.1,4, Soyeurt H.4,5, Bastin C.1, and Gengler N.1

1 Animal Science Unit, Gembloux Agro-Bio Tech, University of Liège, Belgium
2 Analysis, Quality and Risk Unit, Gembloux Agro-Bio Tech, University of Liège, Belgium
3 Veterinary and Animal Products Department, Wallon Agricultural Research Center, Belgium
4 National Fund for Scientific Research, Belgium

Mid-infrared predictions of fresh milk collected (October 2009–June 2010)

- Fresh milk
 - Some components: carbon dioxide, citrates, casein, albumin/globulin and phosphates
 - Buffer action
- Developed acidity results from bacterial activity
 - Lactic acid
 - Collection, transportation, and transformation of milk
- Influence on rennet-coagulation properties

Analys, Quality and Risk Unit, Gembloux Agro-Bio Tech, University of Liège, Belgium

Objectives

- To determine TA of fresh milk at large scale
 - Fast method using small quantity of milk
 - Adapted to Wallon dairy cattle (multi-breed)
 - MIR spectrometry already implemented in milk labs
- MIR chemometric method for TA prediction
- To study the genetic variability of predicted TA
 - First-parity Holstein cows in Wallonia (Belgium)

Sampling

- Wallonia (Belgium)
- Variability of spectra: several criteria
 - Milk sampling: individual or bulk milk
 - Breed: Dual-Purpose Belgian Blue, Holstein, Red-Holstein, Montbeliarde and Jersey
 - Time of sampling: morning milking, evening milking or mix of 50% morning & 50% evening milk samples
- 607 fresh samples collected (October 2009 – June 2010)
MIR chemometric method

- **Analysis**
 - Milk Lab (Comité du Lait, Battice, Belgium)
 - FT-MIR
 - Titratable acidity
 - Recorded as Dornic degree (D^*)
 - N/9 NaOH solution
 - Indicator: Phenolphthalein

- **Methods**
 - **Internal cross-validation (100 groups)**
 - To determine the number of factors
 - To assess the robustness of equation
 - **T-outlier test**
 - Compare observed and predicted values
 - Samples with T-outlier value > 2.5 were discarded
 - Maximum 5 tests performed
 - **41 additional samples discarded**

MIR chemometric method

- **Methods**
 - **Modified Partial Least Square regressions**
 - Use of a first derivative pretreatment
 - To correct the baseline drift
 - Detection of spectral outliers
 - Based on Mahalanobis distance
 - **7 samples discarded**
 - Use of a repeatability file
 - Spectra from the same samples analysis on different spectrometers

MIR chemometric method

- **Calibration equation**
 - Statistical parameters of final dataset
 - Mean = 16.63 D^*
 - Standard deviation (SD) = 1.80 D^*
 - Range = 12 D^* (from 10.50 to 22.50 D^*)
 - **Calibration**
 - Standard error of calibration = 0.77 D^*
 - Calibration coefficient of determination (R^2) = 0.82

MIR chemometric method

- **Data editing**
 - Walloon MIR spectral database
 - > 2 000 000 spectra
 - Routinely collected since 2007 by milk recording
 - **Outliers discarding**
 - Based on Mahalanobis distance computing using 451 MIR spectra of the final calibration dataset as reference
 - Below 0.5 percentile and above 99.5 percentile
Genetic variability study

- Data editing
 - After edits:
 - 16 457 first parity Holstein cows from 153 herds
 - > 93,000 records for milk, fat, and protein traits
 - > 92,000 records for somatic cell score (SCS)
 - > 64,000 records for lactose content
 - > 46,000 records for pH

- Correlations among observations at the same day

- Single-trait random regression animal test-day model
 \[y = X\beta + Q(Zp + Za) + e \]
 - \(\beta \) = fixed effects
 - \(p \) = permanent environment random effect
 - \(a \) = additive genetic random effect
 - \(Z \) = regression curves modelled with 2nd order Legendre polynomial
 - Variances components estimated by AIREDMLF90 (Misztal, 2012)
Conclusions

- **MIR chemometric methods**
 - Developed equation
 - $R^2_{cv} = 0.80$
 - RPD > 2 and RER > 10
 - Good practical utility
- Results are promising for the prediction of titratable acidity from MIR spectrum

Next steps

- Improvement with new samples
- Study of genetic correlations of TA with
 - milk production traits
 - other milk components
 - milk properties
- Optimum for TA in milk?

Thank you for your attention

Corresponding author’s e-mail: Frederic.Colinet@ulg.ac.be

- **Acknowledgments for financial support**
 - European Commission (H2020) and Belgian Public Research Fund through projects D31-1255/51 ProFARMilk and Interreg Na BlueSel
 - **Acknowledgments for collaboration**
 - Milk Committee of Battice (Belgium)
 - Walloon Breeding Association (AWE asbl)
 - Walloon dairy breeders