

gembloux
agro bio tech

Estimation of genetic parameters for birth weight, pre-weaning mortality and hot carcass weight in a crossbred population of pigs

M. Dufrasne^{1,2} – I. Misztal³ – S. Tsuruta³ – J. Holl⁴ – K.A. Gray⁴ & N. Gengler¹

¹ Animal Science Unit, Gembloux Agro-Bio Tech, University of Liège (GxABT-ULg) – Gembloux, Belgium

² FRIA – Brussels, Belgium

³ Department of Animal and Dairy Science, University of Georgia – Athens, GA

⁴ Smithfield Premium Genetics Group – Rose Hill, NC

2012 ADSA-AMPA-ASAS-CSAS-WSASAS JAM – July 15-19 Phoenix, Arizona

Context

- Piglet **birth weight** related to economically important traits
 - **Mortality traits**
 - **Production traits**

➔ **Early predictor of subsequent performances**

Context

- **Commercial swine production**
 - Economic gain
 - **Full market value pigs**
 - Survival, market weight, carcass composition
 - Low hot carcass weight → alternative market
- **Low birth weight**
 - Pre-weaning mortality
 - Reduced weight gain
 - Fatter carcass

Context

- **Genetic improvement of crossbreds depends on selection of purebred**
 - Identification of genetic predictors of commercial performances at the nucleus level
- **Paternal additive genetic effect**
 - Sire selection and breeding scheme optimization?

Objective

To estimate genetic parameters for birth weight, pre-weaning mortality and hot carcass weight in a commercial crossbred population of pigs

Objective

To estimate genetic parameters for birth weight, pre-weaning mortality and hot carcass weight in a commercial crossbred population of pigs

To investigate the presence of genetic variance for sire effect to improve early selection in the purebred terminal sire line

Data

- Smithfield Premium Genetics Group
- Crossbred Duroc x (Large White x Landrace)
- 134,498 records
- 4 commercial farms
- 2004 to 2011
- Traits:
 - Birth weight (BRW)
 - Pre-weaning mortality (PWM)
 - Hot carcass weight (HCW)

Description of data

No. of records	134,498
No. of animals in pedigree	143,779
No. of litters	15,055
No. of dams	8,351
No. of sires	791
No. of contemporary groups	94
Average number of parities per dam	3.67

Description of data

Trait	No. of records	Mean	SD
BRW, kg	31,522	1.38	0.32
HCW, kg	87,778	90.75	10.74

Trait	No. of records	Frequency
PWM (0/1)	85,218	15.97 %

Description of data

No. of records

Trait	BRW	PWM	HCW
BRW	31,522	10,709	13,275
PWM		85,218	60,078
HCW			87,778

No. of sires with progeny recorded

Trait	BRW	PWM	HCW
BRW	293	103	226
PWM		545	542
HCW			723

Model

- Multitrait threshold-linear sire model

$$y = Xb + Z_s s + Wl + e$$

Observations:

- BRW, kg (linear)
- PWM (categorical, 2 categories)
- HCW, kg (linear)

Model

- Multitrait threshold-linear sire model

$$y = Xb + Z_s s + Wl + e$$

Fixed effects:

- Sex
- Parity
- Age at slaughter (HCW only)
- CG (fixed for linear traits and random for PWM)

Model

- Multitrait threshold-linear sire model

$$y = Xb + Z_s s + Wl + e$$

Random effects:

- Sire additive genetic effects (**s**)
- Litter effects (**l**)
- Residual effects (**e**)

Method

- Variance components estimated using **THRGIBBSF90 program**
 - Bayesian approach via Gibbs sampling
 - Combination of categorical and continuous traits
 - Total of 250,000 samples with burn-in period of 10,000
 - Every 10th samples to compute mean and SD of the posterior distribution

	BRW	PWM	HCW
Sire genetic			
BRW	0.0011	-0.0013	0.0189
PWM		0.0326	0.015
HCW		Symmetric	4.5719
CG			
BRW			
PWM		1.1815	
HCW			
Litter			
BRW	0.0285		
PWM		0.1937	
HCW			18.613
Residual			
BRW	0.0704		
PWM		1.0001	
HCW			75.372

Results

	BRW	PWM	HCW
h^2 additive	0.04	0.05	0.19

Estimated additive heritabilities are in the range of expected values

Results

	BRW	PWM	HCW
Sire genetic effects	0.01	0.01	0.05

Low genetic influence of sire especially on early recorded traits

Results

	BRW	PWM	HCW
Litter effects	0.29	0.08	0.19

High common litter effects

Results

Correlations	PWM	HCW
BRW	-0.22	0.27
PWM		0.04

BRW genetically correlated with
PWM and HCW

Conclusions

- Additive genetic effect of sire
 - ➔ Direct selection of sire may improve BRW, PWM and HCW
- Genetic correlations of BRW with PWM and HCW
 - ➔ Selection for high BRW may improve survival and market weight

Acknowledgements

- Animal and Dairy Science (ADS) Department, University of Georgia (UGA), for hosting and advising
- Animal Breeding and Genetics Group of Animal Science Unit, Gembloux Agro-Bio Tech, University of Liège (ULg-GxABT)
- Smithfield Premium Genetics Group, for providing data, advising and support
- National Fund for Scientific Research (FRS-FNRS), for support

Author's contact: marie.dufrasne@ulg.ac.be