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Résumé : Le développement d’outils informatiques pour prédire de I’ information struc-
turelle de protéines a partir de la séquence en acides aminés constitue un des défis ma-
jeurs de la bioinformatique. Les problemes tels que la prédiction de la structure secon-
daire, de I’accessibilité au solvant, ou encore la prédiction des régions désordonnées,
peuvent étre exprimés comme des problemes de prédiction avec sorties structurées et
sont traditionnellement résolus individuellement par des méthodes d’apprentissage au-
tomatique existantes. Etant donné que ces problemes sont fortement liés les uns aux
autres, nous proposons de les traiter ensemble par une approche d’apprentissage mul-
titdche. A cette fin, nous introduisons un nouveau cadre d’apprentissage générique pour
la prédiction structurée multitdche. Nous appliquons cette stratégie pour résoudre un
ensemble de cinq taches de prédiction de propriétés structurelles des protéines. Nos
résultats expérimentaux sur deux jeux de données montrent que la stratégie proposée
est significativement meilleure que les approches traitant individuellement les taches.
Mots-clés : Bioinformatique, Multitdche, Apprentissage structuré

1. Introduction

La prédiction ab initio de la structure tertiaire des protéines (i.e. calculer
les positions 3D de tous les atomes a partir de la séquence d’acides aminés)
est un probleme tres important, extrémement difficile, et toujours non résolu
dans la recherche en biologie. Face a la difficulté de ce probleme, différents
sous-problemes plus simples ont été introduits et étudiés en bioinformatique.
On peut formaliser ces problemes dans le cadre de 1’apprentissage avec sor-
ties structurées. Les problemes les plus courants consistent a prédire des
séquences d’étiquettes. Parmi ces problemes, citons : (i) la prédiction de la
structure secondaire, ou les étiquettes correspondent a des structures 3D lo-
cales telles que les hélices alpha, les feuillets beta et le reste ; (i1) la prédiction
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de accessibilité au solvant, ou les étiquettes sont des niveaux d’exposi-
tion des résidus de la protéine au solvant; et (iii) la prédiction de régions
désordonnées, qui vise a identifier les acides aminés qui ne possedent pas de
structure tertiaire fixe dans la protéine. Au dela de ces problemes d’étiquetage
de séquences, il existe également des problemes faisant intervenir des sorties
possédant une structure plus complexe, tels que la prédiction des matrices de
contacts ou le but est de prédire un ensemble de liens dans un graphe.

Dans la littérature bioinformatique, les problemes de prédiction de pro-
priétés structurelles de protéines sont traditionnellement traités de maniere
indépendante : par exemple, on modélise et utilise un prédicteur pour
I’inférence de la structure secondaire et, séparément, on modélise et utilise un
autre prédicteur pour I’inférence de 1’ accessibilité au solvant. Depuis quelques
années maintenant, le domaine de 1’apprentissage automatique a mis au point
des approches dites multitdches, qui visent a traiter conjointement un en-
semble de taches liées (a la fois lors de I’apprentissage et lors de I’inférence)
avec I’espoir d’avoir une amélioration sur chacune des taches traitées par
rapport aux prédicteurs congus dans une vision “tache-unique”. Etant donné
les liens forts qui existent entre les différentes taches de prédiction li€es aux
protéines, nous proposons de modéliser cet ensemble de taches dans un cadre
multitache.

Dans Ia littérature consacrée a 1’apprentissage multitache, la plupart des
travaux concernent la classification multitache : chaque tache d’apprentis-
sage est un probleme de classification. Ce cadre n’est pas satisfaisant pour
la résolution des taches de prédiction structurées relatives aux propriétés
des protéines. Afin de pouvoir traiter des problemes avec sorties structurées
dans un cadre multitache, nous proposons un nouveau cadre général reposant
sur I’assemblage d’un ensemble de modeles de prédiction structurée simple-
tache. L’idée centrale de notre approche est d’exploiter les corrélations entres
les sorties des différentes taches, via un processus de ré-estimation itérative
des prédictions.

La Section 2 présente les travaux similaires a celui présenté ici. Notre
nouveau cadre d’apprentissage multitiche structuré est proposé en Section
3. Nous décrivons ensuite notre protocole expérimental et les résultats obte-
nus sur un ensemble de cinq taches en Section 4. Nous concluons et donnons
les perspectives de recherche future en Section 5.
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2. Travaux similaires

Nous présentons a présent les travaux similaires au notre, tout d’abord dans
le domaine de I’apprentissage multitache puis dans le domaine de la bioinfor-
matique.

2.1. Les approches multitiches

La majorité des approches d’apprentissage multitiche existantes se basent
sur I'utilisation d’une représentation interne partagée entre toutes les taches
considérées. Une telle représentation partagée permet de mieux extraire I’in-
formation essentielle des données d’entrée en exploitant les caractéristiques
communes entres les différentes tiches (Maurer, 2006). Bien que ces
méthodes sont élégantes sur le plan conceptuel, elles sont souvent limitées
a des problemes d’apprentissage simples tels que la classification et la
régression. Les travaux exploitant une représentation partagée entre plusieurs
taches de prédiction structurée sont extrémement rares (voir Collobert & Wes-
ton (2008) pour un exemple dans le domaine du traitement du langage natu-
rel).

Dans cet article, nous reposons sur une approche radicalement différente
pour aborder les problemes d’apprentissage multitache : 1’approche “black-
box” qui consiste a combiner un ensemble de modeles prédictifs simple-
tache pour former un modele multitiche. L’intérét principal d’une telle
approche est de permettre de transformer n’importe quel ensemble de
modeles élémentaires par tiche en un modele multitiche. Ainsi, les modeles
élémentaires peuvent étre de toute sorte, des classificateurs linéaires aux ap-
proches modernes de prédiction structurée, tel que celles proposées par Laf-
ferty et al. (2001) ou Tsochantaridis et al. (2004).

La méthode développée par Heitz et al. (2008) est, a notre connaissance,
celle qui soit la plus proche de nos travaux. Les auteurs proposent une
méthode de classification multitiche basée sur un ensemble de couches, ou
chaque couche est composée d’un classificateur par tache. Les classificateurs
d’une méme couche sont appris indépendamment en utilisant comme entrée,
I’entrée globale et les prédictions des classificateurs de la couche précédente.
Cette méthode a été formulée et appliquée au probleme de la compréhension
de scenes naturelles, comprenant les taches de catégorisation des scenes, de
détection d’objets, de segmentation d’images et de reconstruction 3D. Ici,
nous généralisons ces idées en les formulant dans le cadre général de la
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prédiction structurée multitiche et proposons une application originale qu’est
la prédiction de propriétés structurelles de protéines.

2.2. La prédiction de propriétés structurelles de protéines

Jusqu’a récemment dans la littérature bioinformatique, les problemes de
prédiction de propriétés structurelles des protéines €taient traités de maniere
indépendante : a une tache, un prédicteur (Cheng et al., 2005). Afin d’exploi-
ter les liens pouvant exister entre les différentes taches de prédiction relatives
aux propriétés des protéines, plusieurs systemes de pipeline ont été proposés
(Adamczak et al., 2005a; Cheng et al., 2005). Ces systemes reposent sur le
chainage de plusieurs modules de prédiction élémentaires.

L’idée de I’apprentissage multitiche a proprement parler n’est apparu que
récemment dans la littérature en bioinformatique sans pour autant utiliser
les formalismes développés en apprentissage automatique. Ainsi, une petite
poignée de travaux proposent de faire la prédiction simultanée de la structure
secondaire et de 1’accessibilité au solvant (Dor & Zhou, 2007; Pollastri et al.,
2007).

A notre connaissance, les problemes de prédiction ayant attrait aux
protéines n’ont a ce jour jamais été formulés explicitement dans un cadre mul-
titache. De plus, aucun systeme combinant plus de deux taches différentes
n’a été proposé dans ce domaine. Notre formalisation et le fait d’envisager
un grand nombre de taches différentes de maniere simultanée sont donc les
contributions principales de notre travail.

3. Prédiction structurée multitache itérative

Nous décrivons a présent notre approche pour 1’apprentissage multitache
avec sorties structurées, appelée prédiction structurée multitdche itérative
(Psmi).

3.1. Notations

On considere que le probleme de prédiction structurée multitiche consiste
a apprendre une fonction des entrées x € X vers des sorties yi,...,yr €
V1,...,Yr pour chaque tiche ¢ € [1,T]. Pour apprendre cette fonction,
nous avons acces a un ensemble d’apprentissage composé d’entrées as-
sociées a une ou plusieurs sorties structurées. L’ensemble d’apprentissage
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est noté D = {(z®, 4\ ... ,yg))}ie[LN], ol N est le nombre d’exemples
d’apprentissage. L’espace d’états S du probleme multitiche est défini par
S=W1U{e}) x - x (YrU{er}), ot ¢ est une valeur de sortie spéciale
utilisée pour représenter une sortie y; qui est absente.

3.2. Principe

N

Les approches de type pipeline consiste a chainer un ensemble de
prédicteurs de maniere séquentielle, chaque prédicteur reposant sur les sorties
des prédicteurs précédents. Bien que cette approche s’avere souvent effective,
elle soufre d’un défaut majeur : si un prédicteur fait une erreur, cette erreur est
définitive : elle ne peut pas étre réparée dans la suite du processus. De plus,
du fait de la nature séquentielle du processus, seuls les prédictions de début
profitent aux prédictions de fin ; I’inverse n’étant pas vrai.

L’idée centrale de PSMI est d’effectuer plusieurs passes de prédiction pour
donner I’opportunité au modele de réparer d’éventuelles erreurs de prédiction,
ainsi que pour bénéficier des prédictions des taches de fin pour améliorer
les taches de début. Le fait que chaque prédicteur ait comme entrée les
prédictions de toutes les taches, et puisse exploiter de maniere avancée les
corrélations qui existent entre les sorties de ces taches, motive 1’appellation
multitache de la méthode.

Le processus commence par un état ne comprenant que des prédictions
manquantes, i.e. s = (€,...,€er). A la premiere étape, la sortie y; de la
premiere tache est prédite avec le premier modele élémentaire n’utilisant ef-
fectivement en entrée que I’entrée globale x. Un second modele est ensuite
utilisé pour prédire y, sachant z et la prédiction y;. Un troisieme modele
prédit ys sachant z et les prédictions de y; et y», et ainsi de suite. Une fois que
toute les sorties ont été estimées une fois, on dit avoir effectué une passe. Un
modele a une passe est un pipeline traditionnel. L’ apport de notre approche est
de pouvoir utiliser un nombre de passes P > 1, P étant un hyper-parametre
de la méthode proposée.

Le modele complet se compose de PT modeles élémentaires notés
(Myqg,...,Myp,Msy,...,Mpr), ot M, est le modele de la p-iéme passe
et t-ieme tache. Par exemple, la Figure 1 illustre un modele PSMI pour quatre
taches et cinq passes.

Des modeles distincts sont appris a chaque passe ; ceci est motivé par le
fait que — comme les sorties sont re-estimées a chaque passe — la distribu-
tion d’entrée-sortie des problemes sous-jacents évolue d’une passe a I’autre.



CAp 2011

R
{

Vemme  OETIIDIIDIIDIIIIIIIED|  TOOODmEEET | OO NI

FIGURE 1: Illustration d’une chaine de modeles a quatre taches et cinq passes.

Chaque étape est un modele a sortie structurée distinct ou les
entrées sont I’entrée globale et 1’état courant de toute les taches.

Algorithm 1 Algorithme d’inférence PSMI
Given aninput z € X and a model chain (M 1,..., My p,Msq, ..., Mpr)

1: s« (€1,...,€r) > initial state
2: forp=1to Pdo > for each pass
3 fort =1to 7T do > for each task
4 U — My, (z, s) > estimate target ¢
5: S (81,3811, Uty Staly -+ ST) > update targets state
6 end for

7: end for

8: return s > return current state of all targets

Par exemple, la premiere passe d’estimation de la sortie de la premiere tache
(sachant I’entrée globale uniquement) n’est pas le méme probleme que sa se-
conde estimation (sachant I’entrée globale et les 7' prédictions issues de la
premiere passe).

3.3. Apprentissage et inférence

Les algorithmes 1 et 2 décrivent respectivement I’inférence et 1’apprentis-
sage de PSMI. Sachant la chaine de modeles, I’inférence consiste simplement
a chainer itérativement les inférences élémentaires en maintenant s € S, 1’état
courant de toutes les sorties, i.e. s = (1,...,9r). Les sorties sont, dans un
premier temps, initialisées avec les valeurs spéciales (i, ..., er) (ligne 1).
Chaque étape consiste a prédire la sortie structurée y; puis a mettre a jour
I’état courant (lignes 4-5). Les prédictions finales sont données par s a la fin
de I’inférence (ligne 8).

Lapprentissage consiste a créer la chaine de modeles sachant I’ensemble
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Algorithm 2 Algorithme d’apprentissage PSMI
Given atraining set D = {(2(?, ygi), e ,y§3>)}ie[17m,
Given a structured learning algorithm A,

Given anumber of passes P,

10 S —{s" = (e1,...,er) bicp.m > initial state
2: forp=1to Pdo > for each pass
3 fort =1to 7T do > for each task
4 D, — {((z9, s®), yfi))}ie[LN] > create training set
5: M, — A(Dy) > train a model for task ¢
6: S« update S given D, and M, , > update current state
7 end for

8: end for

9: return (M 1,..., My, Moq,....,Mpr) > return model chain

d’apprentissage. Tout comme I’inférence, 1’apprentissage est effectué de
maniére itérative et repose sur un ensemble d’états courants {s(*), ... s(M}.
Ces états courants sont d’abords initialisés avec les étiquettes e désignant
des prédictions manquantes (ligne 1). Chaque étape de I’apprentissage vise
a ajouter un élément a la chaine de modeles. Ceci implique la création d’un
ensemble d’apprentissage (ligne 4), I’apprentissage d’un modele élémentaire
de prédiction structurée (ligne 5) et la mise a jour de 1’état courant de chaque
exemple (ligne 6). Les entrées d’apprentissage des modeles élémentaires
contiennent a la fois I’entrée globale x et I’état courant s = (91, ..., Jr).

3.4. Eviter le sur-apprentissage

Etant donné que la chaine de modeles peut potentiellement €tre longue
(jusqu’a 40 modeles dans nos expériences), des précautions particulieres
doivent étre prises pour éviter le surapprentissage. En effet, les exemples
d’apprentissage peuvent rapidement étre parfaitement appris par les premiers
modeles de la chaine, biaisant alors dangereusement les données d’appren-
tissage pour tous les modeles restants dans la chaine. Dans nos expériences,
nous utilisons de tres grands ensembles d’apprentissage et des classificateurs
linéaires simples et nous n’avons pas rencontré ce probleme. Cependant, de
tels problémes de surapprentissage peuvent tre évités par au moins deux
techniques : soit en générant des prédictions intermédiaires par 1’utilisation
d’une validation croisée comme présenté dans 1’approche d’apprentissage
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en pile (Cohen & Carvalho, 2005), soit par I’introduction de bruit dans les
prédictions intermédiaires comme proposé par Maes et al. (2009).

4. Expériences : Annotations structurées des protéines

Nous décrivons a présent nos expériences concernant un ensemble de cing
taches de prédiction de propriétés structurelles de protéines.

4.1. Jeux de données

Nous avons utilisé deux jeux de données construits a partir de la base
de données Protein Data Bank (PDB), laquelle contient des structures de
protéines obtenues expérimentalement. Dans le premiere ensemble, PDB30,
nous avons sélectionné aléatoirement 500 protéines a partir d’une version
filtrée de PDB ou I’alignement de chaque paire de s€quences n’est identique
qu’a hauteur de maximum 30%. Ce filtre permet d’assurer une différence si-
gnificative entre les protéines des ensembles d’apprentissage et de test. Nous
avons également utilisé le jeu de données standard PSIPRED, constitué par
Jones (1999). Ces données se composent de 1329 protéines d’apprentissage
et de 187 protéines de test. Chacune d’entre-elles a un repliement différent,
i.e. leur forme est significativement différente des autres. Ce jeu de données
nous permet de nous comparer avec la méthode PSIPRED, qui est considérée
comme 1I’état de 1’art dans le domaine de la prédiction ab initio de la structure
secondaire Zhang et al. (2011).

Sur chacun des jeux de données, nous appliquons deux prétraitements :
I’un pour déterminer les sorties correctes pour les différentes taches (décrit
au point suivant), I’autre pour enrichir les entrées. Cette derniere opération
est courante lors de la manipulation de séquences d’acides aminés et consiste
a calculer un “profil génétique” de la séquence d’acides aminés. Ce profil
est créé en effectuant un alignement multiple entre la s€quence d’entrée et
une grande base de données d’autres séquences. Dans notre cas, nous utili-
sons des matrices de scores par position (Position-Specific Scoring Matrices,
PSSMs) (Jones, 1999) ou un score positif (resp. négatif) pour un acide aminé
donné a une position donnée indique une fréquence de substitution plus élevée
(resp. faible). L’alignement multiple est réalisé a I’aide de trois itérations de
I’outil PSI-BLAST (Altschul et al., 1997) en utilisant la base de données non-
redondante du NCBI (Pruitt et al., 2006). Une fois la PSSM générée, les va-
leurs prises par celle-ci (typiquement dans I’intervalle [—7;7]) sont norma-
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lisées a I’échelle [0; 1]. Plusieurs méthodes de normalisation sont disponibles
dans la littérature, allant d’une simple réduction linéaire a 1’utilisation d’une

fonction logistique. Dans notre cas, nous avons opté pour la fonction (Kim &
Park, 2003) :

0.0 stx < —H
f(x)=4205+01r si —5<x<5h
1.0 stx > 5

4.2. Taches

Nous considérons I’ensemble suivant de 5 taches : la prédiction de la struc-
ture secondaire (a 3 et a 8 étiquettes), la prédiction de I’accessibilité au sol-
vant (2 étiquettes), la prédiction de régions désordonnées (2 étiquettes) et la
prédiction d’étiquettes issues d’un alphabet structurel (27 étiquettes). La su-
pervision de la structure secondaire, ainsi que de 1’accessibilité au solvant, est
déterminée par le programme DSSP (Kabsch & Sander, 1983) alors que la
supervision de régions désordonnées et de 1’alphabet structurel est générée a
partir de la structure 3D par nos soins. La Figure 2 schématise le protocole de
génération des entrées-sorties a partir du fichier PDB d’une protéine.

L’utilisation de deux versions de la structure secondaire peut sembler re-
dondante mais permet d’obtenir deux niveaux de granularité, I'un est plus
simple, en terme de prédiction (75-80% de précision), mais moins précis,
en terme de structure locale, alors que 'autre est plus difficile (55-60%)
mais plus précis. Nous avons pu ainsi constater, lors de nos expériences, une
amélioration des prédictions quand les deux taches sont présentes. L’ alphabet
structurel, proposé par Camproux et al. (2004), est une discrétisation de la
conformation du squelette de la protéine en une série de fragments de quatre
résidus, en chevauchement. Ce probleme de prédiction n’est pas commun
dans la littérature. Nous I’utilisons, comme un troisieme niveau de granularité
de la structure locale tridimensionnelle et son utilisation semble également
améliorer la prédiction des autres taches.

Etant donné que la définition d’une région désordonnée n’est pas définie
de facon unique dans la communauté, nous utiliserons la définition établie
par CASP (Noivirt-Brik et al., 2009) lors de ses compétitions, i.e. les seg-
ments de longueur d’au moins trois résidus ne possédant pas de coordonnées
atomique dans la structure cristalline de la protéine sont étiquetés comme
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FIGURE 2: Protocole utilisé pour générer les entrées (la structure primaire et
la PSSM) et les supervisions (la structure secondaire, 1’accessibi-
lité au solvant, les régions désordonnées et I’alphabet structurel) a
partir de fichiers PDB.

“désordonnés™, alors que tous les autres résidus sont étiquetés comme ‘“‘or-
donnés”.

Nous avons utilisé le seuil courant de 20% pour définir les deux états
“caché” et “exposé” de I’accessibilité au solvant. Notez que d’autres seuils
sont également utilisés dans la littérature tel que 5%, 16%, 25% ou encore
30%.

La mesure de “score” utilisée par défaut est la précision par étiquette, i.e.
le pourcentage d’acides aminés dont les étiquettes sont correctement prédites
sur I’ensemble de test. Vu que 1’étiquetage des régions désordonnées est un
probleme fortement déséquilibré, cette mesure n’est pas tres appropriée pour
cette tiche. A la place, nous utilisons une mesure d’évaluation classique pour
ce probleme de prédiction : le coefficient de corrélation de Matthews (MCC)
(Adamczak et al., 2005b).
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4.3. Modéle et attributs

Nous avons utilis€é une approche de classification simple ou chaque
étiquette est prédite indépendamment des autres, sur base d’attributs décrivant
des propriétés locales et globales de la protéine. Plus précisément, le classi-
ficateur de base est une machine a vecteurs de support linéaire entrainée par
une descende de gradient stochastique. Cette méthode simple a 1’avantage
d’avoir un temps d’apprentissage court et de bonnes propriétés de passage a
I’échelle. Les meta-parametres d’apprentissages ont été réglés sur I’ensemble
d’apprentissage en ajustant, dans un premier temps, les meta-parametres re-
latifs a la premiere passe et, dans un second temps, en fixant ces-derniers et
ajustant ceux de la second passe. Etant donné que les nombres d’exemples
et d’entrées ne varie plus au-dela de la seconde passe et que les valeurs op-
timales des méta-parametres sont fortement liés a ceux-ci, nous avons utilisé
les valeurs des méta-parametres de la seconde passe pour toutes les passes
ultérieures.

L’ordre dans lequel les taches sont apprises est celui-ci : 1) la structure se-
condaire a 3 états, ii) la structure secondaire a 8 états, iii) I’accessibilité au
solvant, iv) les régions désordonnées et v) 1’alphabet structurel. Néanmoins,
cet ordonnancement n’a pas de grosse influence. Tout au plus, les scores su-
bissent un déplacement d’une passe. Bien que non développé dans cet article,
nous avons également mis en place une version parallele de notre systeme
d’apprentissage, dans laquelle tous les modeles d’'une méme passe sont appris
en parallele. Cette approche parallele permet de s’affranchir de la dépendance
par rapport a I’ordre des taches.

Les attributs utilisés sont similaires a ceux proposés par Jones (1999) et
Zhang et al. (2008). Un premier sous-ensemble d’attributs décrit de facon
globale la distribution en acides aminés au sein de la protéine et la longueur
de sa séquence. Un second ensemble d’attributs décrit 1’information locale
relative aux positions voisines dans la séquence d’acides aminés ; ces attributs
locaux sont constitués a partir des éléments d’entrée (acides-aminés, PSSM)
et des étiquettes prédites contenus dans une fenétre glissante de taille 15, ce
qui est illustré par la figure 3. Le choix de cette taille de fenétre est un choix
classique dans la littérature.

Pour construire le vecteur de caractéristiques utilisé par le SVM, nous ap-
pliquons une étape de post-traitement sur les attributs. Cette étape consiste a,
dans le cas de valeur continues, discrétiser ces valeurs en cinq intervalles et,
dans le cas de valeurs catégoriques, représenter 1’ensemble des classes pos-
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Séquence primaire : LIVTQTMKGLDIQKVAGITWYSLAMAASDISLLDA
Matrices de scores 2-2-3-42-1-83-3-2 1|2/ -2 8-1-3-2-1-2-2 013
2-13-1-3¢-1-2 8-4/-d-1-2-2-3-1 1-3 0-300

par position
-102-1-3Q0-1-26-3f2(21-2-2|1 1-30-2-12

Structure secondaire (3) : ccccccCHHCCHHHHQHHCHHHHHHHS SHHHHSS
Structure secondaire (8) : cccccccTTCCTTTTAEECEEEEHEESSHHHHSS
Accessibilité au solvant : ce-gee-ed-e-ece-dep------ l __cee---¢
Régions désordonnées  : 000000000000000q0P00000GO000000000
Alphabet structurel : ABSHDQXWVMROITNSLVNBPOSOTNBTBVPSPFG
—F
taille 15 ——

FIGURE 3: Illustration des attributs locaux utilisés a un position donnée dans
la séquence. En rouge, la position que 1’on souhaite décrire. En
vert, la fenétre de taille 15 centrée sur la position.

sibles ou la caractéristique qui représente la valeur de I’attribut vaut 1 et les
autres 0. Ce qui porte a ~3800 le nombre d’attributs utilisé par le SVM a
partir de la seconde passe.

4.4. Résultats

Nous avons entrainé un modele de prédiction structurée multitiche
itérative jusqu’a P = 8 passes, ce qui donne lieu a une chaine de modeles
de longueur PT" = 40. Pour observer I’effet de la ré-estimation itérative des
sorties, nous avons évalué chaque tache en “coupant” la chaine de modeles
aprés un certain nombre de passes P, € [1,8]. La Figure 4 donne le score
de test, sur les données PSIPRED, pour chaque tache en fonction du nombre de
passes. Il est clair que toutes les taches bénéficient de la ré-estimation des sor-
ties, et plus particulierement pendant les premieres passes. Vers les dernieres
ré-estimations, certains scores se dégradent un peu. Cependant, nous n’obser-
vons pas de phénomene de surapprentissage tres marqué (voir la discussion a
la Section 3) dans ces expériences. Il est important de noter que dans tous les
cas, la ré-estimation des sorties, apres plusieurs passes, est significativement
plus précise que I’estimation initiale (une seule passe).

Pour mesurer 1I’amélioration apportée par 1I’approche multitiche, nous
avons aussi effectué une expérience de “référence” par tache en utilisant un
étiquetage de séquences itératif dans un contexte ou seule la taiche concernée
est présente. Des lors, ces références se basent €galement sur une ré-
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Secondary structure (3) Secondary structure (8)
9% 65%
8% 64%
7% - B63%
76%’ 62%
759 61%
T4% 60%
1 2 3 4 5 6 7 8 1 2 3 4 5 8
Solvent accessi |}1|1t‘\‘ MMC Disordered reglons Structural alphahet
75% 0.70 27%
g-=-8-0
0.60 g
74% e 8%
0.50
73% 25%
0.40
a,
72% 0-30(3 24%
T1% 0.20 23%
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 8 7T 8

FIGURE 4: Evolution du score de test apres un nombre croissant de passes sur
PSIPRED. Le résultat de Jones (1999), faisant office d’état de 1’ art,
est disponible pour la taiche “Secondary Structure (3)”.

PDB30 PSIPRED
Tache Etiquettes Unique  Multitiche Unique Multitache

Secondary structure 3 7545% 7635% 7629 %  78.60 %
Secondary structure 8 6038 % 62.69% 6225% 64.64 %
Solvent accessibility 2 71.56 %  73.52% 7351 %  73.95 %
Disordered regions 2 0.4212 0.4983 0.5611 0.6749
Structural alphabet 27 1681 % 18.14% 2488 %  25.89 %

TABLE 1: Comparatif des résultats obtenus, sur PDB30 et PSIPRED (8
passes), entre 1’approche a taches unique et I’approche multitache.

estimation itérative des sorties mais n’utilisent par contre plus les prédictions
provenant des autres taches. La comparaison entre notre modele multitache
et ces références a “tache unique” est donnée a la Table 1. Nous pouvons ob-
server que sur les deux jeux de données, les résultats de notre approche mul-
titiche sont systématiquement meilleurs que I’approche a tache unique, e.g. :
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+2.31% pour la prédiction de la structure secondaire et +0.114 MCC pour la
prédiction de régions désordonnées sur I’ensemble de test de PSIPRED. Nous
pouvons aussi observer que seul I’approche multitaiche dépasse les résultats
de I’état de I’art sur PSIPRED avec une amélioration de +2.1%.

5. Conclusion

Nous avons présenté un cadre d’apprentissage, générique et conceptuelle-
ment simple, pour la prédiction structurée multitache. 11 s’agit d’une nouvelle
approche itérative pour 1’apprentissage automatique en mode multitiche mis
en oeuvre pour résoudre plusieurs problemes liés d’étiquetage de séquences.
Cette approche a I’avantage de pouvoir utiliser n’importe quel algorithme de
prédiction structurée. Nous avons réalisé des expériences sur un ensemble
de cinq taches d’étiquetages de séquences de protéines en utilisant comme
modele de base une machine a vecteur de support entrainée par une descende
de gradient stochastique. Avec cette configuration, nous avons montré que
notre approche est systématiquement meilleure que les approches n’utilisant
qu’une seule tache et ce pour toutes les taches et les deux jeux de données
(PSIPRED et PDB30). Nous avons également montré que notre approche sur-
passe de maniere significative (+2.1% d’amélioration) les résultats de 1’état
de I’art de la prédiction de la structure secondaire.

Etant donné que I’approche multitache itérative n’est pas restreinte a la
prédiction de séquences d’étiquettes, nous 1’appliquerons dans le future a
d’autres problemes de prédiction de protéines, tels que la prédiction des fonc-
tions de protéine, la prédiction de contact résidu-résidu, la prédictions de 1’ali-
gnement des feuillets beta, la prédiction des interactions protéine-protéine, et
la prédiction de la structure tertiaire. Nous pensons également que le cadre
d’apprentissage proposé dans ce papier peut-étre appliqué a bien d’autres do-
maines (e.g. : I’analyse d’images, le traitement de textes, la surveillance et le
controle de réseaux, la robotique), ou les données sont naturellement dispo-
nibles sous la forme d’un ensemble de représentations complémentaires et ou
les problemes de prédiction concernent généralement plusieurs taches liées de
maniere temporelle ou spatiale.

6. Remerciements

Ce papier présente les résultats de recherche du Belgian Network BIOMA-
GNET (Bioinformatics and Modelling : from Genomes to Networks), financé



Prédiction structurée multitdche itérative

par le programme Interuniversity Attraction Poles, initié par I’Etat belge, et du
réseau d’excellence EU FP7 PASCAL?2. Julien Becker est bénéficiaire d’une
bourse de recherche F.R.I.A. du Fonds National de la Recherche Scientifique
belge (FNRS).

Références

ADAMCZAK R., POROLLO A. & MELLER J. (2005a). Combining predic-
tion of secondary structure and solvent accessibility in proteins. Proteins :
Structure, Function, and Bioinformatics, 59(3), 467-475.

ADAMCZAK R., POROLLO A. & MELLER J. (2005b). Combining prediction
of secondary structure and solvent accessibility in proteins. Proteins.

ALTSCHUL S. F., MADDEN T. L., SCHAFFER A. A., ZHANG J., ZHANG Z.,
MILLER W. & LIPMAN D. J. (1997). Gapped BLAST and PSI-BLAST :
a new generation of protein database search programs. Nucleic Acids Re-
search, 25(17), 3389-3402.

CAMPROUX A., GAUTIER R. & TUFFERY P. (2004). A hidden markov mo-
del derived structural alphabet for proteins. Journal of molecular biology.

CHENG J., RANDALL A. Z., SWEREDOSKI M. J. & BALDI P. (2005).
SCRATCH : a protein structure and structural feature prediction server. Nu-
cleic Acids Research, 33(suppl 2), W72-W76.

COHEN W. & CARVALHO V. R. (2005). Stacked sequential learning. In
International Joint Conferences on Artificial Intelligence.

COLLOBERT R. & WESTON J. (2008). A unified architecture for natural lan-
guage processing : deep neural networks with multitask learning. In Pro-
ceedings of the 25th international conference on Machine learning, ICML
"08, p. 160-167, New York, NY, USA : ACM.

DOR O. & ZHOU Y. (2007). Achieving 80% ten-fold cross-validated accu-
racy for secondary structure prediction by large-scale training. Proteins :
Structure, Function, and Bioinformatics, 66(4), 838—845.

HEITZ G., GOULD S., SAXENA A. & KOLLER D. (2008). Cascaded clas-
sification models : Combining models for holistic scene understanding. In
Neural Information Processing Systems.

JONES D. T. (1999). Protein secondary structure prediction based on
position-specific scoring matrices. Journal of Molecular Biology, 292(2),
195 - 202.

KABSCH W. & SANDER C. (1983). Dictionary of protein secondary struc-
ture : pattern recognition of hydrogen-bonded and geometrical features.
Biopolymers, 22(12), 2577-2637.



CAp 2011

KiMm H. & PARK H. (2003). Protein secondary structure prediction based
on an improved support vector machines approach. Protein Engineering,
16(8), 553-560.

LAFFERTY J., MCCALLUM A. & PEREIRA F. (2001). Conditional random
fields : Probabilistic models for segmenting and labeling sequence data. In
International Conference on Machine Learning.

MAES F., PETERS S., DENOYER L. & GALLINARI P. (2009). Simulated
iterative classification : A new learning procedure for graph labeling. In
European Conference on Machine Learning.

MAURER A. (2006). Bounds for linear multi-task learning. Journal of Ma-
chine Learning Research, 7, 117-139.

NOIVIRT-BRIK O., PRILUSKY J. & SUSSMAN J. L. (2009). Assessment of
disorder predictions in casp8. Proteins.

POLLASTRI G., MARTIN A., MOONEY C. & VULLO A. (2007). Accu-
rate prediction of protein secondary structure and solvent accessibility by
consensus combiners of sequence and structure information. BMC Bioin-
formatics, 8(1), 201.

PRUITT K. D., TATUSOVA T. & MAGLOTT D. R. (2006). NCBI reference se-
quences (RefSeq) : a curated non-redundant sequence database of genomes,
transcripts and proteins. Nucleic Acids Research, 35(suppl 1), D61-D65.

TSOCHANTARIDIS I., HOFMANN T., JOACHIMS T. & ALTUN Y. (2004).
Support vector machine learning for interdependent and structured output
spaces. In International Conference on Machine Learning.

ZHANG H., ZHANG T., CHEN K., KEDARISETTI K. D., MIZIANTY M. J.,
BAao Q., STACH W. & KURGAN L. (2011). Critical assessment of high-
throughput standalone methods for secondary structure prediction. Brie-
fings in Bioinformatics.

ZHANG H., ZHANG T., CHEN K., SHEN S., RUAN J. & KURGAN L. (2008).
Sequence based residue depth prediction using evolutionary information
and predicted secondary structure. BMC bioinformatics.



