The partial proportional odds model in the analysis of longitudinal ordinal data

Anne-Francoise DONNEAU

Medical Informatics and Biostatistics School of Public Health University of Liège Promotor: Pr. A. Albert

18 May 2010

Content of the presentation

- ► Introduction
- ► Motivating example
- ► Proportional odds model
- ► Partial proportional odds model
- Application
- ► Conclusion

Problem: Analysis of ordinal longitudinal data

Problem: Analysis of ordinal longitudinal data

Units: Subjects, objects, $(i = 1, \dots, N)$

Problem: Analysis of ordinal longitudinal data

Units: Subjects, objects, $(i = 1, \dots, N)$

Outcome: Ordinal variable *Y* with *K* levels

Problem: Analysis of ordinal longitudinal data

Units: Subjects, objects, $(i = 1, \dots, N)$

Outcome: Ordinal variable Y with K levels

Measurement: Measurements at T occasions, $\mathbf{Y_i} = (Y_{i1}, \dots, Y_{iT})'$

Problem: Analysis of ordinal longitudinal data

Units: Subjects, objects, $(i = 1, \dots, N)$

Outcome: Ordinal variable *Y* with *K* levels

Measurement: Measurements at T occasions, $\mathbf{Y_i} = (Y_{i1}, \dots, Y_{iT})'$

Covariates: $T \times p$ covariates matrix $\mathbf{X_i} = (\mathbf{x_{i1}}, \dots, \mathbf{x_{iT}})'$

Time, gender, age ...

Problem: Analysis of ordinal longitudinal data

Units: Subjects, objects, $(i = 1, \dots, N)$

Outcome: Ordinal variable *Y* with *K* levels

Measurement: Measurements at T occasions, $\mathbf{Y_i} = (Y_{i1}, \dots, Y_{iT})'$

Covariates: $T \times p$ covariates matrix $\mathbf{X_i} = (\mathbf{x_{i1}}, \cdots, \mathbf{x_{iT}})'$

Time, gender, age ...

Domains: Medicine, psychology, social science,...

Motivating example - Quality of life

Dataset

- ▶ 247 patients with malignant brain cancer treated by RT+CT or RT
- ► Assessment of the quality of life at 8 occasions Baseline, End RT, End RT + (3,6,9)months, End RT + (1, 1.5, 2)years
- ► EORTC QLQC30 questionnaire Appetite loss scale Have you lacked appetite? ('Not at all', 'A little', 'Quite a bit', 'Very much')
- ► Covariates : Time, Treatment (RT+CT vs RT), Tumor cell (pure vs mixed)

Motivating example - Quality of life

Dataset

- ▶ 247 patients with malignant brain cancer treated by RT+CT or RT
- ► Assessment of the quality of life at 8 occasions Baseline, End RT, End RT + (3,6,9)months, End RT + (1, 1.5, 2)years
- EORTC QLQC30 questionnaire Appetite loss scale
 Have you lacked appetite? ('Not at all', 'A little', 'Quite a bit', 'Very much')
- ► Covariates : Time, Treatment (RT+CT vs RT), Tumor cell (pure vs mixed)

Summary of the data

$$N=247, T=8, K=4$$

Motivating example - Quality of life

Dataset

- ▶ 247 patients with malignant brain cancer treated by RT+CT or RT
- ► Assessment of the quality of life at 8 occasions Baseline, End RT, End RT + (3,6,9)months, End RT + (1, 1.5, 2)years
- EORTC QLQC30 questionnaire Appetite loss scale
 Have you lacked appetite? ('Not at all', 'A little', 'Quite a bit', 'Very much')
- ► Covariates : Time, Treatment (RT+CT vs RT), Tumor cell (pure vs mixed)

Summary of the data N=247, T=8, K=4

Questions of interest

- ► Treatment effect
- ► Tumor cell effect

Aim is to find a model that takes into account

- ▶ the ordinal nature of the outcome under study
- ▶ the correlation between repeated observations
- ▶ the unavoidable presence of missing data

Aim is to find a model that takes into account

- ▶ the ordinal nature of the outcome under study
- ▶ the correlation between repeated observations
- ▶ the unavoidable presence of missing data

Proportional odds model

$$logit[Pr(Y_{ij} \leq k)] = \theta_k + \mathbf{x}'_{ij}\boldsymbol{\beta} \quad , \quad i = 1, \dots, N; \quad j = 1, \dots, T$$

$$, \quad k = 1, \dots, K - 1$$

Aim is to find a model that takes into account

- ▶ the ordinal nature of the outcome under study
- ▶ the correlation between repeated observations
- ▶ the unavoidable presence of missing data

Proportional odds model

$$logit[Pr(Y_{ij} \leq k)] = \theta_k + \mathbf{x}'_{ij}\beta \quad , \quad i = 1, \dots, N; \quad j = 1, \dots, T$$
$$, \quad k = 1, \dots, K - 1$$

Properties: invariant when reversing the order of categories deleting/collapsing some categories

Aim is to find a model that takes into account

- ▶ the ordinal nature of the outcome under study
- ▶ the correlation between repeated observations
- ▶ the unavoidable presence of missing data

Proportional odds model

$$logit[Pr(Y_{ij} \leq k)] = \theta_k + \mathbf{x'_{ij}}\beta \quad , \quad i = 1, \dots, N; \quad j = 1, \dots, T$$
$$, \quad k = 1, \dots, K - 1$$

Properties: invariant when reversing the order of categories deleting/collapsing some categories

Assumption: relationship between Y and X is the same for all categories of Y

Testing the proportional odds model

Tests for assessing proportionality when the outcomes are uncorrelated were extended to longitudinal data (Stiger, 1999).

What if the proportional odds assumption is violated?

- ► Fitting a more general model
- ▶ Dichotomize the ordinal variable and fit separate binary logistic regression models (Bender, 1998).

Our solution

► Fitting a model that allows relaxing the proportional odds assumption when necessary

The partial proportional odds model

The partial proportional odds model (Peterson and Harrel, 1990) allows non-proportional odds for all or a subset q of the p explanatory covariates.

In univariate case,

$$logit[Pr(Y \le k)] = \theta_k + \mathbf{x'}\beta + \mathbf{z'}\gamma_k$$
, $k = 1, \dots, K-1$

where ${\bf z}$ is a q-dimensional vector $(q \leq p)$ of the explanatory variables for which the proportional odds assumption does not hold and $\gamma_{\bf k}$ is the $(q \times 1)$ corresponding vector of coefficients and $\gamma_1 = {\bf 0}$. When $\gamma_{\bf k} = {\bf 0}$ for all k, the model reduces to the proportional odds model

Extension of the partial proportional odds model to longitudinal data (Donneau et al., 2010)

In a longitudinal setting,

$$logit[Pr(Y_{ij} \leq k)] = \theta_k + \mathbf{x}'_{ij}\beta + \mathbf{z}'_{ij}\gamma_k \quad , \quad i = 1, \dots, N; \quad j = 1, \dots, T$$

$$, \quad k = 1, \dots, K - 1$$

where $(\mathbf{z_{i1}},\cdots,\mathbf{z_{iT}})'$ is a $(T\times q)$ matrix, $q\leq p$, of a subset of q-explanatory variables for which the proportional odds assumption does not apply and $\gamma_{\mathbf{k}}$ is the $(q\times 1)$ corresponding vector of regression parameters with $\gamma_1=\mathbf{0}$.

As an example (p=2 and q=1), assume that the proportional odds assumption holds for X_1 and not for X_2 , then

$$logit[Pr(Y_{ij} \leq k)] = \theta_k + \beta_1 X_1 + (\beta_2 + \gamma_{k,2}) X_2$$

Estimation

Estimation of the regression parameters

- ► GEE extension of GLM to longitudinal data (Liang and Zegger, 1986)
- ▶ Define of a (K-1) expanded vector of binary responses $\mathbf{Y}_{ij} = (Y_{ij,1}, ..., Y_{ij,(K-1)})'$ where $Y_{ijk} = 1$ if $Y_{ij} \leq k$ and 0 otherwise
- ▶ $logit[Pr(Y_{ij} \le k)] = logit[Pr(Y_{ijk} = 1)] \rightarrow member of GLM family$

$$\sum_{i=1}^{N} \frac{\partial \pi_i'}{\partial \beta} \mathbf{W_i^{-1}} (\mathbf{Y_i} - \pi_i) = 0$$

where $\mathbf{Y_i} = (\mathbf{Y_{i1}},...,\mathbf{Y_{iT}})'$, $\pi_i = E(\mathbf{Y_i})$ and $\mathbf{W_i} = \mathbf{V_i^{1/2}} \mathbf{R_i} \mathbf{V_i^{1/2}}$ with $\mathbf{V_i}$ the diagonal matrix of the variance of the element of $\mathbf{Y_i}$. The matrix $\mathbf{R_i}$ is the 'working' correlation matrix that expresses the dependence among repeated observations over the subjects.

Missingness

Missing data patterns

- ► Drop out / attrition
- ▶ Non-monotone missingness

Missing data mechanism (Little and Rubin, 1987)

- ► MCAR: Missing completely at random
- MAR: Missing at random
- MNAR: Missing not at random

Example : Appetite loss - (1) Treatment effect

Model

► Consider the model:

$$logit[Pr(Y_{ij} \leq k)] = \theta_k + (\beta_1 + \gamma_{\mathbf{k}\mathbf{1}})t_{ij} + (\beta_2 + \gamma_{\mathbf{k}\mathbf{2}})Treat_i + (\beta_3 + \gamma_{\mathbf{k}\mathbf{3}})t_{ij} \times Treat_i$$

- ► k = 1, 2, 3
- ▶ t_{ij} : j^{th} time of measurement on subject i
- ► *Treat_i*: treatment group (1= RT+CT vs 0=RT)

Assumption

- ► Missing data mechanism is MCAR (GEE)
- ▶ Proportional odds assumption is verified for t, Treat and $t \times Treat$.

$$\gamma_{k,t} = 0$$
 ($p = 0.86$)
 $\gamma_{k,Treat} = 0$ ($p = 0.21$)
 $\gamma_{k,t \times Treat} = 0$ ($p = 0.17$)

Example : Appetite loss - (1) Treatment effect

Model becomes

$$logit[Pr(Y_{ij} \leq k)] = \theta_k + \beta_1 t_{ij} + \beta_2 Treat_i + \beta_3 (t_{ij} \times Treat_i)$$
 , $k = 1, 2, 3$

Estimation

Table1: GEE parameter estimates for the appetite loss scale - Proportional odds model

Covariates	Estimate	SE	<i>p</i> -value
θ_1	1.21	0.14	
θ_2	2.48	0.16	
θ_3	3.81	0.21	
t _{ij}	0.08	0.04	0.033
$Treat_i$	-0.39	0.19	0.034
$t_{ij} imes Treat_i$	-0.12	0.05	0.009

A significant difference between treatment arms was found in favor of the RT alone treatment.

Example: Appetite loss - (2) Tumor cell effect

Model

► Consider the model:

$$logit[Pr(Y_{ij} \leq k)] = \theta_k + (\beta_1 + \gamma_{k1})t_{ij} + (\beta_2 + \gamma_{k2})Tumor_i + (\beta_3 + \gamma_{k3})t_{ij} \times Tumor_i$$

- k = 1, 2, 3
- $ightharpoonup t_{ii}$: j^{th} time of measurement on subject i
- ► Tumor_i: type of diagnosed tumor (1=pure vs 0=mixed)

Assumption

- ► Missing data mechanism is MCAR (GEE)
- \blacktriangleright Proportional odds assumption is not met for t, Tumor and $t \times Tumor$.

$$\begin{aligned} & \gamma_{\mathbf{k},\mathbf{t}} = \mathbf{0} \quad (p = 0.015) \\ & \gamma_{\mathbf{k},\mathsf{Tumor}} = \mathbf{0} \quad (p = 0.044) \\ & \gamma_{\mathbf{k},\mathbf{t} \times \mathsf{Tumor}} = \mathbf{0} \quad (p = 0.008) \end{aligned}$$

Example: Appetite loss - (2) Tumor cell effect

Estimations

Table2: GEE parameter estimates for the appetite loss scale - Partial proportional odds model

		•		
Covariates	k	Estimate	SE	<i>p</i> -value
θ_1	1	-0.75	0.25	
θ_2	2	1.58	0.41	
θ_3	3	1.93	0.78	
t _{ij}	1	0.49	0.06	< 0.0001
t _{ij}	2	-0.10	0.12	0.39
t_{ij}	3	0.53	0.22	0.015
$Tumor_j$	1	1.30	0.20	< 0.0001
$Tumor_j$	2	0.45	0.33	0.18
Tumor _i	3	1.14	0.65	0.079
$t_{ij} imes Tumor_i$	1	-0.34	0.04	< 0.0001
$t_{ij} imes Tumor_j$	2	0.092	0.097	0.34
$t_{ij} imes Tumor_j$	3	-0.32	0.16	0.04

Example: Appetite loss - (2) Tumor cell effect

$$\begin{aligned} & logit[Pr(Y_{ij} \leq 1)] = -0.75 + 0.49t_{ij} + 1.30 \textit{Tumor}_j - 0.34t_{ij} \times \textit{Tumor}_j \\ & logit[Pr(Y_{ij} \leq 2)] = 1.58 - 0.10t_{ij} + 0.45 \textit{Tumor}_j + 0.092t_{ij} \times \textit{Tumor}_j \\ & logit[Pr(Y_{ij} \leq 3)] = 1.93 + 0.53t_{ij} + 1.14 \textit{Tumor}_j - 0.32t_{ij} \times \textit{Tumor}_j \end{aligned}$$

where 1="Not at all', 2='A little', 3='Quite a bit', 4='Very much'

Interpretation

- At baseline, pure cell tumor patients have $e^{1.30} = 3.7$ time higher odds of having no appetite loss than mixed cells tumor patients.
- At baseline, pure cell tumor patients have $e^{0.45} = 1.6$ time higher odds of having at most little appetite loss than mixed cells tumor patients.
- ► At baseline, pure cell tumor patients have e^{1.14} = 3.1 time higher odds of having at most quite a bite appetite loss than mixed cells tumor patients.

Conclusion

We have explored the extension of the partial proportional odds model to the case of longitudinal data

- ► Estimation mechanism (GEE)
- ► Testing for the proportional odds assumption for each covariate
- ► Final model that takes into account the ordinal nature of the variable under study takes into account the correlation between repeated observations allows relaxing the proportional odds assumption (when necessary)
- ► Missing data to be first investigated (GEE, WGEE, Mi-GEE)

Conclusion

Thank you for your attention