Stiction failure in microswitches due to elasto-plastic adhesive contacts

L. WU, J.-C. GOLINVAL, L. NOELS

June 11 - 14, 2012
Content

• Introduction
 – Stiction in MEMS
 – Multiscale approach developed

• Model Description
 – Basic Theory for One asperity
 – Statistical Model of Rough Surface

• Multiscale Model
 – Polysilicon to Polysilicon Interaction
 – Cantilever beam (FEM): validation with experiments

• Elasto-plastic adhesive contact

• Conclusions
Introduction

• Stiction in MEMS

Stiction failure in a MEMS sensor
(Jeremy A. Walraven Sandia National Laboratories. Albuquerque, NM USA)

Reason:
Relatively high surface area: volume ratio (1,000:1 to 10,000:1 m⁻¹)

Adhesive forces:
Electrostatic force, Van der Waals force, Capillary force, Hydrogen bridging…
Introduction

• Multiscale approach developed

Single asperity adhesive-micro contact

Adhesive elastic contact model between rough surfaces

Integration with FEM
Single asperity adhesive-micro contact

- **Adhesive-elastic contact (Hertz) theories**
 - **Johnson, Kendall, and Roberts (JKR)**
 - Short ranged surface forces
 - Act only inside the contact area
 - $\begin{cases} \text{Soft, compliant materials with} \\
 \text{high surface energy} \end{cases}$
 - **Derjaguin, Muller and Toporov (DMT)**
 - Long-ranged adhesive forces
 - Outside of the contact area
 - $\begin{cases} \text{Harder, less compliant materials with} \\
 \text{low surface energy and} \\
 \text{small asperity tip radius} \end{cases}$
 - **Maugis transition solution**
 - Intermediate cases between JKR and DMT
 - For all elastic materials
Single asperity adhesive-micro contact

- **Maugis transition solution**
 - Based on a Dugdale assumption for interaction potential
 - Constant traction σ_0 within a critical value of separation z_0
 - Zero traction for gap larger than z_0
 - **Maugis transition parameter λ**
 - Representation of the surface properties
 - R: asperity radius
 - K: equivalent elastic constant
 - $\varpi = \sigma_0 z_0$: adhesive work

$$\lambda = \frac{2\varpi^{2/3} R^{1/3}}{z_0 (\pi K^2)^{1/3}} \quad \Rightarrow \quad \varpi \uparrow, R \uparrow, K \downarrow \Rightarrow \lambda \uparrow$$

$$\varpi \downarrow, R \downarrow, K \uparrow \Rightarrow \lambda \downarrow$$

- **Dugdale Model**
- **Lennard-Jones Potential**
- **JKR model** (short ranged)
- **DMT model** (long ranged)

SEM2012, Costa-Mesa, USA
Single asperity adhesive-micro contact

- Maugis transition solution (2)
 - Adhesive-micro (elastic) contact force during unloading

- In term of Maugis transition parameter
 \[\lambda = \frac{2\sigma^{2/3} R^{1/3}}{z_0 (\pi K^2)^{1/3}} \]
Adhesive contact between rough surfaces

- **Rough surfaces**
 - Reduced number of interacting asperities
 - In terms of interference d

- **Rough surfaces model**
 - Constant asperity tip radius
 - Statistical distribution in height h

$$\phi(h) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{h^2}{2\sigma^2}\right)$$

High roughness σ

Low roughness σ

Roughness $\sigma=0$
Adhesive contact between rough surfaces

- Micro adhesive contact forces of rough surfaces
 - Integrate Maugis solution using
 \[
 \varphi(h) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{h^2}{2\sigma^2}\right)
 \]

\[\frac{F_{nT}}{N \pi \sigma R}\]

Responsible for stiction
Multiscale Model

- **Design example: cantilevers**
 - Finite element model
 - Timoshenko Beams
 - Interacting with pad
 - Use adhesive micro-contact law at interface
 - Polysilicon-Polysilicon interactions
 - Surfaces properties from
 - AFM
 - Surface energy measured
 - In vacuum: $\varpi = 2.54 \text{ J/m}^2$
 - In air: $\varpi = 0.167 \text{ J/m}^2$
 - Contact remains elastic

- **Validation vs literature experiments**
Multiscale Model

- Design example: cantilevers (2)
 - Initial gap $g = 2.0 \, \mu m$
 - Admissible thickness $t \, (\mu m)$ & length $l \, (\mu m)$???
Literature*:
- Measures of apparent adhesion energy Γ
- Simplified models of Γ

Numerical methods
- Extract Γ from s
- Environmental effect

In vacuum $\varpi = 2.54$ J/m2
In air $\varpi = 0.167$ J/m2

Different samples
- Surface roughness

<table>
<thead>
<tr>
<th>Sample</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_q (nm)</td>
<td>1.4</td>
<td>2.67</td>
<td>3.47</td>
</tr>
</tbody>
</table>

• Elasto-Plastic materials
 – Plastic deformations of asperities

• Repeated contact
 Tip radii R of a part of asperities \uparrow
 Surface roughness $R_q \downarrow$

Adhesive forces \uparrow

Stiction can appear after some cycles

• Elasto-plastic adhesive contact model is needed!
• Basic idea
 – Adhesive contact model of the elastic-plastically deformed asperity
 Numerical results for an elasto–plastic loaded sphere in contact without adhesive forces
 Maugis’ adhesive contact theory is performed on the equivalent elastic deformed asperity
 – Asperity-based rough surface model
Plastic deformations of a loaded single asperity

- **Curve fitting of FE simulations**
 - Effect of maximum interference δ_{max} reached during loading
 - Material parameters: yield S_Y, yield interference δ_{CP}

- **Residual interference**

 \[
 \delta_{\text{res}} = \delta_{\text{max}} \left(1 - \left(\frac{\delta_{\text{CP}}}{\delta_{\text{max}}} \right)^{0.28} \right) \left(1 - \left(\frac{\delta_{\text{CP}}}{\delta_{\text{max}}} \right)^{0.69} \right)
 \]

- **Residual tip radius**

 \[
 R_{\text{res}} = R \left(1 + 1.275 \left(\frac{S_y}{E} \right)^{0.216} \left(\frac{\delta_{\text{max}}}{\delta_{\text{CP}}} - 1 \right) \right)
 \]

Elasto-plastic adhesive contact

- Adhesive unloading of a single deformed asperity
 - Define an equivalent elastic asperity
 - Interference \(\delta_{\text{eff}} = \delta - \delta_{\text{res}} \)
 - Asperity tip radius \(R_{\text{eff}} = R_{\text{eff}}(R, \delta, \delta_{\text{max}}) \)
 - Apply Maugis
 - Extract adhesive-micro contact force
 \[
 F_n = F_n(\delta - \delta_{\text{res}}, R_{\text{eff}})
 \]

Elasto-plastic adhesive contact

- Adhesive loading/unloading of a single asperity
 - Material: Ru

Parameter	Value
\(R \)	4 nm
\(E \)	410 GPa
\(\nu \)	0.3
\(S_y \)	3.42 GPa
\(z_0 \)	0.169 nm
\(\omega \)	1 J/m²

- Model vs FE*

Elasto-plastic adhesive contact

- Adhesive unloading of rough surfaces
 - Different Ru samples
 - Effect of impact energy at pull-in on plastic deformations

<table>
<thead>
<tr>
<th>Sample</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rq (nm)</td>
<td>2.03</td>
<td>3.99</td>
<td>7.81</td>
</tr>
</tbody>
</table>

(a) Sample A
(b) Sample B
(c) Sample C

SEM2012, Costa-Mesa, USA
Elasto-plastic adhesive contact

- **Time life of MEMS**
 - Repeated loading/unloading changes in surfaces profile
 - Asperity profile can be updated by tracking history $\delta_{\text{max}}(h)$
 - Ru sample

<table>
<thead>
<tr>
<th>Sample</th>
<th>R_q (nm)</th>
<th>E_1 (J/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>7.81</td>
<td>0.5</td>
</tr>
</tbody>
</table>
Conclusions

- The adhesion between the contact surfaces has large influence on the design of MEMS switches, and need to be considered carefully.
- The adhesive work and the surface roughness are the main factors of adhesive force.
- The analytical adhesive contact results can be combined with FEM to predict the stiction of more complicated structures.
- Effect of plasticity can be accounted for.
- The other kinds of adhesive forces, such as capillary force, electrostatic force from dielectric charging, are not considered.
Thank you!