The partial proportional odds model in the analysis of longitudinal ordinal data

Anne-Francoise DONNEAU

Medical Informatics and Biostatistics
School of Public Health
University of Liège
Promotor: Pr. A. Albert

18 May 2010
Content of the presentation

- Introduction
- Motivating example
- Proportional odds model
- Partial proportional odds model
- Application
- Conclusion
Notation

Problem: Analysis of ordinal longitudinal data
Notation

Problem: Analysis of ordinal longitudinal data

Units: Subjects, objects, \((i = 1, \cdots, N)\)
Notation

Problem: Analysis of ordinal longitudinal data

Units: Subjects, objects, \((i = 1, \ldots, N)\)

Outcome: Ordinal variable \(Y\) with \(K\) levels
Notation

Problem: Analysis of ordinal longitudinal data

Units: Subjects, objects, \((i = 1, \cdots, N)\)

Outcome: Ordinal variable \(Y\) with \(K\) levels

Measurement: Measurements at \(T\) occasions, \(Y_i = (Y_{i1}, \cdots, Y_{iT})'\)
Notation

Problem: Analysis of ordinal longitudinal data

Units: Subjects, objects, \((i = 1, \cdots, N)\)

Outcome: Ordinal variable \(Y\) with \(K\) levels

Measurement: Measurements at \(T\) occasions, \(Y_i = (Y_{i1}, \cdots, Y_{iT})'\)

Covariates: \(T \times p\) covariates matrix \(X_i = (x_{i1}, \cdots, x_{iT})'\)

Time, gender, age ...
Problem: Analysis of ordinal longitudinal data

Units: Subjects, objects, \((i = 1, \cdots, N)\)

Outcome: Ordinal variable \(Y\) with \(K\) levels

Measurement: Measurements at \(T\) occasions, \(Y_i = (Y_{i1}, \cdots, Y_{iT})'\)

Covariates: \(T \times p\) covariates matrix \(X_i = (x_{i1}, \cdots, x_{iT})'\)
\ Time, gender, age ...

Domains: Medicine, psychology, social science,...
Motivating example - Quality of life

Dataset

- 247 patients with malignant brain cancer treated by RT+CT or RT
- Assessment of the quality of life at 8 occasions
 - Baseline, End RT, End RT + (3,6,9)months, End RT + (1, 1.5, 2)years
- EORTC QLQC30 questionnaire - Appetite loss scale
 - Have you lacked appetite? ('Not at all', 'A little', 'Quite a bit', 'Very much')
- Covariates: Time, Treatment (RT+CT vs RT), Tumor cell (pure vs mixed)
Motivating example - Quality of life

Dataset

- 247 patients with malignant brain cancer treated by RT+CT or RT
- Assessment of the quality of life at 8 occasions
 - Baseline, End RT, End RT + (3,6,9)months, End RT + (1, 1.5, 2)years
- EORTC QLQC30 questionnaire - Appetite loss scale
 - Have you lacked appetite? ('Not at all', 'A little', 'Quite a bit', 'Very much')
- Covariates: Time, Treatment (RT+CT vs RT), Tumor cell (pure vs mixed)

Summary of the data

$N=247$, $T=8$, $K=4$
Motivating example - Quality of life

Dataset

- 247 patients with malignant brain cancer treated by RT+CT or RT
- Assessment of the quality of life at 8 occasions
 Baseline, End RT, End RT + (3, 6, 9) months, End RT + (1, 1.5, 2) years
- EORTC QLQC30 questionnaire - Appetite loss scale
 Have you lacked appetite? ('Not at all', 'A little', 'Quite a bit', 'Very much')
- Covariates: Time, Treatment (RT+CT vs RT), Tumor cell (pure vs mixed)

Summary of the data

$N = 247$, $T = 8$, $K = 4$

Questions of interest

- Treatment effect
- Tumor cell effect
Proportional odds model

Aim is to find a model that takes into account

- the ordinal nature of the outcome under study
- the correlation between repeated observations
- the unavoidable presence of missing data
Aim is to find a model that takes into account

- the ordinal nature of the outcome under study
- the correlation between repeated observations
- the unavoidable presence of missing data

Proportional odds model

\[
\text{logit}[\Pr(Y_{ij} \leq k)] = \theta_k + x_{ij}'\beta, \quad i = 1, \ldots, N; \quad j = 1, \ldots, T
\]

, \quad k = 1, \ldots, K - 1
Proportional odds model

Aim is to find a model that takes into account

- the ordinal nature of the outcome under study
- the correlation between repeated observations
- the unavoidable presence of missing data

Proportional odds model

\[
\text{logit}[\Pr(Y_{ij} \leq k)] = \theta_k + x_{ij}' \beta, \quad i = 1, \ldots, N; \quad j = 1, \ldots, T
\]

, \quad k = 1, \ldots, K - 1

Properties: invariant when reversing the order of categories
deleting/collapsing some categories
Proportional odds model

Aim is to find a model that takes into account

- the ordinal nature of the outcome under study
- the correlation between repeated observations
- the unavoidable presence of missing data

Proportional odds model

\[
\text{logit}[\Pr(Y_{ij} \leq k)] = \theta_k + x_{ij}'\beta, \quad i = 1, \cdots, N; \quad j = 1, \cdots, T \\
, \quad k = 1, \cdots, K - 1
\]

Properties: invariant when reversing the order of categories
deleting/collapsing some categories

Assumption: relationship between \(Y \) and \(X \) is the same for all categories of \(Y \)
Testing the proportional odds model

Tests for assessing proportionality when the outcomes are uncorrelated were extended to longitudinal data (Stiger, 1999).

What if the proportional odds assumption is violated?

- Fitting a more general model
- Dichotomize the ordinal variable and fit separate binary logistic regression models (Bender, 1998).

Our solution

- Fitting a model that allows relaxing the proportional odds assumption when necessary
The partial proportional odds model (Peterson and Harrel, 1990) allows non-proportional odds for all or a subset q of the p explanatory covariates.

In univariate case,

$$\text{logit}[Pr(Y \leq k)] = \theta_k + x'\beta + z'\gamma_k, \quad k = 1, \cdots, K - 1$$

where z is a q-dimensional vector ($q \leq p$) of the explanatory variables for which the proportional odds assumption does not hold and γ_k is the ($q \times 1$) corresponding vector of coefficients and $\gamma_1 = 0$. When $\gamma_k = 0$ for all k, the model reduces to the proportional odds model.
Extension of the partial proportional odds model to longitudinal data (Donneau et al., 2010)

In a longitudinal setting,

$$\text{logit}[\Pr(Y_{ij} \leq k)] = \theta_k + x_{ij}'\beta + z_{ij}'\gamma_k , \quad i = 1, \cdots, N; \quad j = 1, \cdots, T; \quad k = 1, \cdots, K - 1$$

where $$(z_{i1}, \cdots, z_{iT})'$$ is a $$(T \times q)$$ matrix, $q \leq p$, of a subset of q-explanatory variables for which the proportional odds assumption does not apply and γ_k is the $$(q \times 1)$$ corresponding vector of regression parameters with $\gamma_1 = 0$.

As an example ($p=2$ and $q=1$), assume that the proportional odds assumption holds for X_1 and not for X_2, then

$$\text{logit}[\Pr(Y_{ij} \leq k)] = \theta_k + \beta_1 X_1 + (\beta_2 + \gamma_{k,2})X_2$$
Estimation of the regression parameters

- GEE - extension of GLM to longitudinal data (Liang and Zegger, 1986)
- Define of a $(K - 1)$ expanded vector of binary responses
 \[Y_{ij} = (Y_{ij,1}, \ldots, Y_{ij,(K-1)})' \] where $Y_{ijk} = 1$ if $Y_{ij} \leq k$ and 0 otherwise
- $\text{logit}[Pr(Y_{ij} \leq k)] = \text{logit}[Pr(Y_{ijk} = 1)] \rightarrow$ member of GLM family

\[
\sum_{i=1}^{N} \frac{\partial \pi_i'}{\partial \beta} W_i^{-1}(Y_i - \pi_i) = 0
\]

where $Y_i = (Y_{i1}, \ldots, Y_{iT})'$, $\pi_i = E(Y_i)$ and $W_i = V_i^{1/2} R_i V_i^{1/2}$ with V_i the diagonal matrix of the variance of the element of Y_i. The matrix R_i is the 'working' correlation matrix that expresses the dependence among repeated observations over the subjects.
Missing data

Missing data patterns

- Drop out / attrition
- Non-monotone missingness

Missing data mechanism (Little and Rubin, 1987)

- MCAR: Missing completely at random
- MAR: Missing at random
- MNAR: Missing not at random
Example : Appetite loss - (1) Treatment effect

Model

- Consider the model:

\[
\text{logit}[\Pr(Y_{ij} \leq k)] = \theta_k + (\beta_1 + \gamma_{k1})t_{ij} + (\beta_2 + \gamma_{k2})\text{Treat}_i + (\beta_3 + \gamma_{k3})t_{ij} \times \text{Treat}_i
\]

- \(k = 1, 2, 3 \)
- \(t_{ij} \): \(j^{th} \) time of measurement on subject \(i \)
- \(\text{Treat}_i \): treatment group (1 = RT+CT vs 0 = RT)

Assumption

- Missing data mechanism is MCAR (GEE)
- Proportional odds assumption is verified for \(t, \text{Treat} \) and \(t \times \text{Treat} \).
 - \(\gamma_{k,t} = 0 \) \((p = 0.86) \)
 - \(\gamma_{k,Treat} = 0 \) \((p = 0.21) \)
 - \(\gamma_{k,t \times Treat} = 0 \) \((p = 0.17) \)
Example : Appetite loss - (1) Treatment effect

Model becomes

\[
\text{logit}[Pr(Y_{ij} \leq k)] = \theta_k + \beta_1 t_{ij} + \beta_2 \text{Treat}_i + \beta_3 (t_{ij} \times \text{Treat}_i), \quad k = 1, 2, 3
\]

Estimation

<table>
<thead>
<tr>
<th>Covariates</th>
<th>Estimate</th>
<th>SE</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ_1</td>
<td>1.21</td>
<td>0.14</td>
<td></td>
</tr>
<tr>
<td>θ_2</td>
<td>2.48</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>θ_3</td>
<td>3.81</td>
<td>0.21</td>
<td></td>
</tr>
<tr>
<td>t_{ij}</td>
<td>0.08</td>
<td>0.04</td>
<td>0.033</td>
</tr>
<tr>
<td>Treat_i</td>
<td>-0.39</td>
<td>0.19</td>
<td>0.034</td>
</tr>
<tr>
<td>$t_{ij} \times \text{Treat}_i$</td>
<td>-0.12</td>
<td>0.05</td>
<td>0.009</td>
</tr>
</tbody>
</table>

A significant difference between treatment arms was found in favor of the RT alone treatment.
Example : Appetite loss - (2) Tumor cell effect

Model

- Consider the model:

\[
\logit[Pr(Y_{ij} \leq k)] = \theta_k + (\beta_1 + \gamma_{k1})t_{ij} + (\beta_2 + \gamma_{k2})Tumor_i + (\beta_3 + \gamma_{k3})t_{ij} \times Tumor_i
\]

- \(k = 1, 2, 3 \)
- \(t_{ij} \): \(j^{th} \) time of measurement on subject \(i \)
- \(Tumor_i \): type of diagnosed tumor (1=pure vs 0=mixed)

Assumption

- Missing data mechanism is MCAR (GEE)
- Proportional odds assumption is not met for \(t, Tumor \) and \(t \times Tumor \).
 \[
 \gamma_{k,t} = 0 \quad (p = 0.015)
 \]
 \[
 \gamma_{k,Tumor} = 0 \quad (p = 0.044)
 \]
 \[
 \gamma_{k,t \times Tumor} = 0 \quad (p = 0.008)
 \]
Example : Appetite loss - (2) Tumor cell effect

Estimations

Table 2: GEE parameter estimates for the appetite loss scale - Partial proportional odds model

<table>
<thead>
<tr>
<th>Covariates</th>
<th>k</th>
<th>Estimate</th>
<th>SE</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ_1</td>
<td>1</td>
<td>-0.75</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>θ_2</td>
<td>2</td>
<td>1.58</td>
<td>0.41</td>
<td></td>
</tr>
<tr>
<td>θ_3</td>
<td>3</td>
<td>1.93</td>
<td>0.78</td>
<td></td>
</tr>
<tr>
<td>t_{ij}</td>
<td>1</td>
<td>0.49</td>
<td>0.06</td>
<td><0.0001</td>
</tr>
<tr>
<td>t_{ij}</td>
<td>2</td>
<td>-0.10</td>
<td>0.12</td>
<td>0.39</td>
</tr>
<tr>
<td>t_{ij}</td>
<td>3</td>
<td>0.53</td>
<td>0.22</td>
<td>0.015</td>
</tr>
<tr>
<td>$Tumor_j$</td>
<td>1</td>
<td>1.30</td>
<td>0.20</td>
<td><0.0001</td>
</tr>
<tr>
<td>$Tumor_j$</td>
<td>2</td>
<td>0.45</td>
<td>0.33</td>
<td>0.18</td>
</tr>
<tr>
<td>$Tumor_j$</td>
<td>3</td>
<td>1.14</td>
<td>0.65</td>
<td>0.079</td>
</tr>
<tr>
<td>$t_{ij} \times Tumor_j$</td>
<td>1</td>
<td>-0.34</td>
<td>0.04</td>
<td><0.0001</td>
</tr>
<tr>
<td>$t_{ij} \times Tumor_j$</td>
<td>2</td>
<td>0.092</td>
<td>0.097</td>
<td>0.34</td>
</tr>
<tr>
<td>$t_{ij} \times Tumor_j$</td>
<td>3</td>
<td>-0.32</td>
<td>0.16</td>
<td>0.04</td>
</tr>
</tbody>
</table>
Example: Appetite loss - (2) Tumor cell effect

\[\text{logit} \left[Pr(Y_{ij} \leq 1) \right] = -0.75 + 0.49t_{ij} + 1.30 \text{Tumor}_j - 0.34t_{ij} \times \text{Tumor}_j \]
\[\text{logit} \left[Pr(Y_{ij} \leq 2) \right] = 1.58 - 0.10t_{ij} + 0.45 \text{Tumor}_j + 0.092t_{ij} \times \text{Tumor}_j \]
\[\text{logit} \left[Pr(Y_{ij} \leq 3) \right] = 1.93 + 0.53t_{ij} + 1.14 \text{Tumor}_j - 0.32t_{ij} \times \text{Tumor}_j \]

where 1=’Not at all’, 2=’A little’, 3=’Quite a bit’, 4=’Very much’

Interpretation

▸ At baseline, pure cell tumor patients have \(e^{1.30} = 3.7 \) time higher odds of having no appetite loss than mixed cells tumor patients.

▸ At baseline, pure cell tumor patients have \(e^{0.45} = 1.6 \) time higher odds of having at most little appetite loss than mixed cells tumor patients.

▸ At baseline, pure cell tumor patients have \(e^{1.14} = 3.1 \) time higher odds of having at most quite a bite appetite loss than mixed cells tumor patients.
Conclusion

We have explored the extension of the partial proportional odds model to the case of longitudinal data

- Estimation mechanism (GEE)
- Testing for the proportional odds assumption for each covariate
- Final model that takes into account the ordinal nature of the variable under study
 takes into account the correlation between repeated observations
 allows relaxing the proportional odds assumption (when necessary)
- Missing data to be first investigated (GEE, WGEE, Mi-GEE)
Thank you for your attention