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1 Introduction and Mathematical Modeling

Percussive drilling has nowadays become the reference technology for drilling
hard geological formations and, as such, is ubiquitous in the exploitation of
earth resources. Despite this extensive use, the technological process is not fully
understood and suffers a lack of proper modeling framework. In particular, there
is no explanation to the existence of optimal control configurations that maximize
the penetration rate of the tool for a given rock formation [2].

Depouhon et al. [4] have proposed a simple model for the study of the
process and the identification of optimal control parameters based on the nu-
merical analysis of its steady-state response or limit cycling behavior. They
model the bit dynamics by a 1 degree-of-freedom oscillator impulsively loaded
in the field of gravity and subject to a bilinear bit/rock interaction (BRI) law.
This model, presented in Figure 1-(a), comprises three types of forces: (i) λS a
static force representing the conjugated effect of gravity and thrust; (ii) δλψ =∑

i∈N δ (τ − iψ − τs) a periodic impulsive force of constant dimensionless unit
impulsion, period ψ and time shift 0 ≤ τs < ψ, leading to activations at times
τi = iψ+ τs, i ∈ N; and (iii) ϕR the reaction force of the rock on the bit that fol-
lows the bilinear model depicted in Figure 1-(b). The non-smooth nature of the
latter leads to the definition of three drilling phases: (i) forward contact (FC ),
the bit motion is downwards while there is contact between the bit and the rock;
(ii) backward contact (BC ), contact is established but the bit is moving upwards;
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and (iii) free flight (FF ), the bit is flying off the hole bottom, the force exerted
by the rock is zero.

Between two percussive activations, bit motion is ruled by the dynamics of
one of these regimes. Referring to the dimensionless penetration while drilling
by θ, the governing equation for each regime reads

FC : ¯̄θ + θ = λS ,

BC : ¯̄θ + γθ = λS + (γ − 1) θp,

FF : ¯̄θ = λS .

(1)

In the above equations, the overhead bar denotes differentiation with respect to
the dimensionless time while γ > 1 represents the unloading slope of the BRI
law and θp defines the peak penetration along the drilling cycle; see Figure 1-(b).
Given the impulsive nature of the loading, at each activation, the bit velocity
jumps by an amount 0 < η ≤ 1

θ̄
(
τ+
i

)
= θ̄

(
τ−i
)

+ η, i ∈ N. (2)

Coefficient η characterizes the efficiency of the momentum transfer between the
hammer and the bit. It is related to the contact conditions at the bit/rock
interface as well as to the geometries of the hammer and the bit, and embodies
wave propagation effects that can be seen as instantaneous on the timescale of
bit motion. We assume a perfect transfer in this preliminary study and set η = 1.

The transition conditions for the passage of one drilling phase to the other
are given by the locations of the non-smooth points along the drilling cycle and
by the occurrence of activation. While the former category of events is state-
dependent, the latter is time-dependent. They read

FC→BC : θ̄ (τ) = 0, BC→FF : θ (τ) =
γ − 1

γ
θp,

FF→FC : θ (τ) = θu, BC→FC : θ̄
(
τ+
i

)
· θ̄
(
τ−i
)
< 0,

(3)

where θu corresponds to the penetration at the end of the drilling cycle, when the
bit either enters the FF phase or the FC one upon exiting the BC phase. The
penetration is reset to zero or to the residual penetration θ` = (1 − γ)θp + γθu
at FF→FC and BC→FC transitions respectively.

Variables θ`, θp and θu are of a peculiar type. They are history variables.
They capture the past history of BRI law at the points of non-smoothness along
the drilling cycle: the lower, peak and upper points; see Figure 1-(b). As such,
they do evolve in a stepwise manner, their update taking place at the instant the
system goes through the corresponding point of the interface law.
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Figure 1: Panel (a) shows the dimensionless model proposed in [4] with the BRI
law depicted in panel (b). Panel (c) illustrates the hybrid and sequential nature
of the governing equations.

The handling of history variables in the definition of initial conditions and the
assessment of limit cycles properties requires specific care. This paper addresses
these issues in the framework of the analysis of the system defined by equations
(1)-(3).

2 Initial Value Problem

The definition of the initial value problem (IVP) associated with the governing
equations of the model requires the specification of ad hoc initial conditions.
These conditions not only define the state of the system at the initial time, but
also the initial drilling phase, the activation time shift and appropriate history
variables. The history variables cannot be freely chosen. They must be defined
such that reverse-time integration of the system from the initial conditions leads
to the state defined by the history variables at their update location.

As an example, we consider the initialization of the system in the BC phase.
Complete definition of the initial conditions is equivalent to specifying vector
[θ0 θ̄0 θP τS ]T in addition to the drilling phase. The BC phase necessarily
originates from a FC→BC transition point, [θp 0]T . Accordingly, the peak
penetration must be initialized as a function of the initial state. Assuming that
no activation takes place between the transition and initial points—this entails
choosing τs sufficiently large—we impose the initial conditions to belong to an
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arch of trajectory emanating from the associated peak penetration. Solving the
equation of motion, we find

θp
(
θ0, θ̄0

)
=

 (γ−1)θ0−λS−
√

(θ0−λS)2−(γ−2)θ̄20
γ−2 , γ 6= 2

θ0 −
θ̄20

2(λS−θ0) , γ = 2
. (4)

This expression constraints the choice of the initial state, the argument of the
square root having to be positive for valid conditions. In fact, a stronger con-
straint, defined by the BC→FF transition locus, can be found.

Figure 2 illustrates the dependency of the peak penetration on the initial
state as well as the constraints on the choice of this state. Three initial points
(A,B,C) are considered. Forward- and reverse-time integrated trajectories are
shown. Similar developments can be done when choosing the initial drilling
phase to be FC or FF.
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Figure 2: Dependence of the history
variables on the initial conditions.
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Figure 3: Average steady-state rate of
penetration and number of drilling cy-
cles as a function of the vertical thrust,
(ψ, γ) = (10, 10). Blue (red) markers
denote stable (unstable) solutions.

The hybrid nature of the system and the presence of history variables compli-
cates the definition of the associated IVP. These complexities can nonetheless be
circumvented by a specific choice of initial conditions: the FC→BC transition,
i.e. [θ0 θ̄0]T = [θp 0]T . In addition to simplifying their definition, the transition
point offers the advantage that it belongs to all drilling cycles and that the tra-
jectory is smooth in its neighborhood, facts that matter for the computation of
limit cycles.
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3 Computation of Limit Cycles

The computation of the average steady-state penetration rate requires the knowl-
edge of the system steady-state response. This response, if not aperiodic, can be
computed by solving the boundary value problem (BVP) defined by enforcing
periodicity conditions on the system state Γ = [θ θ̄]T after one period of the
limit cycle

Γ(T ) = [θp 0]T = Γ(0), (5)

with T = nψ, the governing equations being non-autonomous. The integer factor
n is the harmonic ratio.

Several techniques exist for numerically solving equation (5), see [6]. Given
the hybrid nature of the system, application of the single shooting method seems
most appropriate. This procedure transforms the BVP problem into an equiv-
alent nonlinear algebraic one: find the initial conditions [θp τs]

T that ensure
verification of the periodicity condition after integration of the associated IVP
over one period. Thus, two ingredients are required to compute the steady-
state response: (i) a procedure to integrate the governing equations and (ii) a
procedure to solve a nonlinear algebraic system of equations.

Time integration of the governing equations is performed using an event-
driven scheme [1]. Closed-form solutions of the governing equations are used for
the parametrization of the trajectory and event-detection. To solve the nonlinear
system of equations resulting from the problem formulation, we have recourse to
an iterative Newton-based algorithm. As this procedure requires an initial guess
close enough to the solution to ensure its convergence, it has been embedded in
an adaptive continuation procedure based on an arclength parametrization [6].
The latter allows continuation of solution branches in the space of the model
parameters, enabling the computation of the average steady-state rate of pene-
tration for range of parameters

〈ROP〉 =
1

nψ

ˆ nψ

0
θ̄(s)ds. (6)

Figure 3 shows typical results obtained from the computation of the steady-
state response via the continuation procedure. On the upper graph, the average
rate of penetration is plotted versus the vertical force on the tool. The bottom
plot depicts the average number of drilling cycles; that is, the ratio between
the number of drilling cycles m and the harmonic ratio n, where m is defined
as the number of FC→BC transitions in the periodic drilling phase sequence
characterizing the limit cycle. The marker color is representative of the stability
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of the computed limit cycles. Blue markers denote locally stable solutions while
red ones represent unstable limit cycles.

4 Computation of Floquet Multipliers

The local asymptotic stability of periodic orbits can be assessed by evaluation
of the Floquet multipliers associated with the trajectory, i.e. the eigenvalues of
the monodromy matrix that characterizes the growth of perturbations along the
periodic orbit after one period

Mnψ =
∂Γnψ
∂Γ0

. (7)

Multipliers lying within the unit circle correspond to stable solutions while those
outside the reference circle are related to unstable orbits. The linear analysis is
inconclusive in case several multipliers lie on the circle itself [6].

For smooth systems, the monodromy matrix is continuously defined and can
be obtained by integration of the variational equation associated with the nonlin-
ear system under study [6]. This is no longer the case when non-smooth systems
are considered. The fundamental solution matrix associated with the variational
problem may exhibit discontinuities at the points of non-smoothness along the
periodic orbit. A measure of these jumps is the so-called saltation matrix, that
is defined across the non-smooth event along the limit cycle [5].

Figure 4: Jump of the state discrep-
ancy between nearby trajectories on a
transition border with reset map.

1.59 1.595 1.6 1.605 1.61 1.615

−0.1

−0.05

0

0.05

0 0.5 1 1.5
−0.5

0

0.5

1

P

P P

P

Phase plane
Limit cycle

Adjusted

Figure 5: Reference limit cycle and
perturbed trajectories for the numeri-
cal computation of the monodromy ma-
trix, (λS , ψ, γ) = (0.12, 10, 10).

In the next paragraphs, we derive the expression of the saltation matrix
for a non-smooth event that depends on the time, the state and the history
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variables. Also, a reset map, ruling state discontinuities at the non-smooth event,
is considered. Figure 4 serves as support for the definition of the introduced
quantities.

Let x(t) ∈ Rn denote the reference trajectory of a system in the state-space
and x̃(t) be a nearby trajectory. Let also define the non-smooth event by the
scalar function h(t,x(t),y(x(t))) = 0, where y(x(t)) ∈ Rm refers to the vector of
history variables. The vector fields of the system prior to and after the transition
are referenced as f±∗ = f±(t∗,x(t±∗ ),y(x(t±∗ ))), and the reset map on the tran-
sition border is given by R(x(t∗)) or R(x̃(t̃∗)). Restricting our analysis to the
linearized dynamics only, all the presented developments must be understood as
exact in a first-order sense.

The state discrepancies, or perturbations, before and after transition are
defined as

δx− = x̃(t−∗ )− x(t−∗ ) and δx+ = x̃(t̃+∗ )− x(t̃+∗ ), (8)

with t̃∗ = t∗ + δt. Accounting for the reset map relations x̃(t̃+∗ ) = R(x̃(t̃−∗ )) and
x(t+∗ ) = R(x(t−∗ )) and that, to first order, we have x̃(t̃−∗ ) = x(t−∗ ) + δx− + f−∗ δt
and x̃(t̃+∗ ) = x(t+∗ ) + f+

∗ δt+ δx+, the first-order expansion around the reference
transition point reads

δx+ =
∂R

∂x

∣∣∣∣
x(t∗)

(
δx− + f−∗ δt

)
− f+
∗ δt. (9)

Expanding h(t̃∗, x̃(t̃−∗ ),y(x̃(t̃−∗ ))) = 0 around (t∗,x(t−∗ ),y(x(t−∗ ))), we get δt as
a function of the pre-transition perturbation δx−

δt = −

(
∂h
∂x + ∂h

∂y
∂y
∂x

)T
∂h
∂t +

(
∂h
∂x + ∂h

∂y
∂y
∂x

)T
f−
δx−, (10)

where all expressions are evaluated at the reference point. Inserting this re-
sult into the expression of the post-transition state discrepancy, we obtain the
saltation matrix S that quantifies the jump of linear perturbations across the
non-smooth event

δx+ =

 ∂R

∂x

∣∣∣∣
x(t∗)

+

(
f+
∗ − ∂R

∂x

∣∣
x(t∗)

f−∗

)(
∂h
∂x + ∂h

∂y
∂y
∂x

)T
∂h
∂t +

(
∂h
∂x + ∂h

∂y
∂y
∂x

)T
f−


︸ ︷︷ ︸

S

δx−. (11)

State-dependency of the history variables should thus be accounted for in the
calculation of the saltation matrix.
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Application of this result to the limit cycle shown in Figure 5 permits the
validation of the numerical computation of the monodromy matrix. For this
limit cycle, characterized by the periodic sequence (BC → FF → FC → ∆θ̄i →
FC)	, the matrix can be calculated both numerically and analytically. While the
numerical approach relies on application of definition (7) by approximating the
partial derivatives with finite differences using nearby orbits to the limit cycle,
see Figure 5, the analytical one consists in decomposing the flow in smooth
sections along the limit cycle and introducing the appropriate saltation matrices
at non-smooth events

Mnψ = SFC→BC ·ΦFC (τFC,2) · S∆θ̄i
·ΦFC (τFC,1) · · ·

· · · · SFF→FC ·ΦFF (τFF ) · SBC→FF ·ΦBC (τBC) , (12)

where ΦXX(τXX) refers to the fundamental solution matrix of drilling phase XX
that can be analytically calculated and shown to depend on the phase duration
τXX only, and SYY is the saltation matrix corresponding to non-smooth event
YY.

Application of the validation procedure on different periodic sequences has
provided the necessary confidence in the numerical computation procedure—that
proves more versatile as it is applicable to any sequence of phases, regardless of
it—to assess the periodic solutions computed via the shooting procedure. These
computations have yielded the stability results shown in Figure 3.

5 Conclusions

This paper develops some specificities of the percussive drilling model proposed
by Depouhon et al. [4]. In particular, it addresses the issues relative to the
presence of history variables in the formulation of initial conditions and for the
calculation of the saltation matrix at non-smooth events that depend on these
history variables.

The main results evidence the constrained nature of the history variables
when defining the initial value problem associated with the governing equations
of the model as well as the dependence of the saltation matrix on the gradient
of the history variables evaluated at the transition point. The former result
is of critical importance for correct simulation of the system behavior and the
assessment of its periodic steady-state response. The latter is an extension of
the theory proposed in [3, 5].
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