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ABSTRACT

Skeletal muscle voluntary contractions (VC) and electrical stimulations (ES) were compared in eight 

healthy men. High-energy phosphates and myoglobin oxygenation were simultaneously monitored in 

the quadriceps by interleaved 1H- and 31P-NMRS. For the VC protocol, subjects performed 5 or 6 

bouts of 5 min with a workload increment of 10% of maximal voluntary torque (MVT) at each step. The 

ES protocol consisted in a 13-min exercise with a load corresponding to 10% MVT. For both protocols, 

exercise consisted of 6-s isometric contractions/6-s rest cycles. For an identical mechanical level (10% 

MVT), ES induced larger changes than VC in Pi/PCr ratio [1.38 ± 1.14 (ES) vs. 0.13 ± 0.04 (VC)], pH 

[6.69 ± 0.11 (ES) vs. 7.04 ± 0.07 (VC)] and myoglobin desaturation [43 ± 15.9 (ES) vs. 6.1 ± 4.6% 

(VC)]. Electrical stimulations activated the muscle facing the NMR coil to a greater extent than did 

voluntary contractions when evaluated under identical technical conditions. This metabolic pattern can 

be interpreted in terms of specific temporal and spatial muscle cell recruitment. Furthermore, at 

identical levels of energy charge, the muscle was more acidotic and cytoplasm appeared more 

oxygenated during ES than during VC. These results are in accordance with a preferential recruitment 

of type II fibers and a relative muscle hyperperfusion during ES. 

KEYWORDS: muscle metabolism, electrical stimulation, high-energy phosphates, myoglobin 

oxygenation, human. 
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INTRODUCTION

Neuromuscular electrical stimulations (ES) are frequently used to strengthen normal muscle (24). In 

pathology, several investigators have shown the merit of ES for the treatment of amyotrophy related to 

immobilization (12). The efficacy of ES of the quadriceps during rehabilitation following anterior 

cruciate ligament surgery has been well documented (8, 10). Percutaneous electrodes facing muscle 

motor points are used to stimulate muscle in stimulation/rest cycles. The stimulation frequency, 

typically 50 to 100 Hz, is chosen to induce tetanic contractions. Sensory discomfort related to current 

intensity varies considerably between subjects, but remains the major limitation to strength 

improvement (24). Eriksson & Häggmark (12) concluded that, in the context of rehabilitation, the 

addition of neuromuscular ES to voluntary exercise was superior to  isometric voluntary contractions 

(VC) alone. To explain this advantage of combining ES with VC, it was hypothesized that electrically-

induced contractions imposed a specific recruitment pattern depending on location of depolarized 

motor units within the muscle (23) and also increased the metabolic demand for ES compared to VC 

for a given force development (49). 

Different techniques have been used to study the metabolism of electrically-contracted muscle in 

humans. In the 1980s, biopsy samples were taken from the electrostimulated quadriceps (43, 44), but 

this invasive technique does not allow dynamic investigations in the same tissue sample. Myoelectric 

signal detection (23) demonstrated a modification in the order of motor unit recruitment and the 

electromyogram root-mean square (34) technique showed a pronounced low-frequency fatigue during 

electrically elicited contractions.  

An improved understanding of the mechanisms involved during neuromuscular ES could be gained 

from newly available interleaved NMR techniques (5, 41). These can acquire several biochemical and 

physiological parameters non-invasively during exercise. In vivo nuclear magnetic resonance 

spectroscopy (NMRS) of 31P can continuously monitor the phosphorylated metabolites involved as 

energy transducers (2, 21). First reported in 1981, with investigations of healthy (7) and diseased (40) 

human skeletal muscles, 31P NMR has become the most popular nucleus in exploring muscle 
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metabolism. In vivo 1H NMRS of deoxymyoglobin in exercising human muscle was pioneered by 

Wang et al. (51), and gives instant information on the oxygenation state of muscle cells. Simultaneous 

31P and 1H NMRS of human skeletal muscle, first realized by Richardson et al. (39), can collect both 

these parameters during the same physiological event, providing an invaluable tool for the in vivo 

study of tissue metabolism. 

Compared to VC, NMR investigations of neuromuscular ES present additional technical difficulties but 

have nonetheless been carried out in healthy (1, 25, 28, 50) and paraplegic subjects (14). Here, we 

present the first exploration of muscle metabolism in man during tetanic intermittent ES by interleaved 

multinuclear NMRS. An electronic link was constructed to filter and synchronize tetanic intermittent ES 

of the quadriceps with NMR acquisitions in a large bore magnet and an NMR sequence was 

implemented to interleave 1H- and 31P-spectroscopy signals acquired with a double-tuned surface coil. 

The purposes of the present work were 1) to monitor high-energy phosphate metabolism and cellular 

oxygenation in the electrostimulated quadriceps, simultaneously, with an adequate temporal 

resolution, 2) to compare these with the same parameters evaluated during a protocol of VC in the 

same subjects, 3) from the detailed analysis of these parameters to gain better understanding of the 

specific metabolic patterns involved during neuromuscular ES. The specific objectives were to 

determine a) whether the energy demand during ES was higher than during VC and if this difference 

persisted when taking into account the differences in mass of quadriceps involved in the two 

procedures; b) whether glycolytic fibers were preferentially recruited during ES, as compared to VC, 

as would be indicated by a faster decline of intracellular pH with increasing levels of ADP ; c) if the 

intracellular PO2 drop was a mechanism to increase O2 flux in response to the higher energy demand 

during ES; d) if the fall in intracellular PO2 during ES might be modulated by other factors than the high 

energy demand, in particular by the hyperperfusion that has been revealed by previous PET studies 

(48). 
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MATERIAL AND METHODS

Eight healthy male volunteers (age 22.5 ± 2.9 years) who had given informed written consent were 

studied. All subjects were involved in recreational physical activities. The protocol was authorized by 

the ethics committees of the University of Liège (Belgium) and the Kremlin Bicêtre University Hospital 

(France). Subjects first underwent an evaluation to determine the quadriceps maximum isometric 

voluntary torque (QMIVT) from the left lower limb. One week later, metabolism was investigated in the 

left quadriceps with NMRS during a VC session on one day and an ES session on the following day. 

After the stimulated exercise, the maximal myoglobin desaturation was measured during an ischemia 

(IS) of the thigh. To verify the absence of cumulative effects on metabolism of either VC or ES, two 

subjects performed a second VC session (VC2) after the ES and IS sessions. 

1) Quadriceps maximum isometric voluntary torque measurement 

The isometric torque of the quadriceps was measured on a dynamometer via a static strain-gauge 

transducer (DS Europe, FS100kg). The subject was placed in a knee extensor testing chair with 60° of 

knee flexion and 30° of hip flexion and was asked to exert three maximum isometric knee extensions 

for 4 s with 2-min recoveries between contractions. The highest torque measured was recorded as the 

QMIVT value (246 ± 49 Nm). The gravity torque of the left leg was also measured (13 ± 2 Nm) and 

was taken into account in the QMIVT measurement. 

2) Voluntary contraction protocol 

A) Subject position and material (figure 1) 

For the VC protocol, the subject was positioned supine in the magnet. The left thigh was set on an 

adjustable inclined plane that imposed 30° hip and 60° knee flexion. The subject wore a therapy boot 

attached with a nylon rope via 2 pulleys to weights outside the magnet. This custom-built ergometer 

was adjusted so that the rope was perpendicular to the leg axis. The load was imposed as percentage 

of QMIVT, calculating the weights with respect to the QMIVT, the gravity torque of the leg and the 
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distance between the articular interline of the knee and the point where the rope was attached to the 

boot (0.42 ± 0.01 m). 

B) Exercise characteristics  

The subject performed a progressive exercise of the quadriceps composed of different steps. Bouts of 

5-min exercise alternated with periods of 5-min rest. During exercise, the subject was instructed to 

raise his heel by 2 cm at an acoustic signal and to maintain it during 6 s until another signal. Resting 

and lifting alternated every 6 s for each 5-min bout. The workload was incremented by 10% of QMIVT 

at each step, starting at 10% of QMIVT (28 ± 8 N), and ending at exhaustion, which corresponded to 

50% of QMIVT (259 ± 50 N) for 5 subjects, and to 60% of QMIVT (300 ± 43 N) for 3 others. An 

observer positioned near the distal aperture of the magnet monitored the exercise informing the 

volunteer of how high he lifted his heel during contraction periods.  

3) Electrical stimulation protocol 

A) Subject position and material (figure 1) 

Subject position and materials used were the same as in the VC protocol. 

B) Exercise and electrical stimulation characteristics 

The subject performed one electrically elicited effort that lasted 13 min and was followed by a recovery 

of 7 min. The isometric contraction (6 s)/rest (6 s) cycles were applied with a workload corresponding 

to 10% of QMIVT. This protocol was chosen for its efficiency in improving quadriceps strength in able-

bodied subjects (11) and because it avoids quadriceps atrophy during the rehabilitation period in 

patients with knee arthroscopy (47). The contraction period had a 0.75-s rise time, a 5-s plateau and a 

0.25-s fall time. The stimulator provided bi-directional symmetric rectangular impulses directly to the 

skin through elastomer surface electrodes. Pulse frequency and width were 50 Hz and 0.25 ms 

respectively. One channel was used with one pole connected to a stimulating electrode (4.5 x 5 cm) 

and the other one to a dispersive electrode (9 x 5 cm). The stimulating electrode was placed on the 
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motor point of the left rectus femoris. The distance between the electrode’s distal side and the patellar 

base ranged from 13 to 18 cm. The dispersive electrode was placed transversally on the proximal part 

of the quadriceps, with its lower edge 5 cm above the upper edge of the stimulating electrode. During 

each evoked contraction of ES, the current intensity required to raise and maintain the subjects heel 

by 2 cm was adjusted by an operator at the console, according to instructions given by the observer in 

the NMR room. The current intensity increased linearly (R2 = 0.98) between the beginning (54 ± 12 

mA) and the end (69 ± 15 mA) of stimulation. 

4) Ischemia protocol 

For the IS protocol, the subject was positioned supine on the examination bed with legs extended and 

with an air cuff placed around the proximal part of the left thigh. The ischemic stress protocol 

consisted in 420-s leg ischemia induced by rapid inflation of the air cuff to 220 Torr. This provided a 

deoxymyoglobin reference signal corresponding to 100% desaturation (6). 

5) NMR measurements 

A) Equipment 

Experiments were carried out on a 4 Tesla superconducting magnet (Magnex 4/60) interfaced to 

Bruker’s Biospec NMR spectrometer and console. Magnet clear bore was 46 cm. A 5-cm diameter 

dual-tuned (1H and 31P) surface coil was taped on the leg facing the left rectus femoris. Identical 

positioning of the coil in the VC, ES and IS protocols was ensured by measuring the distance between 

the distal point of the coil and the patellar base (extreme values: 18 – 23 cm) and by tracing ink marks 

on the subjects' skin. The surface coil was placed exactly between both electrodes for the ES protocol 

and distally from the air cuff for the IS protocol. 

Despite difficult experimental conditions regarding centering inside the magnet, Bo field homogeneity 

was efficiently adjusted by an automatic localized 1st and 2nd order shim procedure, FASTMAP, 

implemented by Bruker. The line-width at half height of the H2O peak was systematically less or equal 

to 40 Hz. 
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B) ES-NMR interfaces 

ES pulses were filtered between the stimulator (outside the Faraday cage) and the electrodes (inside 

the magnet) so as to avoid picking up ES electronic noise by NMR. A 100-ms pulse was programmed 

into the NMR sequence to trigger both the ES via an electronic short circuit relay and the NMR 

acquisitions every 12 s. 

C) 31P measurement at rest 

Before the VC and ES exercises, a 31P spectrum was acquired in 96 s (64 accumulations, TR=1.5 s) 

to obtain baseline values of the high-energy phosphates. 

D) Interleaved sequence 

Interleaved 1H- and 31P-NMRS acquisition modules were performed using the Bruker Multi Scan 

Control tool (35). Combined 1H /31P data sets were acquired every 2 s throughout the entire VC and 

ES protocols. 

1H-module: The deoxymyoglobin resonance at 75 ppm downfield relative to water originiates from the 

n-  proton of the proximal histidine F8 of myoglobin in the deoxygenated state. This resonance was 

selectively excited by a 0.4-ms Gaussian pulse at a TR of 18 ms with 64 accumulations (512 complex 

points, acquisition time 10 ms). 

31P-module: High-energy phosphates were excited by a 0.25-ms single square pulse and acquired 

over 1024 complex points (acquisition time 255 ms). 

E) Data processing 

Interleaved raw data were automatically stored as separate 1H and 31P spectroscopic components. 

Data were then processed using the standard manufacturer software (XWIN NMR) under which a 
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number of automations were written for batch processing of the spectra. To improve the S/N ratio, 6 x 

64 FIDs from the 1H-module and 6 x 1 FID from the 31P-module, were summed to lead to a time 

resolution of 12 s, corresponding to one contraction/rest cycle. 

1H-module: Manual phasing (order 0 and 1) and automatic 4th order polynomial baseline corrections 

(+20/-20 ppm relative to the deoxymyoglobin peak) were applied after exponential multiplication (50 

Hz) and Fourier transformation. Integration markers were manually selected for the deoxymyoglobin 

peak (~ ± 3 ppm). The percentage of myoglobin (Mb) desaturation was calculated by using the signal 

intensity after ischemia as the reference value of 100% desaturation. All deoxymyoglobin peak areas 

were normalized to this reference after taking the different number of accumulations into account (64 x 

6 for VC or ES and 256 for IS). Conversion to PO2 values was calculated from the O2–binding curve 

for Mb (PO2 = {(1-x)/x}.P50), where x is the fraction of Mb that is not oxygenated and P50 is the Mb half-

saturation pressure. A Mb P50 of 3.2 Torr was used (38). 

 31P-module: The 31P-FIDs were exponentially multiplied (8 Hz) before Fourier transformation, manual 

phasing of the reference spectrum and automatic baseline correction. The Pi, PCr, -, - and ß-ATP 

peak limits were identified from frequencies referenced to the PCr peak. Peak picking and integration 

were automatically performed over the stack of spectra. The Pi chemical shift was taken as the center 

of gravity of the Pi resonance within 3.5 to 5.5 ppm limits. This procedure was applied to take into 

account possible deformation and asymmetry of the Pi peak during exercise. Intracellular pH changes 

were computed from the chemical shift ( ) of the Pi peak relative to PCr according to the equation pH 

= 6.75 + log (  - 3.27)/(5.69 - )  (45). The free cytosolic ADP concentration was calculated from the 

Pi/PCr ratio, using a reformulation of the creatine kinase reaction: [ADP] = 8.2.Pi/PCr.10(pH-6)/1.66. In 

this equation, [ATP] is taken as 8.2 mM, the creatine kinase equilibrium constant as 1.66. 109 M-1 and 

[Cr] is assumed to be equal to [Pi] (20). 

For the VC and ES protocols, data of PCr recovery were fitted by a mono-exponential function to 

determine the PCr time constant of recovery (  PCr). During the recovery period, the mean pH was 

calculated over a time period equal to the  PCr measured. The pH was introduced into the formula 

that corrects for the dependence of PCr recovery on cytosolic pH (19). 
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The pH – [ADP] and the PO2 - [ADP] relationships were also studied during both exercises. For these

two relationships, the experimental data were fitted with a mono-exponential model.

F) Ischemia sequence

Level of myoglobin desaturation: Only 1H spectroscopy was performed during this sequence

composed of NR = 67 blocks of NS = 256 excitations of deoxymyoglobin by a 0.4-ms Gaussian pulse

at a TR of 20 ms.

The sequence was started just after the inflation of the air cuff was achieved. 1H FIDs were processed

identically to those from the 1H module of the interleaved sequence and the increase of 

deoxymyoglobin signal was fitted to a sigmoid model. The maximal point of this curve was taken to be

the 100% desaturation reference value. 

Myoglobin quantification: At the end of the ischemia, additional acquisitions (NR=4) were performed

with a TR of 100ms to obtain a factor of correction for the quantification of Mb. TR was chosen to be

largely superior to the longitudinal relaxation time (T1) of Mb at 4 Tesla (~10ms). Moreover, a fully 

relaxed spectrum of muscle water was acquired in order to quantify Mb concentration with reference to 

tissue water (6). 

Myoglobin concentration [Mb] relative to water was calculated from the respective peak areas (A),

receiver gains (RG), number of scans (NS), number of hydrogens per resonance (N) and molar

concentration of water (MH2O):
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6) Statistical analysis 

Data are presented as means +/- SD, except when stated otherwise. The statistical analysis of the 

successive steps in the VC protocol (PCr depletion,  PCr, Pi/PCr, pH, Mb desaturation and PO2 ) was 

performed using repeated ANOVA measures. To correct for the very asymmetric distribution of the 

Pi/PCr ratios, a log transformation was applied prior to the ANOVA analysis. When a significant 

difference was detected, a subsequent comparison of means was made according to the Bonferroni 

test (NCSS software). For Pi/PCr, pH and Mb desaturation, we used the Bonferroni “with control” 

comparison test. The control value corresponded to measurements at rest. 

Differences between ES and the different steps of the VC protocol in the evaluated parameters (PCr 

depletion,  PCr, Pi/PCr, pH, Mb desaturation and PO2 ) were assessed with repeated measures of 

ANOVA and the Bonferroni “with control” comparison test. The control value corresponded to the ES 

measurement. 

A multiple factor ANOVA was used to assess differences between pH measured during the last min of 

each step and pH measured during the first min of the following recovery, differences between the 

steps and the interaction between these two parameters. 
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RESULTS

1)   VC protocol 

The Pi/PCr ratio and deoxymyoglobin increased and intracellular pH dropped proportionally to the 

workload during the exercise bouts. They all returned towards baseline values during the successive 

recovery phases. For each individual subject, the construction of stacked plots of 31P- and 1H-NMRS 

spectra gives a visual impression of the progression of the metabolic changes during the 10%, 20%, 

30%, 40% and 50% of QMIVT steps and the interleaved recoveries. To improve clarity, only one 

spectrum out of 5 (one spectrum per minute) is shown in figure 2. For PCr, Pi/PCr, pH and 

deoxymyoglobin, the mean curves were reconstructed from the actual individual data sets (figure 3). 

Table 1 summarizes the mean 31P and 1H NMRS results obtained at rest and at the end (last minute) 

of the different steps. PCr depletion increased statistically (p<0.0001 between all steps, except p<0.01 

between 10% and 20%). The Pi/PCr ratio progressively increased from the resting value through the 

different steps. The differences were statistically significant between all steps (p ranging from <0.05 to 

<0.0001). In comparison with the resting value, the end-stage pH was more acidic for the 30% (p< 

0.01), 40%, 50% and last QMIVT steps (p<0.001). Between rest, 10%, 20% and 30% QMIVT, Mb 

desaturation rose progressively, from –3.3%, 6.1%, 22.3% to 37.6%, and the differences were 

statistically significant between each step (p<0.05). Myoglobin desaturations ranged from 37.6% to 

43.1% for steps 30% and onwards (p>0.05). For the PO2 level, as calculated from Mb desaturation, 

we measured a statistical difference between the 10% of QMIVT step and all other steps (p<0.01). 

In the early phase of recovery following each step, intracellular pH continued to fall. When compared 

to the last minute of exercise, mean values of pH measured during the first minute of recovery were 

statistically lower and this difference increased with the workload (p<0.001). 

For the last steps (from 30% of QMIVT to the last step), the recoveries of PCr could be closely fitted to 

a mono-exponential curve. The  PCr was prolonged with increasing force-level, and reached the 

mean values of 40.9 ± 8.2, 51.9 ± 11.4 and 62.7 ± 17.4 s for the recovery of the 30%, 40%, and 50% 
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of QMIVT steps, respectively. After correction for pH (19), the  PCr were not found to be statistically 

different: 32.6 ± 5.8, 37.5 ± 10.7 and 42.8 ± 18.5 s for the 30%, 40%, and 50% of QMIVT steps, 

respectively (p=0.66). 

The two subjects who performed a second VC exercise (VC2) after the ES protocol did not show 

statistically different results during VC2 from those measured during the first VC protocol (VC1) for 

Pi/PCr, pH and Mb desaturation: 1.04 ± 0.28 vs. 1.16 ± 0.28, p=0.51; 6.95 ± 0.04 vs. 6.94 ± 0.04, 

p=0.54; 43.9 ± 2.87% vs. 41.2 ± 2.97%, p=0.28 respectively during the last step.

2)   ES protocol 

Typical stacked plots of 31P- and 1H-NMRS spectra, obtained in the same subject as in figure 2, but 

during ES and recovery, are provided in figure 4. As for figure 2, only one spectrum in 5 is shown. 

For PCr, Pi/PCr, pH and deoxymyoglobin, the mean curves were reconstructed from the actual 

individual data sets (figure 5). From the comparison of the four curves, it is patent that parameters 

showed marked variations during the two first min of ES and reached extreme values around the third 

min of ES. Maximal PCr depletion of 53.7 + 17.8 % was noted after 258 s ES, maximal mean Pi/PCr of 

1.38 + 1.14 after 198 s ES, minimal mean pH value of 6.69 + 0.11 after 198 s ES and maximal mean 

value of Mb desaturation of 43.0 ± 15.9% after 66 s ES. From the 4th min up to the end of stimulation, 

they progressively and partially returned towards resting values. 

In addition, the data were reorganized by summing the 3 FIDs collected during activation on the one 

side and the 3 FIDs obtained during the rest period on the other side. No statistically significant 

difference was detected for any parameter. 

The recovery of PCr was well fitted with a mono-exponential function. The  PCr reached the mean 

value of 72.2 ± 25.0 s. This PCr value was corrected for acidosis by normalizing to the actual 

cytosolic pH (19) and was then found to be 59.1 ± 19.0 s. This value was significantly longer than the 

PCr measured during the VC protocol (p<0.05 with PCr of 50% QMIVT, <0.01 with PCr of 30% and 

40% QMIVT). 
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3)   Comparison between VC and ES 

A)  Metabolic stress 

Table 1 also contains the 31P and 1H NMRS mean results obtained during ES. When comparing the 

metabolic stress induced by ES (ES 5min and ES-max) and VC for identical absolute workloads (10% 

of QMIVT), ES generated a higher metabolic demand than VC for all measured parameters (p<0.001). 

When comparing the metabolic stress obtained with approximately identical workloads per activated 

muscle group (10% of QMIVT for ES and 30% of QMIVT for VC), all parameters showed a higher 

metabolic solicitation under ES (ES-max), but only pH and PCr depletion differed significantly between 

contraction modes.  

B)  pH to [ADP] relationship 

We studied the relationship between pH and [ADP] during both exercises for all subjects (figure 6A), 

taking into account all steps composed of 5-min exercise for the VC protocol, and the 13 min of 

stimulation for the ES protocol. These global relationships were closely fitted with a mono-exponential 

function (pH = a.e –b (ADP) + c), showing that the decrease of pH associated with the increase of [ADP] 

was markedly faster during ES than during VC. The equations fitted to the pooled data were pH = 

0.52.e-0.011ADP + 6.56 for VC and pH = 0.93.e-0.142ADP + 6.7 for ES. 

C)  PO2 to  [ADP] relationship  

All individual relationships between PO2 and [ADP] were plotted together for both types of exercise 

(figure 6B). The same time points as for the study of the pH-[ADP] relationship were taken into 

account and were fitted with the same mono-exponential function. This relationship (figure 6B) showed 

that the PO2 rate constant appeared lower during ES than during VC. The equations fitted to the 

pooled data were PO2 (Torr) = 50.e-0.143(ADP-4.75) + 5.12 for VC and PO2 (Torr) = 50.e-0.103(ADP-4.1) + 7.37 

for ES. This difference was further substantiated by the comparison of the PO2s measured under the 
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two conditions over the range of ADP activation obtained during ES (10-32 µM) and by taking ADP as 

covariate: 11.2 + 0.6 Torr during VC vs. 16.1 + 0.5 Torr under ES (p<10-6).

4)   Myoglobin quantitation 

The mean Mb concentration value was 0.23  0.05 mmol/kg. 



16.

DISCUSSION

Using a very similar approach to Richardson et al. (39), we investigated the interplay between the cell 

energy charge, pH and oxygenation in exercising skeletal muscle cells. Based on this analysis, we 

further characterized the fundamental differences in energy metabolism between voluntary and 

electrostimulated contractions. A main purpose of this study was to situate the metabolic stress 

induced by the ES program (13 min) on a scale of voluntary bouts realized against different 

mechanical loads. We therefore developed a progressive exercise composed of 5 or 6 steps. For this 

to be feasible within a single NMR exam, we decreased the bout duration from 13 to 5 min. In a 

preliminary study (data not shown), we demonstrated that, for a given mechanical load, results of 

evaluated parameters were identical after 5 min or after 13 min of VC. 

In a previous study, our group used 31P NMRS to explore muscle energetics during intermittent tetanic 

electrical stimulation of human quadriceps (50). The present protocol is more advanced from a 

technical standpoint. The key element was the introduction of a new acquisition interface (Multi Scan 

Control -MSC- developed by A. Nauerth (Bruker, Ettlingen)), which allows extremely fast interleaving 

of 1H and 31P NMR acquisitions. The switching was more than fast enough to be disregarded on the 

time scale at which the metabolic changes occur, and we can consider that muscle oxygenation, high-

energy phosphates and pH were indeed simultaneously monitored. Compared to the previous work, a 

significant gain in signal to noise was achieved, due to the higher magnetic field (4T versus 1.5T 

formerly), but also to the considerably improved electronic connections between the electrostimulator 

and the NMR spectrometer, namely, the quality of the filtering through the Faraday cage. Part of the 

increase in signal to noise was traded for a better time resolution of the spectra, making it possible 

here to finely depict the progression of the metabolic changes during the bouts. Finally, the current 

study employed a simplified experimental setup in terms of number of stimulating electrodes, that 

facilitated data interpretation. 

A concern was that the VC session, which was practiced on the day preceding ES, might have 

influenced the response to ES. Two subjects performed a second VC (VC2) protocol after ES. For all 
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steps and for all parameters, the results were comparable to those measured during the first VC 

protocol (p>0.05). If 30 hours after the first VC and 6 hours after ES, the results of the second VC are 

identical to those of the first VC, this indicates that neither VC nor ES had any prolonged cumulative 

effect. Alternatively, the first VC and ES might have had opposite long-lasting effects. The second 

hypothesis cannot be ruled out, but is unlikely and has no mechanistic support. 

1)  Voluntary contraction 

The phosphorus metabolites involved in muscle energy production and utilization are related via the 

creatine kinase reaction. The changes in their relative distribution as can be detected by 31P NMR are 

commonly used as an indicator of the level of metabolic activation during exercise (2, 21). At the onset 

of exercise, there is an immediate breakdown of PCr, which provides the necessary fuel for the first 

seconds of contraction. The glycolytic pathway then takes over, first as a major ATP producer, then as 

a minor producer when the mitochondrial oxidative phosphorylations, in response to the rise in ADP, 

become the predominant source of ATP. Interestingly, the Pi/PCr ratio, easily monitored on the 31P

spectra, evolves in direct proportion to the cytosolic ADP concentration, which is itself below direct 

detection limits of NMR. The Pi/PCr ratio is most useful to appreciate the mitochondrial respiratory 

control exerted by ADP (29). In this work, the tight coupling between force development and 

respiratory control by ADP was again verified by the progressive increase in the Pi/PCr ratio with the 

stepwise increase in mechanical load. During the last step, the mean PCr depletion and Pi/PCr ratio 

reached 87.9% and 10.6 respectively. This mean Pi/PCr value appeared very high in comparison with 

other reported exercise-induced maximal Pi/PCr ratios (3, 52), confirming that the subjects had indeed 

exercised until exhaustion. This should be tempered by the fact that Pi/PCr presented a large inter-

individual variability and was abnormally high during the last step in some subjects because the PCr 

peak disappeared into the noise.  

The decrease in the intracellular pH was also proportional to the increase in force level. It is still 

common to relate intracellular acidosis to anaerobic lactate production (46). Strictly speaking, this is 

untrue for two reasons. Firstly, lactate production through glycolysis does not produce protons. The 

net balance for H+ is nul (9). Secondly, lactate production in exercising muscles is far from being 

controlled by hypoxia only (37). The sympathetic tone is a major activator of the glycolytic pathway 
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and of lactate production, independently of the degree of cell oxygenation (18). In reality, intramyocytic 

acidosis develops when ATP consumption, which is the actual source of protons (15), is not balanced 

by mitochondrial ATP production, which drains these protons. Once the real origin of protons is made 

clear, it follows that proton production and ADP concentration are related during an aerobic exercise, 

both with each other and with the mechanical load. This is exactly what was observed in this protocol 

during voluntary contraction (see table 1). The minimal role of cell hypoxia was also exemplified as 

intracellular pH, which decreased from 6.90 to 6.67 between 30 and 50% MVC, appeared unrelated to 

intracellular PO2, which remained constant, 6.2 to 5.1 Torr, over this range of mechanical loads. 

The decrease in pH during the early phase of recovery of each step results from the rapid resynthesis 

of PCr, which affects the pH status of the cell by generating protons (45). 

A 420 s ischemia of the thigh was used to obtain the maximal Mb desaturation peak, providing a 

reference for cytoplasmic oxygenation determination. Indeed, it has been demonstrated that the 

desaturation of Mb in human muscle peaked after approximately 6 min of cuff occlusion (51), and this 

was verified in our lab with a stable Mb desaturation for a cuff pressure 80 Torr or more above systolic 

blood pressure. We found no significant difference  between the mean desaturation values calculated 

at the 5th, 6th and 7th minute of ischemia (+3% and +2% for min 6 and min 7 vs min 5, p = 0.90). Our 

values of [Mb] are comparable to previous determinations in the human calf muscle (5) and in the 

quadriceps of subjects aged between 19-39 years (31).  

During exercise, muscle oxygen consumption (V° O2) can increase by adaptations in oxygen supply 

(O2del) and by an increase in the capillary-to-cell PO2 gradient. Increasing perfusion is the natural way to 

augment O2del and at the same time to raise mean capillary PO2, directly or indirectly via capillary 

recruitment and associated adaptations of capillary transit time (42). The other possibility for augmenting 

the transcapillary PO2 gradient is to decrease intracellular PO2 in order to facilitate oxygen diffusion. This 

was observed here with a progressive fall in intracellular PO2 between 10 and 30% MVC. The 

appearance of deoxygenated myoglobin and thus the fall in intracellular PO2 even during relatively low 

work levels (such as 20% of MVT) might also have been facilitated by the experimental design (6s 

isometric contraction – 6s rest), with ischemia induced during contraction and incomplete recovery 
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during relaxation. Above 30% MVC, intracellular PO2 did not however decrease any further, but rather 

plateaued around 5 Torr. This agrees with results of Richardson et al. (37-39), who previously studied 

Mb desaturation during exercise of the quadriceps in trained human volunteers, and found that muscle 

PO2 deduced from Mb desaturation decreased significantly during exercise, but remained at a constant 

level of about 3 Torr between 30 to 80 % V°   O2 max. The matter is however debated since it was reported 

that the capillary-to-sarcoplasm PO2 gradient increased up to V°    O2 max (30). A possible but improbable 

explanation is that exercise intensity was not high enough in that study – it can always be claimed that 

the plateau was in fact not reached. In our opinion, a more likely possibility is that different muscle 

territories may have different regulations of O2 supply and uptake. The data by Richardson et al. (37-39) 

and by our group, which are in close agreement and clearly demonstrate a relatively early plateau in Mb 

desaturation, were collected over the course of a progressive exercise of the quadriceps. The 

observations by Mole et al. were made on the triceps surae (30). It is important to note that all 

investigators have reported a maximum Mb desaturation of approximately 48-60% during exercise. One 

can then reformulate the discrepant observations by saying that maximum exercise corresponds to 

maximum Mb desaturation in the gastrocnemius, while exercise can still be intensified in the quadriceps 

after maximum Mb desaturation is reached. 

2)  Electrical stimulation 

A main result of this study is that, for an identical mechanical level (10% of MVT), ES induced far 

greater metabolic changes than VC. This pattern is more likely to result in a specific muscle cell 

recruitment involving a non-steady state metabolism and early fatigue. The demonstration of this  

particular pattern of muscle activation is an argument in favor of the combination of ES with VC for the 

treatment of amyotrophy in the context of rehabilitation. The metabolic changes measured in the 

present study were more severe than those of our previous investigation (50) (1.38 vs. 0.46 for the 

Pi/PCr ratio and 6.69 vs. 6.76 for the pH). This can be explained by a difference in the surface coil 

position (rectus femoris vs. vastus medialis) and/or by a more important relative loading of the 

stimulated muscle. Indeed, we used 3 stimulating electrodes (vastus medialis, vastus lateralis and 

rectus femoris) to lift a 20% of QMIVT load in the previous study and one stimulating electrode to lift a 

load of 10% of QMIVT in the present study. This was confirmed by the higher current intensity 

required at the end of the ES program of the present study in comparison to the previous one (69 vs. 

51 mA). 
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High-energy demand during ES

The first point to be addressed was whether the exaggerated metabolic stress observed under ES 

resulted from an uneven distribution of the mechanical load and, precisely, from a smaller muscle 

mass involved during ES in comparison with VC. The exact proportion of quadriceps involved during 

the ES protocol applied with only one stimulating electrode positioned on the rectus femoris muscle 

could not be determined under the present experimental conditions. However, a PET study has 

demonstrated that approximately one-third of the quadriceps was recruited to lift a load of 10% of 

QMIVT with one stimulating electrode positioned on the vastus lateralis (49). Consequently, adjusting 

for work load per unit volume of activated muscle, we focused our attention on the comparison of 10% 

of QMIVT for ES versus 30% of QMIVT for VC. That comparison clearly showed that a greater 

metabolic stress held, even when the mechanical load was approximately adjusted for the muscle 

mass respectively involved in the two modes. 

As a consequence, additional mechanisms must contribute to the exacerbated solicitation in the ES 

mode and it is therefore important to consider the particularities in the temporal and spatial recruitment 

of fibers: 

1) Temporal recruitment: a light-loaded voluntary exercise principally recruits oxidative type I fibers 

(16) which depolarize at a low frequency (~15 Hz) (25) in a desynchronized manner (11). In contrast, 

ES at the same frequency is mechanically less efficient because the synchronous contractions of the 

depolarized motor axons involve an incomplete temporal recruitment (16). Therefore, a higher 

stimulation frequency (~50 Hz) is required to improve the mechanical efficiency. However this increase 

in the stimulation frequency, which corresponds to a supramaximal temporal recruitment, is linked to a 

higher metabolic demand (28). 

2) Spatial recruitment: ES preferentially recruits muscle zones near the electrode and this recruitment 

diminishes proportionally with increasing distance from the electrode (48). A decrease of the 

mechanical response linked to fatigue of the superficial motor units can only be compensated by an 

increase of stimulation intensity. This more intense stimulation depolarizes new motor units at a 

greater distance from the electrode, but continues to impose a sustained contractile activity to the 

superficial motor units, which then present a certain degree of exhaustion (49). During the ES 
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protocol, what the NMR coil interogates is a mixture of progressively fatiguing fibers and newly 

activated ones. The coil geometry makes it predominantly sensitive to muscle fibers contained in a co-

centered hemi-sphere of coil diameter (5cm). Fibers located further away from the coil, and which are 

progressively recruited with increasing current intensities, contribute less to the NMR signal, to an 

extent that cannot be precisely assigned in this protocol.  

We confirmed that under ES the metabolic demand measured via the high energetic phosphates 

status (Pi/PCr, pH) was widely out of proportion compared to the VC requiring the same force 

development. Our data agree with the findings of Ratkevicius et al. (33), who compared ES and VC 

with 31P NMR in the gastrocnemius and soleus muscles and concluded that the energy costs of force 

development are higher during electrically induced exercise than during voluntary exercise when 

continuous contraction of submaximal intensity is performed. Voluntary and functional electrical 

stimulated exercises were also compared during dynamic knee-extensor contractions and glycogen 

depletion was much higher after ES than VC (22). In addition, we demonstrated that the greater 

energy charge, which automatically implies specific regulations of energy metabolism, was associated 

with more profound changes in the level of cytoplasmic oxygenation.  However, the present study 

could not provide direct evidence for the proposed mechanisms.  

Preferential recruitment of glycolytic fibers under ES

The construction of the plots of the pH to ADP relationship identified another important particularity of 

the ES mode: a shift in the typology of the fibers preferentially involved during ES. As mentioned 

above, VC results in a fiber recruitment modulated as a function of motor unit size beginning with the 

small type I fibers (17), whilst ES of the quadriceps recruits superficial muscle zones that present a 

predominance of type II fibers (27). This is supported by the study of the pH-ADP relationship. During 

the gradual VC protocol, we established a reference curve for the pH decrease associated with the 

increase in [ADP]. The same curve plotted during ES indicated that for a given solicitation in high 

energy phosphates, the electrically contracted muscle was more acidotic. This observation is 

compatible with a preferential recruitment of type II fibers. Indeed, during classic high-intensity 

exercise, fast glycolytic muscle fibers become more acidic and more rapidly so than slow oxidative 

twitches (32). In our experimental conditions, we excluded the hypothesis of a transient impairment of 
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perfusion (53), which might explain the different pH-ADP relationship observed under ES, for the 

following reasons: 1) the PET technique has already established that the electrically stimulated muscle 

presents a hyperperfusion in comparison with the voluntarily contracted muscle (48). 2) One subject 

performed two steps of the voluntary protocol (10% and 30% of QMIVT) under ischemic conditions 

(data not shown) and the pH-ADP relationship was the same as that during the normal graded 

exercise. This result confirmed that during VC the pH-ADP relationship was not perfusion dependent. 

Muscle oxygenation during ES

Based on mechanical considerations only, muscle cytoplasmic oxygenation appeared altered during 

ES and might be directly related to a higher muscle V° O2 in this modality. A previous study of the 

electrically stimulated quadriceps with the PET technique has already shown a proportionally high 

level in the rate of oxygen metabolism (48). The particular contractile activity discussed above remains 

the most likely explanation for this exaggerated oxygen consumption at a low mechanical load.  

Muscle PO2-ADP relationship under ES

The combination of the simultaneously acquired 1H and 31P data has afforded a better understanding 

of the muscle cell oxygen status as a function of metabolic stress. The PO2 to ADP relationship shows 

a slower decline rate of muscle PO2 during ES than during VC. Thus, for a given metabolic stress, 

cytoplasm O2 content appears higher during ES than during VC. These results are compatible with a 

change in the dynamic equilibrium between O2 supply (O2del) and O2 demand (V° O2) and suggest an 

upward shift of the O2del / V°° O2 relationship during ES. The observation could be explained by a 

relative muscle hyperperfusion in the electrically stimulated muscle. Certainly, muscle is perfused in 

excess during ES, as compared to VC, for a given imposed absolute workload. This was documented 

by H2
15O PET which established that the muscular blood flow measured during an ES program 

reached ~ 25 ml.min-1.100 g-1 in some regions of the quadriceps (49) and that this value was three 

times higher than the blood flow measured during a comparable VC of the quadriceps (48). But, this 

would not explain the modified relationship in fig 6B. What these curves suggest is that for a given 

metabolic stress, estimated from the ADP concentration, muscle is hyperperfused in ES compared to 

VC. High muscle perfusion relative to the metabolic demand results in a high level in oxygen 

availability and might therefore increase cytoplasmic oxygenation. Alternatively, it might be argued that 
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fibers closer to the coil fatigued by ES are essentially metabolically recovering, while muscle fibers are 

progressively being activated during VC. So, the ADP to PO2 would be scanned from left to right 

during VC and predominantly from right to left during the latter phase of ES. An hysteresis like effect 

might then account for the differences in figure 6B. However, when considering data acquired during 

the first 3 minutes of ES and comparing them with data acquired later into ES, it appears that all ES 

data belong to the same relationship (not shown). 

3)  Exercise recovery 

The post-exercise creatine rephosphorylation time constant (  PCr) provides a most useful index (4). If 

the acidotic inhibition of creatine kinase is corrected for, the  PCr is independent of the mechanical 

work and truly reflects the maximal capacity of the mitochondrial oxidative phosphorylation (21). This 

was illustrated here with the comparison of the  PCrs determined during the recovery phases of the 

VC session. After correction for the degree of acidosis (19), the successive measurements appeared 

similar and fell within the normal range determined in our laboratory. By contrast, the post-ES  PCr 

was prolonged by about 40%, as compared to post VC  PCrs. This is another important argument in 

favor of a preferential recruitment of type II fibers, with lower oxidative capacities, during ES. 

4)  Conclusion and perspectives 

Not only did this study confirm the important increase in energy demand associated with 

neuromuscular ES as compared to VC, but our results also shed light on specificities of electrically 

stimulated contractions, which had been poorly recognized or were yet unknown. The protocol was 

designed in a such a way that ES and VC data could be precisely compared, with adequate matching 

in time and mechanical load. The introduction of heteronuclear interleaved NMR acquisitions was 

decisive in depicting the particular relationships between intracellular O2 and energy metabolism 

during neuromuscular ES. In this context, the significant new contributions were: 

- the demonstration of a greater involvement of glycolysis during ES, and with the construction of the 

pH to ADP relationship, its dissociation from the energy charge, the latter indicating a preferential 

recruitment of type II fibers; 

- the observation with 1H spectroscopy of Mb, of an altered transcellular O2 gradient, which must play 

a role in facilitating the exacerbated V°O2 response during ES (48); 
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- the identification of a specific pattern for the relationship between intramyocytic PO2 and ADP during 

ES. After the intracellular PO2 had been normalized to the actual load imposed on the energy 

metabolism, the O2 gradient appeared to be reduced during ES – and not increased, as one would 

have intuitively hypothesized.  

The lead for further investigation is certainly to explore this hypothesis of hyperperfusion under ES 

with the same matching of measurements as was done here for the exploration of oxygenation and 

high energy phosphate metabolism. Muscle perfusion can indeed be monitored in a completely non-

invasive mode with new NMR imaging sequences, using arterial water as a natural endogenous 

tracer, and known as "arterial spin-labeling" sequences (13, 26, 36). They provide perfusion maps with 

high temporal - in the second range - and spatial - millimetric- resolutions. We have already shown 

that these arterial spin-labeling sequences can be incorporated into interleaved acquisition schemes, 

together with 1H- and 31P NMR spectroscopy (5, 35). Such schemes will be applied to forthcoming 

research on neuromuscular ES specificities to be initiated in our laboratory. 
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FIGURE LEGENDS

Figure 1: Graphical scheme of experimental conditions during electrical stimulations (ES) and voluntary 

contractions (VC) in the 46-cm bore magnet. Surface coil (a) and electrodes (b) are positioned on the 

rectus femoris. ES or VC induce intermittent isometric contractions against a workload (c) positioned 

outside the magnet via a rope (d) and pulleys (e). 

Figure 2: 31P- (panel A) and 1H- (panel B) NMR spectra in rectus femoris muscle of subject 1 during 

the different steps [10%, 20%, 30%, 40% and 50% of quadriceps maximal isometric voluntary torque 

(QMIVT)] (5 min) and the following recoveries (5 min) of the voluntary contractions (VC) session. 31P

spectra are plotted between 7 and –2 ppm relative to phosphocreatine and peak assignments are 

indicated for inorganic phosphate (Pi) and phosphocreatine (PCr). 

Figure 3: Mean curve (+ SEM) obtained from the individual  data during the different steps [10%, 20%, 

30%, 40% and 50% of quadriceps maximal isometric voluntary torque (QMIVT)] and the following 

recoveries (R) of the voluntary contractions session for PCr (panel A), Pi/PCr (panel B), pH (panel C) 

and deoxymyoglobin (panel D), respectively. 

Figure 4: 31P- (panel A) and 1H- (panel B) NMR spectra in rectus femoris muscle of subject 1 during 

intermittent electrical stimulations (ES) (13 min) and recovery (7 min). Spectra are plotted between 7 

and –2 ppm and peak assignments are indicated for inorganic phosphate (Pi) and phosphocreatine 

(PCr). 

Figure 5: Mean (+ SEM) curve obtained during intermittent electrical stimulation (0-780 s) from the 

individual  data for PCr (panel A), Pi/PCr (panel B), pH (panel C) and deoxymyoglobin (panel D), 

respectively.  

Figure 6: Fitted curves obtained with pooled individual data for the pH-[ADP] relationship (panel A) 

and the PO2-[ADP] relationship (panel B) during voluntary contractions (VC) and electrical stimulations 
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(ES). In panel A, the x symbols correspond to 3 successive data points collected early into ES, when 

PCr is rapidly being depleted (phase 1 of exercise) and consequently is buffering pH. 
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Table 1: 31P/1H NMR interleaved acquisitions 

PCr depletion (%)      Pi/PCr       pH   PO2 (Torr) 

Rest      0.06 ± 0.02 b,e 7.03 ± 0.02 b,e

VC-10%  6.4 ± 3.6 b,e  0.13 ± 0.04 b ,e 7.04 ± 0.07 b,e 36.7 ± 16.9 b,e

VC-20%  18.6 ± 7.6 b,e 0.26 ± 0.12 b,e 6.98 ± 0.08 b,e 20.2 ± 15.8 b,e

VC-30%  41.9 ± 11.0 c 0.66 ± 0.34  6.90 ± 0.09 b,e   6.2 ± 3.4 

VC-40%  66.8 ± 6.3 b,c 1.50 ± 0.55  6.83 ± 0.12 a,d 4.9 ± 3.0 

VC-50%  85.2 ± 8.9 b,e 6.85 ± 8.61 b,e  6.67 ± 0.10    5.1 ± 3.8 

Exhaustion  87.9 ± 9.1 b,e 10.6 ± 11.6 b,e 6.64 ± 0.11    5.5 ± 3.3 

ES 5min  39.5 ± 15.9  1.15 ± 0.76  6.70 ± 0.11        10.7 ± 12.2 

ES-max  53.7 ± 17.8  1.38 ± 1.14  6.69 ± 0.11    5.7 ± 6.0 

Table 1: PCr depletion (in %), Pi/PCr, pH and cellular oxygenation (PO2 in Torr) measured in the 

rectus femoris at rest, during the voluntary contractions (VC) session and during the electrical 

stimulations (ES) session. For the VC session, data represent the last min of each step performed 

against gradual workloads corresponding to different percentages (10%, 20%, 30%, 40% and 50%) of 

the quadriceps maximal isometric voluntary torque (QMIVT). Exhaustion is defined as the maximum 

load lifted by the volunteers and was 50% of QMIVT for 5 subjects and 60% of QMIVT for the 3 other 

subjects. During the ES session, the workload was 10% of QMIVT. The mean values measured during 

the fifth minute of ES are listed (ES 5min) as well as the greatest changes observed during the ES 

period (ES-max). Results are given as means ± standard deviation; n = 8; symbols a and b : p<0.01 

and < 0.001 vs ES 5min; c, d and e : p< 0.05, <0.01 and <0.001 vs ES-max. 



31.

Figure 1. 
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Figure 2. 
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Figure 4.
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Figure 5. 
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Figure 6. 
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