
Prédiction structurée multitâche itérative
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Résumé : Le développement d’outils informatiques pour prédire de l’information struc-
turelle de protéines à partir de la séquence en acides aminés constitue un des défis ma-
jeurs de la bioinformatique. Les problèmes tels que la prédiction de la structure secon-
daire, de l’accessibilité au solvant, ou encore la prédiction des régions désordonnées,
peuvent être exprimés comme des problèmes de prédiction avec sorties structurées et
sont traditionnellement résolus individuellement par des méthodes d’apprentissage au-
tomatique existantes. Etant donné que ces problèmes sont fortement liés les uns aux
autres, nous proposons de les traiter ensemble par une approche d’apprentissage mul-
titâche. A cette fin, nous introduisons un nouveau cadre d’apprentissage générique pour
la prédiction structurée multitâche. Nous appliquons cette stratégie pour résoudre un
ensemble de cinq tâches de prédiction de propriétés structurelles des protéines. Nos
résultats expérimentaux sur deux jeux de données montrent que la stratégie proposée
est significativement meilleure que les approches traitant individuellement les tâches.
Mots-clés : Bioinformatique, Multitâche, Apprentissage structuré

1. Introduction

La prédiction ab initio de la structure tertiaire des protéines (i.e. calculer
les positions 3D de tous les atomes à partir de la séquence d’acides aminés)
est un problème très important, extrêmement difficile, et toujours non résolu
dans la recherche en biologie. Face à la difficulté de ce problème, différents
sous-problèmes plus simples ont été introduits et étudiés en bioinformatique.
On peut formaliser ces problèmes dans le cadre de l’apprentissage avec sor-
ties structurées. Les problèmes les plus courants consistent à prédire des
séquences d’étiquettes. Parmi ces problèmes, citons : (i) la prédiction de la
structure secondaire, où les étiquettes correspondent à des structures 3D lo-
cales telles que les hélices alpha, les feuillets beta et le reste ; (ii) la prédiction
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de l’accessibilité au solvant, où les étiquettes sont des niveaux d’exposi-
tion des résidus de la protéine au solvant ; et (iii) la prédiction de régions
désordonnées, qui vise à identifier les acides aminés qui ne possèdent pas de
structure tertiaire fixe dans la protéine. Au delà de ces problèmes d’étiquetage
de séquences, il existe également des problèmes faisant intervenir des sorties
possédant une structure plus complexe, tels que la prédiction des matrices de
contacts où le but est de prédire un ensemble de liens dans un graphe.

Dans la littérature bioinformatique, les problèmes de prédiction de pro-
priétés structurelles de protéines sont traditionnellement traités de manière
indépendante : par exemple, on modélise et utilise un prédicteur pour
l’inférence de la structure secondaire et, séparément, on modélise et utilise un
autre prédicteur pour l’inférence de l’accessibilité au solvant. Depuis quelques
années maintenant, le domaine de l’apprentissage automatique a mis au point
des approches dites multitâches, qui visent à traiter conjointement un en-
semble de tâches liées (à la fois lors de l’apprentissage et lors de l’inférence)
avec l’espoir d’avoir une amélioration sur chacune des tâches traitées par
rapport aux prédicteurs conçus dans une vision “tâche-unique”. Etant donné
les liens forts qui existent entre les différentes tâches de prédiction liées aux
protéines, nous proposons de modéliser cet ensemble de tâches dans un cadre
multitâche.

Dans la littérature consacrée à l’apprentissage multitâche, la plupart des
travaux concernent la classification multitâche : chaque tâche d’apprentis-
sage est un problème de classification. Ce cadre n’est pas satisfaisant pour
la résolution des tâches de prédiction structurées relatives aux propriétés
des protéines. Afin de pouvoir traiter des problèmes avec sorties structurées
dans un cadre multitâche, nous proposons un nouveau cadre général reposant
sur l’assemblage d’un ensemble de modèles de prédiction structurée simple-
tâche. L’idée centrale de notre approche est d’exploiter les corrélations entres
les sorties des différentes tâches, via un processus de ré-estimation itérative
des prédictions.

La Section 2 présente les travaux similaires à celui présenté ici. Notre
nouveau cadre d’apprentissage multitâche structuré est proposé en Section
3. Nous décrivons ensuite notre protocole expérimental et les résultats obte-
nus sur un ensemble de cinq tâches en Section 4. Nous concluons et donnons
les perspectives de recherche future en Section 5.
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2. Travaux similaires

Nous présentons à présent les travaux similaires au nôtre, tout d’abord dans
le domaine de l’apprentissage multitâche puis dans le domaine de la bioinfor-
matique.

2.1. Les approches multitâches

La majorité des approches d’apprentissage multitâche existantes se basent
sur l’utilisation d’une représentation interne partagée entre toutes les tâches
considérées. Une telle représentation partagée permet de mieux extraire l’in-
formation essentielle des données d’entrée en exploitant les caractéristiques
communes entres les différentes tâches (Maurer, 2006). Bien que ces
méthodes sont élégantes sur le plan conceptuel, elles sont souvent limitées
à des problèmes d’apprentissage simples tels que la classification et la
régression. Les travaux exploitant une représentation partagée entre plusieurs
tâches de prédiction structurée sont extrêmement rares (voir Collobert & Wes-
ton (2008) pour un exemple dans le domaine du traitement du langage natu-
rel).

Dans cet article, nous reposons sur une approche radicalement différente
pour aborder les problèmes d’apprentissage multitâche : l’approche “black-
box” qui consiste à combiner un ensemble de modèles prédictifs simple-
tâche pour former un modèle multitâche. L’intérêt principal d’une telle
approche est de permettre de transformer n’importe quel ensemble de
modèles élémentaires par tâche en un modèle multitâche. Ainsi, les modèles
élémentaires peuvent être de toute sorte, des classificateurs linéaires aux ap-
proches modernes de prédiction structurée, tel que celles proposées par Laf-
ferty et al. (2001) ou Tsochantaridis et al. (2004).

La méthode développée par Heitz et al. (2008) est, à notre connaissance,
celle qui soit la plus proche de nos travaux. Les auteurs proposent une
méthode de classification multitâche basée sur un ensemble de couches, où
chaque couche est composée d’un classificateur par tâche. Les classificateurs
d’une même couche sont appris indépendamment en utilisant comme entrée,
l’entrée globale et les prédictions des classificateurs de la couche précédente.
Cette méthode a été formulée et appliquée au problème de la compréhension
de scènes naturelles, comprenant les tâches de catégorisation des scènes, de
détection d’objets, de segmentation d’images et de reconstruction 3D. Ici,
nous généralisons ces idées en les formulant dans le cadre général de la
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prédiction structurée multitâche et proposons une application originale qu’est
la prédiction de propriétés structurelles de protéines.

2.2. La prédiction de propriétés structurelles de protéines

Jusqu’à récemment dans la littérature bioinformatique, les problèmes de
prédiction de propriétés structurelles des protéines étaient traités de manière
indépendante : à une tâche, un prédicteur (Cheng et al., 2005). Afin d’exploi-
ter les liens pouvant exister entre les différentes tâches de prédiction relatives
aux propriétés des protéines, plusieurs systèmes de pipeline ont été proposés
(Adamczak et al., 2005a; Cheng et al., 2005). Ces systèmes reposent sur le
chaı̂nage de plusieurs modules de prédiction élémentaires.

L’idée de l’apprentissage multitâche à proprement parler n’est apparu que
récemment dans la littérature en bioinformatique sans pour autant utiliser
les formalismes développés en apprentissage automatique. Ainsi, une petite
poignée de travaux proposent de faire la prédiction simultanée de la structure
secondaire et de l’accessibilité au solvant (Dor & Zhou, 2007; Pollastri et al.,
2007).

A notre connaissance, les problèmes de prédiction ayant attrait aux
protéines n’ont à ce jour jamais été formulés explicitement dans un cadre mul-
titâche. De plus, aucun système combinant plus de deux tâches différentes
n’a été proposé dans ce domaine. Notre formalisation et le fait d’envisager
un grand nombre de tâches différentes de manière simultanée sont donc les
contributions principales de notre travail.

3. Prédiction structurée multitâche itérative

Nous décrivons à présent notre approche pour l’apprentissage multitâche
avec sorties structurées, appelée prédiction structurée multitâche itérative
(PSMI).

3.1. Notations

On considère que le problème de prédiction structurée multitâche consiste
à apprendre une fonction des entrées x ∈ X vers des sorties y1, . . . , yT ∈
Y1, . . . ,YT pour chaque tâche t ∈ [1, T ]. Pour apprendre cette fonction,
nous avons accès à un ensemble d’apprentissage composé d’entrées as-
sociées à une ou plusieurs sorties structurées. L’ensemble d’apprentissage
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est noté D = {(x(i), y
(i)
1 , . . . , y

(i)
T )}i∈[1,N ], où N est le nombre d’exemples

d’apprentissage. L’espace d’états S du problème multitâche est défini par
S = (Y1 ∪ {ε1})× · · · × (YT ∪ {εT}), où εt est une valeur de sortie spéciale
utilisée pour représenter une sortie yt qui est absente.

3.2. Principe

Les approches de type pipeline consiste à chainer un ensemble de
prédicteurs de manière séquentielle, chaque prédicteur reposant sur les sorties
des prédicteurs précédents. Bien que cette approche s’avère souvent effective,
elle soufre d’un défaut majeur : si un prédicteur fait une erreur, cette erreur est
définitive : elle ne peut pas être réparée dans la suite du processus. De plus,
du fait de la nature séquentielle du processus, seuls les prédictions de début
profitent aux prédictions de fin ; l’inverse n’étant pas vrai.

L’idée centrale de PSMI est d’effectuer plusieurs passes de prédiction pour
donner l’opportunité au modèle de réparer d’éventuelles erreurs de prédiction,
ainsi que pour bénéficier des prédictions des tâches de fin pour améliorer
les tâches de début. Le fait que chaque prédicteur ait comme entrée les
prédictions de toutes les tâches, et puisse exploiter de manière avancée les
corrélations qui existent entre les sorties de ces tâches, motive l’appellation
multitâche de la méthode.

Le processus commence par un état ne comprenant que des prédictions
manquantes, i.e. s = (ε1, . . . , εT ). A la première étape, la sortie y1 de la
première tâche est prédite avec le premier modèle élémentaire n’utilisant ef-
fectivement en entrée que l’entrée globale x. Un second modèle est ensuite
utilisé pour prédire y2 sachant x et la prédiction y1. Un troisième modèle
prédit y3 sachant x et les prédictions de y1 et y2, et ainsi de suite. Une fois que
toute les sorties ont été estimées une fois, on dit avoir effectué une passe. Un
modèle à une passe est un pipeline traditionnel. L’apport de notre approche est
de pouvoir utiliser un nombre de passes P > 1, P étant un hyper-paramètre
de la méthode proposée.

Le modèle complet se compose de PT modèles élémentaires notés
(M1,1, . . . ,M1,T ,M2,1, . . . ,MP,T ), où Mp,t est le modèle de la p-ième passe
et t-ième tâche. Par exemple, la Figure 1 illustre un modèle PSMI pour quatre
tâches et cinq passes.

Des modèles distincts sont appris à chaque passe ; ceci est motivé par le
fait que – comme les sorties sont re-estimées à chaque passe – la distribu-
tion d’entrée-sortie des problèmes sous-jacents évolue d’une passe à l’autre.



CAp 2011

FIGURE 1: Illustration d’une chaı̂ne de modèles à quatre tâches et cinq passes.
Chaque étape est un modèle à sortie structurée distinct où les
entrées sont l’entrée globale et l’état courant de toute les tâches.

Algorithm 1 Algorithme d’inférence PSMI

Given an input x ∈ X and a model chain (M1,1, . . . ,M1,T ,M2,1, . . . ,MP,T )

1: s← (ε1, . . . , εT ) . initial state
2: for p = 1 to P do . for each pass
3: for t = 1 to T do . for each task
4: ŷt ←Mp,t(x, s) . estimate target t
5: s← (s1, . . . , st−1, ŷt, st+1, . . . , sT ) . update targets state
6: end for
7: end for
8: return s . return current state of all targets

Par exemple, la première passe d’estimation de la sortie de la première tâche
(sachant l’entrée globale uniquement) n’est pas le même problème que sa se-
conde estimation (sachant l’entrée globale et les T prédictions issues de la
première passe).

3.3. Apprentissage et inférence

Les algorithmes 1 et 2 décrivent respectivement l’inférence et l’apprentis-
sage de PSMI. Sachant la chaı̂ne de modèles, l’inférence consiste simplement
à chaı̂ner itérativement les inférences élémentaires en maintenant s ∈ S, l’état
courant de toutes les sorties, i.e. s = (ŷ1, . . . , ŷT ). Les sorties sont, dans un
premier temps, initialisées avec les valeurs spéciales (ε1, . . . , εT ) (ligne 1).
Chaque étape consiste à prédire la sortie structurée ŷt puis à mettre à jour
l’état courant (lignes 4–5). Les prédictions finales sont données par s à la fin
de l’inférence (ligne 8).

L’apprentissage consiste à créer la chaı̂ne de modèles sachant l’ensemble
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Algorithm 2 Algorithme d’apprentissage PSMI

Given a training set D = {(x(i), y
(i)
1 , . . . , y

(i)
T )}i∈[1,N ],

Given a structured learning algorithm A,
Given a number of passes P ,

1: S ← {s(i) = (ε1, . . . , εT )}i∈[1,N ] . initial state
2: for p = 1 to P do . for each pass
3: for t = 1 to T do . for each task
4: Dt ← {((x(i), s(i)), y

(i)
t )}i∈[1,N ] . create training set

5: Mp,t ← A(Dt) . train a model for task t
6: S ← update S given Dt and Mp,t . update current state
7: end for
8: end for
9: return (M1,1, . . . ,M1,T ,M2,1, . . . ,MP,T ) . return model chain

d’apprentissage. Tout comme l’inférence, l’apprentissage est effectué de
manière itérative et repose sur un ensemble d’états courants {s(1), . . . , s(N)}.
Ces états courants sont d’abords initialisés avec les étiquettes ε désignant
des prédictions manquantes (ligne 1). Chaque étape de l’apprentissage vise
à ajouter un élément à la chaı̂ne de modèles. Ceci implique la création d’un
ensemble d’apprentissage (ligne 4), l’apprentissage d’un modèle élémentaire
de prédiction structurée (ligne 5) et la mise à jour de l’état courant de chaque
exemple (ligne 6). Les entrées d’apprentissage des modèles élémentaires
contiennent à la fois l’entrée globale x et l’état courant s = (ŷ1, . . . , ŷT ).

3.4. Eviter le sur-apprentissage

Etant donné que la chaı̂ne de modèles peut potentiellement être longue
(jusqu’à 40 modèles dans nos expériences), des précautions particulières
doivent être prises pour éviter le surapprentissage. En effet, les exemples
d’apprentissage peuvent rapidement être parfaitement appris par les premiers
modèles de la chaı̂ne, biaisant alors dangereusement les données d’appren-
tissage pour tous les modèles restants dans la chaı̂ne. Dans nos expériences,
nous utilisons de très grands ensembles d’apprentissage et des classificateurs
linéaires simples et nous n’avons pas rencontré ce problème. Cependant, de
tels problèmes de surapprentissage peuvent être évités par au moins deux
techniques : soit en générant des prédictions intermédiaires par l’utilisation
d’une validation croisée comme présenté dans l’approche d’apprentissage
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en pile (Cohen & Carvalho, 2005), soit par l’introduction de bruit dans les
prédictions intermédiaires comme proposé par Maes et al. (2009).

4. Expériences : Annotations structurées des protéines

Nous décrivons à présent nos expériences concernant un ensemble de cinq
tâches de prédiction de propriétés structurelles de protéines.

4.1. Jeux de données

Nous avons utilisé deux jeux de données construits à partir de la base
de données Protein Data Bank (PDB), laquelle contient des structures de
protéines obtenues expérimentalement. Dans le première ensemble, PDB30,
nous avons sélectionné aléatoirement 500 protéines à partir d’une version
filtrée de PDB où l’alignement de chaque paire de séquences n’est identique
qu’à hauteur de maximum 30%. Ce filtre permet d’assurer une différence si-
gnificative entre les protéines des ensembles d’apprentissage et de test. Nous
avons également utilisé le jeu de données standard PSIPRED, constitué par
Jones (1999). Ces données se composent de 1329 protéines d’apprentissage
et de 187 protéines de test. Chacune d’entre-elles a un repliement différent,
i.e. leur forme est significativement différente des autres. Ce jeu de données
nous permet de nous comparer avec la méthode PSIPRED, qui est considérée
comme l’état de l’art dans le domaine de la prédiction ab initio de la structure
secondaire Zhang et al. (2011).

Sur chacun des jeux de données, nous appliquons deux prétraitements :
l’un pour déterminer les sorties correctes pour les différentes tâches (décrit
au point suivant), l’autre pour enrichir les entrées. Cette dernière opération
est courante lors de la manipulation de séquences d’acides aminés et consiste
à calculer un “profil génétique” de la séquence d’acides aminés. Ce profil
est créé en effectuant un alignement multiple entre la séquence d’entrée et
une grande base de données d’autres séquences. Dans notre cas, nous utili-
sons des matrices de scores par position (Position-Specific Scoring Matrices,
PSSMs) (Jones, 1999) où un score positif (resp. négatif) pour un acide aminé
donné à une position donnée indique une fréquence de substitution plus élevée
(resp. faible). L’alignement multiple est réalisé à l’aide de trois itérations de
l’outil PSI-BLAST (Altschul et al., 1997) en utilisant la base de données non-
redondante du NCBI (Pruitt et al., 2006). Une fois la PSSM générée, les va-
leurs prises par celle-ci (typiquement dans l’intervalle [−7; 7]) sont norma-
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lisées à l’échelle [0; 1]. Plusieurs méthodes de normalisation sont disponibles
dans la littérature, allant d’une simple réduction linéaire à l’utilisation d’une
fonction logistique. Dans notre cas, nous avons opté pour la fonction (Kim &
Park, 2003) :

f(x) =


0.0 si x ≤ −5

0.5 + 0.1x si − 5 < x < 5

1.0 si x ≥ 5

4.2. Tâches

Nous considérons l’ensemble suivant de 5 tâches : la prédiction de la struc-
ture secondaire (à 3 et à 8 étiquettes), la prédiction de l’accessibilité au sol-
vant (2 étiquettes), la prédiction de régions désordonnées (2 étiquettes) et la
prédiction d’étiquettes issues d’un alphabet structurel (27 étiquettes). La su-
pervision de la structure secondaire, ainsi que de l’accessibilité au solvant, est
déterminée par le programme DSSP (Kabsch & Sander, 1983) alors que la
supervision de régions désordonnées et de l’alphabet structurel est générée à
partir de la structure 3D par nos soins. La Figure 2 schématise le protocole de
génération des entrées-sorties à partir du fichier PDB d’une protéine.

L’utilisation de deux versions de la structure secondaire peut sembler re-
dondante mais permet d’obtenir deux niveaux de granularité, l’un est plus
simple, en terme de prédiction (75-80% de précision), mais moins précis,
en terme de structure locale, alors que l’autre est plus difficile (55-60%)
mais plus précis. Nous avons pu ainsi constater, lors de nos expériences, une
amélioration des prédictions quand les deux tâches sont présentes. L’alphabet
structurel, proposé par Camproux et al. (2004), est une discrétisation de la
conformation du squelette de la protéine en une série de fragments de quatre
résidus, en chevauchement. Ce problème de prédiction n’est pas commun
dans la littérature. Nous l’utilisons, comme un troisième niveau de granularité
de la structure locale tridimensionnelle et son utilisation semble également
améliorer la prédiction des autres tâches.

Etant donné que la définition d’une région désordonnée n’est pas définie
de façon unique dans la communauté, nous utiliserons la définition établie
par CASP (Noivirt-Brik et al., 2009) lors de ses compétitions, i.e. les seg-
ments de longueur d’au moins trois résidus ne possédant pas de coordonnées
atomique dans la structure cristalline de la protéine sont étiquetés comme
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FIGURE 2: Protocole utilisé pour générer les entrées (la structure primaire et
la PSSM) et les supervisions (la structure secondaire, l’accessibi-
lité au solvant, les régions désordonnées et l’alphabet structurel) à
partir de fichiers PDB.

“désordonnés”, alors que tous les autres résidus sont étiquetés comme “or-
donnés”.

Nous avons utilisé le seuil courant de 20% pour définir les deux états
“caché” et “exposé” de l’accessibilité au solvant. Notez que d’autres seuils
sont également utilisés dans la littérature tel que 5%, 16%, 25% ou encore
30%.

La mesure de “score” utilisée par défaut est la précision par étiquette, i.e.
le pourcentage d’acides aminés dont les étiquettes sont correctement prédites
sur l’ensemble de test. Vu que l’étiquetage des régions désordonnées est un
problème fortement déséquilibré, cette mesure n’est pas très appropriée pour
cette tâche. À la place, nous utilisons une mesure d’évaluation classique pour
ce problème de prédiction : le coefficient de corrélation de Matthews (MCC)
(Adamczak et al., 2005b).



Prédiction structurée multitâche itérative

4.3. Modèle et attributs

Nous avons utilisé une approche de classification simple où chaque
étiquette est prédite indépendamment des autres, sur base d’attributs décrivant
des propriétés locales et globales de la protéine. Plus précisément, le classi-
ficateur de base est une machine à vecteurs de support linéaire entrainée par
une descende de gradient stochastique. Cette méthode simple à l’avantage
d’avoir un temps d’apprentissage court et de bonnes propriétés de passage à
l’échelle. Les meta-paramètres d’apprentissages ont été réglés sur l’ensemble
d’apprentissage en ajustant, dans un premier temps, les meta-paramètres re-
latifs à la première passe et, dans un second temps, en fixant ces-derniers et
ajustant ceux de la second passe. Etant donné que les nombres d’exemples
et d’entrées ne varie plus au-delà de la seconde passe et que les valeurs op-
timales des méta-paramètres sont fortement liés à ceux-ci, nous avons utilisé
les valeurs des méta-paramètres de la seconde passe pour toutes les passes
ultérieures.

L’ordre dans lequel les tâches sont apprises est celui-ci : i) la structure se-
condaire à 3 états, ii) la structure secondaire à 8 états, iii) l’accessibilité au
solvant, iv) les régions désordonnées et v) l’alphabet structurel. Néanmoins,
cet ordonnancement n’a pas de grosse influence. Tout au plus, les scores su-
bissent un déplacement d’une passe. Bien que non développé dans cet article,
nous avons également mis en place une version parallèle de notre système
d’apprentissage, dans laquelle tous les modèles d’une même passe sont appris
en parallèle. Cette approche parallèle permet de s’affranchir de la dépendance
par rapport à l’ordre des tâches.

Les attributs utilisés sont similaires à ceux proposés par Jones (1999) et
Zhang et al. (2008). Un premier sous-ensemble d’attributs décrit de façon
globale la distribution en acides aminés au sein de la protéine et la longueur
de sa séquence. Un second ensemble d’attributs décrit l’information locale
relative aux positions voisines dans la séquence d’acides aminés ; ces attributs
locaux sont constitués à partir des éléments d’entrée (acides-aminés, PSSM)
et des étiquettes prédites contenus dans une fenêtre glissante de taille 15, ce
qui est illustré par la figure 3. Le choix de cette taille de fenêtre est un choix
classique dans la littérature.

Pour construire le vecteur de caractéristiques utilisé par le SVM, nous ap-
pliquons une étape de post-traitement sur les attributs. Cette étape consiste à,
dans le cas de valeur continues, discrétiser ces valeurs en cinq intervalles et,
dans le cas de valeurs catégoriques, représenter l’ensemble des classes pos-
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FIGURE 3: Illustration des attributs locaux utilisés à un position donnée dans
la séquence. En rouge, la position que l’on souhaite décrire. En
vert, la fenêtre de taille 15 centrée sur la position.

sibles où la caractéristique qui représente la valeur de l’attribut vaut 1 et les
autres 0. Ce qui porte à ∼3800 le nombre d’attributs utilisé par le SVM à
partir de la seconde passe.

4.4. Résultats

Nous avons entrainé un modèle de prédiction structurée multitâche
itérative jusqu’à P = 8 passes, ce qui donne lieu à une chaı̂ne de modèles
de longueur PT = 40. Pour observer l’effet de la ré-estimation itérative des
sorties, nous avons évalué chaque tâche en “coupant” la chaı̂ne de modèles
après un certain nombre de passes Pmax ∈ [1, 8]. La Figure 4 donne le score
de test, sur les données PSIPRED, pour chaque tâche en fonction du nombre de
passes. Il est clair que toutes les tâches bénéficient de la ré-estimation des sor-
ties, et plus particulièrement pendant les premières passes. Vers les dernières
ré-estimations, certains scores se dégradent un peu. Cependant, nous n’obser-
vons pas de phénomène de surapprentissage très marqué (voir la discussion à
la Section 3) dans ces expériences. Il est important de noter que dans tous les
cas, la ré-estimation des sorties, après plusieurs passes, est significativement
plus précise que l’estimation initiale (une seule passe).

Pour mesurer l’amélioration apportée par l’approche multitâche, nous
avons aussi effectué une expérience de “référence” par tâche en utilisant un
étiquetage de séquences itératif dans un contexte où seule la tâche concernée
est présente. Dès lors, ces références se basent également sur une ré-
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FIGURE 4: Evolution du score de test après un nombre croissant de passes sur
PSIPRED. Le résultat de Jones (1999), faisant office d’état de l’art,
est disponible pour la tâche “Secondary Structure (3)”.

PDB30 PSIPRED

Tâche Etiquettes Unique Multitâche Unique Multitâche
Secondary structure 3 75.45 % 76.35 % 76.29 % 78.60 %
Secondary structure 8 60.38 % 62.69 % 62.25 % 64.64 %
Solvent accessibility 2 71.56 % 73.52 % 73.51 % 73.95 %
Disordered regions 2 0.4212 0.4983 0.5611 0.6749
Structural alphabet 27 16.81 % 18.14 % 24.88 % 25.89 %

TABLE 1: Comparatif des résultats obtenus, sur PDB30 et PSIPRED (8
passes), entre l’approche à tâches unique et l’approche multitâche.

estimation itérative des sorties mais n’utilisent par contre plus les prédictions
provenant des autres tâches. La comparaison entre notre modèle multitâche
et ces références à “tâche unique” est donnée à la Table 1. Nous pouvons ob-
server que sur les deux jeux de données, les résultats de notre approche mul-
titâche sont systématiquement meilleurs que l’approche à tâche unique, e.g. :
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+2.31% pour la prédiction de la structure secondaire et +0.114 MCC pour la
prédiction de régions désordonnées sur l’ensemble de test de PSIPRED. Nous
pouvons aussi observer que seul l’approche multitâche dépasse les résultats
de l’état de l’art sur PSIPRED avec une amélioration de +2.1%.

5. Conclusion

Nous avons présenté un cadre d’apprentissage, générique et conceptuelle-
ment simple, pour la prédiction structurée multitâche. Il s’agit d’une nouvelle
approche itérative pour l’apprentissage automatique en mode multitâche mis
en oeuvre pour résoudre plusieurs problèmes liés d’étiquetage de séquences.
Cette approche a l’avantage de pouvoir utiliser n’importe quel algorithme de
prédiction structurée. Nous avons réalisé des expériences sur un ensemble
de cinq tâches d’étiquetages de séquences de protéines en utilisant comme
modèle de base une machine à vecteur de support entrainée par une descende
de gradient stochastique. Avec cette configuration, nous avons montré que
notre approche est systématiquement meilleure que les approches n’utilisant
qu’une seule tâche et ce pour toutes les tâches et les deux jeux de données
(PSIPRED et PDB30). Nous avons également montré que notre approche sur-
passe de manière significative (+2.1% d’amélioration) les résultats de l’état
de l’art de la prédiction de la structure secondaire.

Etant donné que l’approche multitâche itérative n’est pas restreinte à la
prédiction de séquences d’étiquettes, nous l’appliquerons dans le future à
d’autres problèmes de prédiction de protéines, tels que la prédiction des fonc-
tions de protéine, la prédiction de contact résidu-résidu, la prédictions de l’ali-
gnement des feuillets beta, la prédiction des interactions protéine-protéine, et
la prédiction de la structure tertiaire. Nous pensons également que le cadre
d’apprentissage proposé dans ce papier peut-être appliqué à bien d’autres do-
maines (e.g. : l’analyse d’images, le traitement de textes, la surveillance et le
contrôle de réseaux, la robotique), où les données sont naturellement dispo-
nibles sous la forme d’un ensemble de représentations complémentaires et où
les problèmes de prédiction concernent généralement plusieurs tâches liées de
manière temporelle ou spatiale.

6. Remerciements

Ce papier présente les résultats de recherche du Belgian Network BIOMA-
GNET (Bioinformatics and Modelling : from Genomes to Networks), financé
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