
  ECCOMAS Special Interest Conference 

Numerical Heat Transfer 2012 

4-6 September 2012, Gliwice-Wrocław, Poland 

Eds.: A. Nowak, R.A. Białecki 

 

Numerical Analysis of the Passive Heating of Building integrated Phase Change Materials 
 

M.  Faraji *,1,  M. Najam1 ,  M.  El Alami 1,   Z. Bouhssine1, F. Berroug2, E.K. Lakhal2, M. El Omari2, P. Rochus3 

 

1Laboratoire de Physique des Matériaux, Microélectronique,  Automatique et Thermique- LPMMAT 
Département de Physiques, Faculté des Sciences Ain- Chock, Université Hassan II-Casablanca, Morocco 

2Laboratoire d’Automatique de l’Environnement et Procédés de Transfert, Université Cadi Ayyad, Faculté des Sciences Semlalia, 
Département de Physique- Marrakech, Morocco 

3IES LTAS - Centre Spatial de Liège -Université de Liège, Belgium 

 
*
farajimustapha@yahoo.fr 

 
Abstract: In order to explore numerically the capability of solid-liquid phase change material (PCM) for heating indoor applications, 

melting of phase change material (PCM) was studied. The roof of the enclosure is filled with PCM (Hydrate salts PCM with melting 

temperature, Tmelt = Tcomfort =22 °C) on which are inserted heat pipes coming from the solar collector (heat source). The room vertical walls 

are adiabatic. The power transferred from solar collector by water is fully dissipated in a PCM that filled a slab. The advantage of using 

this heating strategy is that the PCMs are able to store a high amount of heat generated by the solar collector and the sun rising on the slab 

without acting the HVAC system. Numerical investigations, based on a dynamic simulation, were conducted in order to analyze the 

thermal performance of the proposed system. It was found that, due to the PCM layer, there are less temperature fluctuations and 

comfortable leaving conditions are satisfied. The use of the HVACs systems will be remarkably reduced during January in Casablanca 

Morocco. 

Key words: PCM, thermal comfort, heat storage, solar radiations, building. 

 

1.  Introduction 
   Due to the high cost of energy, the use of alternative heating system is important for a building to provide optimum inside 

conditions during winter months. The basic strategy of building passive heating system is to reduce the heat losses and at the 

same time to transfer excess heat during the day to heat storage. This heat is used during the night to satisfy the heating needs 

of the building. Thermal comfort of man comes mainly from space heating and heating hot water. In solar heating systems, 

water is still used for heat storage in liquid based systems, while a rock bed is used for air based systems. These units are 

capable of providing space heating during the day from the stored heat during the night; however, they are heavy and bulky in 

size. Several types of passive solar systems and techniques have been proposed and used by [1]. The most important existing 

building heating systems are: water storage, rock bed storage, ground air collector are also used for raising the greenhouse air 

temperature. Latent heat storage is one of the most efficient ways of storing thermal energy. Unlike the sensible heat storage 

method, the latent heat storage method provides much higher storage density, with a smaller temperature difference between 

storing and releasing heat. Phase Change Materials (PCM) have been considered for thermal energy storage in buildings since 

1980. During the last 20 years, new PCM products to be used in buildings appeared in the market. In these products, PCM 

presents difficulties to be melted by direct solar radiation because of the poor heat conductivity of the PCM. On the other 

hand, the walls and ceilings of a building offer large areas for passive heat transfer within every zone of the building [2]. 

Implementing the PCM in gypsum boards, plaster, concrete or other wall covering materials, thermal energy storage becomes 

a part of the building structure, useful even for light-weight buildings. In the literature, development and testing were 

conducted for prototypes of PCM wallboard and PCM concrete systems, with particular interest in peak load shifting and 

solar energy utilization. Several researchers have investigated methods for impregnating gypsum wallboard and other 

architectural materials with PCM [3-5].  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1: The physical model                                          Table 1: Thermophysical properties and dimensions 
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2. Mathematical model 

 

     The composite wall described above is initially maintained at a uniform temperature ‘Tc= Tf’. The boundary condition on 

the outer surface of roof is considered due to the combined effect of radiation and convection. In order to consider the 

radiation effect, the average monthly solar radiation heat for every 1-h in Casablanca city, Morocco is used (see Fig. 2).  

 

For natural convection, the heat transfer coefficients (hT) and (hi) on the outer and inner surfaces of the concrete slab are 

considered and taken into account in the present research work. See Table 1 [9].   

 

     To model the solar collector combined with slab filled PCM, some assumptions were adopted. Heat transfer by conduction 

in the composite wall is one-dimensional and edge effects are neglected; The thermal conductivity of concrete is assumed to 

be constant; The PCM is homogeneous and isotropic, the effect of convection is neglected in the PCM; The interfacial 

resistances between the different layers of the slab are neglected. The water is used as heat transfer fluid. In solar collector, 

heat transfer is one-dimensional, and the sky is considered as black body at Tsky. 

     Solar collector heat balance: 
a
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where  a

sg,G A  and   Qp
are the rate of heat flow absorbed and solar collector heat lost, respectively.  

 

   The global heat loss coefficient UL was calculated iteratively based on the glass and absorber temperatures. The energy 

transferred to the water  
fbcfiu TThDq  , where hcf  is the convective heat  transfer factor calculated using internal flow 

correlations [7]. Di is the solar collector internal tubes diameter.  

The energy 
uq  is fully absorbed by the PCM layer. Thus, the temperatures of the water in inlet and outlet are respectively Tfi 

= Tf   (Tfo > Tfi). 

 

The conductance factor FR represents the ratio of power actually recovered and the power that would be obtained if the water 

temperature was equal to the water inlet temperature, the energy transferred to the water in the solar collector, the average 

temperature of the fluid can be expressed respectively as:  
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     where F denotes the absorber tubes efficiency. 

 

The transient energy’s equation in the composite floor (concrete PCM) is written, using the enthalpy method [6]: 
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      The second term is a source term which takes into account of the latent heat associated with the phase change; the value of 

λ is equal to the latent heat of melting ΔHf in the layer of PCM. It is zero for layers e1 and e3. The term volumetric liquid 

fraction f is given by: f=1 for T>Tf ,  f=0  for  T<Tf  and    0<f<1  when  T=Tf . 

The slab is subject to the following boundary conditions:  
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uq  is the heat carried by the water coming from the solar collector given above. It should be noticed that the function of the 

solar collector is to extend virtually the surface of exchange between the slab and the ambient; Thus,  
uq , is injected in the 

boundary conditions of the present (1D) model.  

 

The indoor boundary condition, at x = 0, and the equality of heat flow and temperatures at the different interfaces are:   
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       At interfaces ’i’, between two different materials (‘+’/’-‘), the properties are estimated using the harmonic means 

method[8]  and the thermo-physical properties of the PCM are evaluated as follows: 
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where δ+ is the distance between the interface and the first node of the material ‘+’, and δ- is the distance between the 

interface and the first node within the material ‘-‘. The obtained system of equations is integrated numerically on a mesh using 

control volume method [8].  

 

3. Results and discussions 

 



 NHT2012, September 4-6, 2005, Gliwice-Wrocław, Poland   

 

 

Figure-2 shows the evolution of the ambient temperature Ta during January in Casablanca-Morocco. The ambient temperature 

varies between a maximum of 23°C (the day of January, 24
th

), and a minimum of 2°C (the night of January, 04
th

). The 

variation of the ambient temperature Ta undergoes a rapid rise due to the sunrise. This oscillation phenomenon (increase 

followed by a decrease) is due the alternating day/night every 24 hours. The minimum temperatures are obtained during the 

first 20 days, and then increased to the maximum value toward the end of the month. On average, temperatures range between 

7°C to 16°C during the month.  

 

 
Figure 2: Typical climate for Casablanca-Morocco January 

 

Figure-2 shows also the evolution of the global power of solar radiation incident during the month of January on a horizontal 

slab. The radiation is zero during the first 6 hours and increases with the sunrise which causes the increase in the ambient 

temperature between 6 am and 13 am, (solar noon). Radiation reaches its maximum value (720 W/m²) between solar noon 

and 15 hours, and falls to its minimum value 0 W/m² at 18 hours which present the sunset and therefore the cancellation of 

solar radiations. This power remains zero during the night. It undergoes a further increase in the days following. This 

behaviour is periodic with a period of 24 hours. 

 

 
Figure-3  Time evolution of the average temperature of the different layers of an ordinary concrete roof (without PCM) 

 

Figure-3 shows the time evolution of the average temperature of the different layers of an ordinary concrete roof (without 

PCM) during January in Casablanca- Morocco. The analysis such figure show that the ambient temperature decreases and 

subsequently a decrease in the temperatures of the outer and inner faces of the slab. Between 6 am and solar noon (13h), solar 

radiations cause an increase in ambient temperature. The outside temperature and the inner temperature increase with a delay 

due to the inertia of the concrete. The day/night causes increase/decrease of the ambient temperature. These variations 
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influence the temperature of the exterior and interior floor. The ambient temperature varies between 02°C and 23°C. 

Fluctuations range of the outside temperature situates between 7°C and 41°C. The temperature of the inner face varies 

between 17°C and 25°C. This fluctuation is harmful and crates non-comfort conditions for the occupants of the building. So it 

is necessary to operate the HVACs system during the January in Casablanca- Morocco. 

 
Figure 4: Time response to the internal faces of a slab without PCM and a slab encapsulating PCM with heat pipes 

 

Figure 4 shows the time response to the internal faces of a slab without PCM, a slab encapsulating PCM (PCM: 

hydrate Salt CaCl2-6H2O, see Table 1) with heat pipes coming from a solar collector in Casablanca- Morocco, January. 

Analysis of this figure show that between 0 and 6 hours, the ambient temperature is decreasing due to the complete absence of 

sunlight causing the decrease in temperature of the outside floor, which in turn influences the inside temperature (decrease of 

Tin of 21.2°C to 20°C for PCM and PCM with heat pipes, where a decrease of 21.2°C to 18.4°C for an ordinary concrete 

slab). Between 8:00 and solar noon, the ambient temperature increases from 4°C to 15°C due to solar radiations. The 

temperature of the interior slab increases from 18.4°C to 23.2°C, from 20°C to 21.6°C and from 20°C to 21.6°C respectively 

for an ordinary concrete wall, a wall encapsulating PCM and a wall encapsulating PCM with heat pipes coming from the solar 

collector; the PCM layer receives a heat flux which increases the temperature of PCM to the melting temperature Tf=22°C 

and a first layer of the liquid phase appears (volumetric liquid fraction f increases from 0 to 0.06 for PCM with heat pipes 

and from 0 to 0.03 for PCM). The presence of the heat pipes increases the heat transfer, and hence, increases of the liquid 

fraction. Note that, the ambient temperature is lower than that of interior slabs, and this difference is due to the energy stored 

by sensible heat in the inner layer of the concrete slab. The ambient temperature decreases after passing through a maximum 

value obtained during the day thereby causing the fall of the outside and inside slab temperatures with a delay due to the 

thermal inertia of concrete (with PCM and heat pipes). The day/night allows for an increase/decrease in ambient temperature 

and the temperature of the interior floor (concrete with PCM and heat pipes) which varies between a minimum of 18.6°C and 

maximum of 21.2°C during the first 440 hours. PCM undergoes solidification and successive melting with a volumetric 

liquid fraction  f  variation between 0 and 0.14. The fluctuation range of the slab temperature (concrete with PCM and heat 

pipes) decreases with the increasing of the PCM liquid fraction (development of the latent heat of melting). After t=448 hours 

(19 January), it is clear that the temperature of the inside of the slab remains constant to 22°C. The liquid fraction is always 

positive 0.1<f<0.54 for a concrete slab encapsulating PCM with heat pipes coming from a solar collector, which means that 

the melting front never reaches the inner layer and therefore we have always PCM liquid at T=22°C in contact with the 

internal layer of the slab which explains the constancy of observed temperature of this layer. The energy storage by latent heat 

of melting in the slab encapsulating PCM with heat pipes coming from a solar collector maintains the temperature of the inner 

face of the floor substantially constant at 22°C (days and nights). The slab encapsulating PCM with heat pipes coming from 

the solar collector achieves more efficient in thermal insulation and increases the thermal efficiency of the local during the 

coldest period of the year. 
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Figure-5: Evolution of the interior flux for a concrete slab, slab encapsulating PCM and a slab encapsulating PCM with heat 

pipes coming from a solar collector for January 

 

 

Figure-5 shows the evolution of the rate of heat flow for a concrete slab, slab encapsulating PCM and a slab 

encapsulating PCM with heat pipes coming from a solar collector for the month of January in Casablanca-Morocco. The 

day/night allows for an increase/decrease in the inside rate of heat flow which varies between 11600 W/m
2
 to 12400 W/m

2
, 

0 W/m
2
 to 500 W/m

2
 and between 0 W/m

2
 to 400 W/m

2
 respectively for a concrete slab, slab encapsulating PCM and a slab 

encapsulating PCM with heat pipes coming from a solar collector during the first 168 hours. The rate of heat flow of the 

inside of the slab encapsulating PCM with heat pipes coming from a solar collector stars decreasing and after t=432 hours, the 

inside rate of heat flow remains constant to zero.  The PCM store the energy in latent heat form and transfers it to the 

internal wall which explains the small change in the internal rate of heat flow compared to the internal rate of heat flow of 

a wall without PCM. Complete melting of the PCM leads to the comfort temperature where the stability of the rate of heat 

flow to the zero. 

 

Figure-6 shows the typical evolution of the useful power and the outlet temperature of the solar collector during one 

day of January. The useful power decreases during the first 6 hours and an increase begins with the sunrise which causes the 

increase in the outlet temperature between 6 am and 13 am, solar noon. Power reaches its maximum value 150 W/m² between 

solar noon and 15 hours, it underwent a rapid decline to its minimum value 0 W/m² to 18 hours which present the sunset and 

therefore the cancellation of power. The same for the outlet temperature which reaches its maximum value 115°C between 

solar noon and 15 hours than it underwent a rapid decline to its minimum value 0°C. The evolutions of useful power and the 

outlet temperature of the solar collector are periodic with a period of 24 hours. The outlet temperature of the fluid depends 

primarily on the useful power and the conductance factor. In fact, the increase and decrease of the useful power lead the 

increase and decrease of the outlet temperature. The useful power decreases from 8 W/m² to 4 W/m² and the outlet 

temperature remains constant to zero during the first 6 hours. An increase begins with the sunrise which causes the increase in 

the outlet temperature between 6 am and 13 am, solar noon. The useful power reaches its maximum value 154 W/m² between 

11:00 and 14 hours, it underwent a rapid decline to its minimum value 0 W/m² to 18 hours which present the sunset and 

therefore the cancellation of power. The same, the outlet temperature reaches its maximum value 115°C between 11:00 and 

14 hours than it underwent a rapid decline to its minimum value 0°C to 17 hours. The outlet temperature of the fluid depends 

primarily on the useful power and the conductance factor. In fact, the increase and decrease of the useful power lead the 

increase and decrease of the outlet temperature. 
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Figure-6:  Evolution of the useful power and the outlet temperature of the solar collector  

 

4. Conclusion 

In this study numerical investigations, based on a dynamic simulation, were conducted in order to analyze the thermal 

performance of the Building integrated Phase Change Materials results shows that:  

- Inside temperature fluctuates between 16 °C and 25 °C in case of the slab without PCM layer. 

- In case of the slab without PCM layer, more than 12 kW are removed from the house due to the thermal gradients between 

the external slab and the ambient during the colder mount (January)in Casablanca- Morocco. Indoor temperature fluctuations 

create uncomfortable leaving conditions, so the use of the HVACs systems is necessary. 

-During the first week of January the ambient temperature falls down to 4 °C during the night, and increases up to 16 °C 

during a day. This behavior causes only a weaken decrease and increase in the inside slab temperature from 22 °C to 20 °C. 

Melt fraction f growth between 0 % to 10 % due to the combination of solar collector (qu), ambient heat convection and solar 

radiation (Qmax = 700 W/m²).  

- Latent heat storage aids the slab to stabilize its temperature and the inside temperature fluctuations disappears after the first 

week and  practically no heat is lost from the house to the exterior during the colder mount in Casablanca- Morocco. and 

there are less temperature fluctuations and comfortable leaving conditions are satisfied. The use of the HVACs systems will 

be remarkably reduced during January in Casablanca Morocco due to the PCM layer.  

-Note that that temperature inside the room, Ti, is assumed constant and equal to the PCM melting temperature. Thus, the 

analysis is restricted to the influence of the ceiling energy storage system on temporal changes of Ti – temperature of the 

ceiling internal surface. The mathematical model should be extended  to the 2 D case by including heat transfer through the 

room air to study fluctuations of Ti. 
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