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Abstract—The present paper proposes a unified geometric matter. For instance, the configuration of a rigid body in the
framework for coordinated motion on Lie groups. It first gives  3-dimensional physical world is given by an orientation and
a general problem formulation and analyzes ensuing conditins a position vector inR3, whose combination corresponds to a

for coordinated motion. Then, it introduces a precise methd " ) . N .
to design control laws in fully actuated and underactuated position on Lie groupSE(3). For rigid body coordination, it

settings with simple integrator dynamics. It thereby showsthat IS then natural to write control laws that can be interpreted
coordination can be studied in a systematic way once the Lie as internal forces in the swarm, rather than forces depgndin

group geometry of the configuration space is well characteried. on an external reference frame which would privilegiate som
Applying the proposed general methodology to particular eam- 4 hitrary choice of orientation and origin. Independendt w

ples allows to retrieve control laws that have been proposeth ft f f ds 1o | . ith
the literature on intuitive grounds. A link with Brockett’'s double respect to reierence irame corresponds 1o invariance wi

bracket flows is also made. The concepts are illustrated 0§O(3), respect to applying to all agents the same Lie group trdoslat
SE(2) and SE(3). on SE(3).

The symmetries determine how to define meaningful
guantities for the swarm, like “relative positions” on the
Lie group, and what the dynamics of the coupled agents

Recently, many efforts have been devoted to the design agth be.Coordinated motion— in short coordination— is
analysis of control laws that coordinate swarms of idehticgefined as all situations where relative positions on the Lie
autonomous agents — e.g. oscillator synchronization P, [ group are fixed. Feedback control laws that asymptotically
flocking mechanisms [3], [4], vehicle formations [5], [6F][ enforce coordination must be designed on the basis of error
(8], [9], spacecraft formations [10], [11], [12], [13], [14 measurements involving appropriately invariant quasiti
[15], mechanical system networks [16], [17], [18] and mebil(e.g. relative agent positions on the Lie group).
sensor networks [19], [20], [21], [22], [23]. For systems on
vector spaces, so-callecbnsensus algorithmare shown to Previous work: Results about synchronization (“reaching
be efficient and robust [24], [25], [26], [27], [3], [28], anda common point”) and coordinated motion (“moving in an
allow to address many relevant engineering issues and tagkganized way”) on vector spaces are becoming well estab-
[24], [5], [29]. However, in many applications, the agents tlished [28], [24], [27], [26]. Because a vector space can be
coordinate evolve on nonlinear manifolds: oscillatorsleso identified with its tangent plane, both synchronization and
on the circleS! =~ SO(2), satellite attitudes or$O(3) and coordinated motion can be seen as consensus problems on the
vehicles move inSE(2) or SE(3); these particular manifolds same vector space: the former ispasition consensus while
share the geometric structure of.@ group Coordination on the latter is avelocity consensus. Note that considering the
nonlinear manifolds is inherently more difficult than on t@c motion of agentswith the Lie group structure oR” implies
spaces. The goal of the present paper is to propose a unitiggk only position vectorsn R and associatettanslational
geometric framework for coordinated motion on Lie groupsnotionare covered. In contrast, as sooroagntation/rotation
from a geometric definition of “coordination” to a geometriaf the vehicles or of the formation moving in a vector space
derivation of control laws for coordination like those posed s considered, the configuration space becomes the naaktriv
in [20], [21], [19], [30], [31], [32], in fully actuated and Lie group.SE(n). In general, when the configuration space is
underactuated settings with simple integrator dynami¢® Ta Lie group, synchronization and coordinated motion are fun
objective is to reach a state where tnetionof the agents is damentally different. The geometric viewpoint for dynaatic
coordinated, while the values of their relative positions a systems on Lie groups is very well studied; see basic results
priori left arbitrary; definitions of “coordinated motioréind in [33], [34] for simplified dynamics like those considered i
“relative positions” on a Lie group are the subject of Settio the present paper, and [35], [36], [37], [34] for a geometric

theory of mechanicalsystems on Lie groups. General results
Symmetries:The key point for the developments in thisfor synchronizationon compact Lie groups are proposed in
paper isinvariance (or symmetry in the behavior of the [38], which points to related examples in the literaturet Bu
swarm of agents with respect to their absolute position to the best of the authors’ knowledge, a unified geometric
the Lie group only relative positions 6n the Lie group viewpoint forcoordinated motior— in shortcoordination—
. . o on Lie groups is still lacking. Close to the present papetsn i
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I. INTRODUCTION



discarded, the configuration space reduces to the compaicectly linked to the double bracket flows of [45] for grantie
Lie group SO(n) characterizing the body’s orientation; arsystems on adjoint orbits.
element ofSO(n) can be represented by thex n rotation The power of the geometry is illustrated 80 (3), SE(2)
matrix between a frame attached to the rigid body andamdSFE(3) by analyzing the meaning of the geometric condi-
hypothetical fixed reference frame. The standard exampletigfns for coordination, and by designing correspondingman
this type is satellite attitude control, whesgnchronization laws with the proposed general methodology. The obtained
i.e. obtaining equal orientations, has recently attracitesth controllers have been previously proposed in the liteeatomt
attention [10], [11], [13], [40], [12], [41], [42], [18], [8], were derived on the basis of intuitive arguments for palaicu
[31], [15], with and without external reference trackingit@ applications. In that sense, the novelty of the presentpiape
that synchronization is a very special case of coordinatiomot in the expression of the control laws but in showing that
Considering rotationand translationsthe configuration space they can be derived in a unifying and systematic manner with
of an n-dimensional rigid body becomes the non-compatite proper geometric setting.
Lie group SE(n) = R™ x SO(n). Recently, coordination The present paper focuses on the achievement of
has been investigated ofiE'(2) [8], [20], [21] and SE(3) coordinatedmotion only, in the sense that the objective is
[9], [19], [16], [17] in the underactuated setting efeering for the swarm to move andonserverelative positions on
control where the linear velocity is fixed in the body’s framethe Lie group; the actualalues of the relative positions
Motion on SE(n) with steering control is also directly linkedon the Lie group, as long as they are compatible with the
to the evolution of a Serret-Frenet frame with curvatureoordinated motion, are not controlled. However, appiocet
control, as explained in [33]. Results taking into accoung t often require to stabilize particular relative positiona o
full mechanical dynamics for rigid body motion are morehe Lie group which are more efficient than others e.g. for
difficult to obtain — see for instance applications of th@ensing, power consumption or at least collision avoidance
framework of [35] for coordination or5O(3) and SE(3) in  The focus of the present work — motion with fixed relative
[18], [43] and [16], [17] respectively. Considering sinfigdd positions on the Lie group — can be viewed as “orthogonal”
dynamics, as in the present paper, can be useful eithertdodriving the agents towards particular relative possiam
build a high-level planning controller or as a preliminatg® the Lie group. Therefore it is expected that the results ef th
towards an integrated mechanical controller, as illusttdor present work can be combined with appropriately invariant
synchronization or5O(3) in [31] and [32], [44] respectively. relative position control algorithms on the Lie group (ag.e.
from [38]), in order to both reach a particular configuratafn
Contributions: The main goal of the present paper iselative positions on the Lie group and stabilize a coorigida
to provide a unified geometric framework for coordinatetchotion of the resulting configuration. A corresponding fesu
motion on Lie groups, proceeding as follows. (i) Coordioati is proposed in [20] for steering control of planar vehicles
on Lie groups is defined from first principles of symmetrylLie group SE(2)); remaining issues concerning a general
distinguishing three variantkeft-invariant right-invariantand theory for this combination are discussed in [46].
biinvariant coordination. (ii) Expressing the conditions for co-
ordination in the associated Lie algebra, a direct link v Table of contents:The paper is organized as follows.
between coordination on Lie groups and consensus in vecg¥ction Il examines the geometric properties of coordimati
spaces. (iii) It is investigated how biinvariant coordioat on Lie groups (contributions (i), (i) and (iii)). Sectiorl |
restricts compatible relative positions through a geoiwaty presents the control setting and basic control laws fortrigh
meaningful relation. These properties are independent®f tinvariant coordination and fully actuated left-invariamtordi-
dynamics. Going over to control laws, simplified first-ordefation (contribution (iv)). Sections IV and V present cohtr
dynamics are assumed for individual agents, but underackaw design methods respectively for biinvariant coordorat
ation is explicitly modeled; communication among agents {gontribution (v)) and for underactuated left-invariawiedi-

restricted to a reduced set of links that can possibly bettice nation (contribution (vi)). Examples are treated at the ehd
and time-varying. (iv) Control laws based on standard wectgections II, IV and V.

space consensus algorithms are given that achieve the easie
tasks of right-invariant coordination and fully actuatesdt
invariant coordination for any initial condition on genkkie
groups. (v) A general method is proposed to design controlThis section proposes definitions for coordination on Lie
laws that achieve biinvariant coordination of fully acet groups by starting from basic symmetry principles. It estab
agents when communication links are undirected and fixdshes conditions on velocities for coordination and exaasi
extension to more general communication settings can ineplications. Except that the symmetries must be compatibl
made along the lines of [21]. Biinvariant coordination is ¢hese developments are independent of the dynamics consid-
rather academic problem, but (vi) the proposed design ndethered for the control problem. Notations are adapted fronj. [34

is shown to apply to the practically most relevant problem

of left-invariant coordination of underactuated agentbe T
proposed controller architecture consists of two stepdinad
to the consensus algorithm a position controller derivedhfr  Consider N “agents” evolving on a Lie grougr, with
geometric Lyapunov functions. The position controllerse ar,(t) € G denoting the position of agerit at time ¢. Let

Il. THE GEOMETRY OF COORDINATION

A. Relative positions and coordination



gk_l denote the group inverse gf,, Ly : g — hg denote left Proposition 1 shows that coordination on the Lie gra@ep
multiplication, andRy, : g — gh right multiplication onG. is equivalent to consensus in the vector spgc€onsensus
in vector spaces is well-studied, see [28], [24], [25], [47]
[4], [27], [26]. Biinvariant coordination requiresimultaneous
consensus ogf, and¢?; but the latter are not independent, they
are linked through (1) which depends on the agents’ position

Definition 1: Theleft-invariant relative position oriz of agent
J with respect to agert is A, = gk‘lgj. The right-invariant
relative position onGG' of j with respect tok is pj. = g; gk_l.

Indeed, \;, (resp.p;x) is invariant under left (resp. right)
multiplication: (hgx) =1 (hg;) = gk‘lgj VYh € G. Left-/right-
invariant relative positions are ttjeint invariants associated
to left-/right-invariant action off on G x G... x G (N copies).
In the following, “relative positions” always refer to rélee Vk =1..N, & =¢'¢ ﬂker(AdM — Id) or equivalently
positions onG unless otherwise specified. i

The two definitions of relative position lead to two types of q=¢c ﬂker(Adpi. — Id)
coordination; a third type is defined by combining them. ’ !

Proposition 2:Biinvariant coordination on a Lie grou@ is
equivalent to the following condition in the Lie algebga

]

Definition 2: Left-invariant coordinatiolLIC) means constant Proof: RIC requiresgfc = §§ V4, k; denote the common value
left-invariant relative positionsx (t) = g, 'g; — resp.right-  of the ¢ by €. Then LIC requiresddy, & = Ady, € <
invariant coordination(RIC) means constant right-invariantg! — Ady,, ¢ Vj, k. The proof with¢” is similar. A
relative positionsp;;, = gjg,;1 — for all pairs of agentg, k.

Biinvariant coordination(BIC) means simultaneous LIC and Proposition 2 shows that biinvariant coordination puts no
RIC: g, 'g; andg;g, ' are constant for alj, . constraints on the relative positions when the group is iabel

The present paper thus associateordination to fixed SINC€Ady; =Id YAz, i this case. In contrast, on a general
relative positions. In contrassynchronizatioris the situation Lie group, biinvariant CQOrd'”a“F’” Wlth_n_on-zero velgotan
where all agents are at the same point@ngy () = g;(t) restrict the set of possible relative positions as follows.

Vj, k; this is a very particular case of biinvariant coordinatiorProposition 3:Let CM; := {g € G : Ad, & = £}.
a. For everyt € g, CM; is a subgroup of5.
b. The Lie algebra of”M is the kernel ofad: = [, |, i.e.

me={neg:|&n =0}
Denote byg the Lie algebra ofG, i.e. its tangent space at e=tnes: &) J

identity e. This paper always considegsendowed with the Proof:a. Ad.£ = ¢ V¢ since Ad. is the identity operator.
Euclidean metric. Denote by, | the Lie bracket ong. Let Ady& = & implies Adg—. £ = £ by simple inversion of the
Ly : TG, — TGy, and Ry, : TG, — TGy, be the maps relation. Moreover, ifAd,, ¢ = ¢ and Adg, £ = &, .th.en
on tangent spaces induced By, and R, respectively. Let Adgig, & = Adg, Ady, & = Ady, & = . Thus CM; satisfies
Ady = Ry-1, L. : g — g denote theadjoint representation &l group axioms and must be a subgroupcof

o o _ . b.Letg(t) € CM(¢) with g() = e and £ g(t)|; = 1. Then
Definition 4: Left-invariant velocity., € g and right-invariant n € cme = the tangent space t6'M; at e. For constant,
velocity ¢ € g of agentk are defined bySi(t) = Aq,(t)e = ¢ implies 4 (Ad,(t))¢ = 0, with the basic Lie
L1y« (590 ]i=r) @ndE;(7) = Ryt (90 (1) ]1=r)- group property4 (Ady(t))|. = ad,. Therefore[n, £ = 0

Indeed,gi(t) and Ly gx(t) (resp. Rugx(t)) have the same is necessary. It is also sufficient. since, for amysuch that
left-invariant (resp. right-invariant) velocit},(¢) (resp.¢;(¢)), [7: &l = 0, the group exponential curve(t) = exp(nt)
for any fixedh € G. Note the important equality belongs toC' M. A

B. Velocities and coordination

&, = Adg, & . 1) C M, andem, are called the isotropy subgroup and isotropy
Lie algebra of¢; these are classical objects in group theory
[35]. From Propositions 2 and 3, one method to obtain a
Proposition 1: Left-invariant coordination corresponds tabiinvariantly coordinated motion o& is to (1) choose! in
equal right-invariant velocitieg; = & Vj, k. Right-invariant the vector spacg and set¢! = ¢! Vk (2) position the agents

The adjoint orbitof £ € g is setO; = {Ad,&: g € G} Cg.

coordination corresponds to equal left-invariant velesiﬁ- = on G such that\;, € CM for pairs j, k corresponding to

& i, k. ' the edges of an undirected tree graph; the Lie group property
_ P J 4 —1 of CMg then ensures that;, € C My for all pairsj, k. The

Proof: For Aji, Z(9x 9j) = L, .39 + Rej«59% - same can be done wifi and thep,. Note that a swarm at

But if $gr = Lg.&f, then £g.1 = —Lgktl*Adgkfi- rest €. = &7 = 0 Vk) is always biinvariantly coordinated.

Thus (g5 ') = Lgk’lgj*gé' N Lgk’l*Rgi*Adgkgé ~ Remark 11n many applications involving coordinated motion,

Lg,;lgj*AdEjl (Ady, &5 — Ady, &) Since L, -+, . and Adgj*] reaching a particulaconfiguration i.e. specific valuesf the
are invertible & (X;x) = 0 is equivalent toAd,, ¢h = Ad,, & relative positions, is also relevant. Specific configuratiare
or equivalently §f = ¢&;. The proof for right-invariant defined as extrema of a cost function in [38]. Imposing retati
coordination is strictly analogous. A positions in the (intersection of) set@)\/, for some¢ can be

another way to classify specific configurations; unlike [38]



€) (b) (c) @/ « The Lie algebrao(3) is the set of skew-symmetri&x 3
matricesw|”, operationd..{ andR.{ are represented
®/ by Q[w]" and[w]"Q respectively. The invertible mapping

o> G+ O~ o o 0 —wg) we [ w(1)

. . . o w(3) 0 —w() — w(2)
Fig. 1. Coordinated motion oR? (LIC = RIC = BIC). (a) An initial situation W w 0 H/\ w
of coordinated motion; circles represent agent positi@ngws their linear (2 M (3
velocities. (b) The same swarm in coordinated motion witfiffarént velocity. . i A n 3
(c) A coordinated motion that the swarm of the first gahnotreach without identifiesso(3) > [w]" with R° > w.
breaking the coordinated motion to re-position the agents. « With this identification,Adgw = Qw and [wy, w;] =

[wi]*w; = wy x w; (vector product).

« In the standard interpretation ¢§ as rigid body orien-
works for non-compact Lie groups. For compact groups, there  tation, w! andw” are the angular velocities expressed in
seems to be no connection between configurations character- pody frame and in inertial frame respectively.
ized throughC' M, and those defined by [38]. « LIC (equalw}), RIC (equalwt) and BIC have a clear

physical interpretation in this case.

o For BIC withw # 0, em, = {Aw : A € R} and
CM,, = {rotations around axi&»}. The dimension of
g (& of CM) is 1. Agents in BIC rotate with the
same angular velocity;, in inertial space and have the
same orientation up to a rotation arounfl

Remark 2:0ne can also first fix relative positions;, and then

characterize the set of velocitiescompatible with biinvariant
coordination. For non-Abelian groups and a sufficienthgéar
numberN of agents, this set generically reduceste: 0.

C. Examples
) o o SE(2): The special Euclidean group in the plafi&(2)
The Lie groupR™ has trivial properties; it is presentedgescribes planar rigid body motions (translations and-rota
to clarify the distinction with “motion of rigid bodies in tions). An element ofSE(2) can be writteng = (r,0) €

R™", whose configuration space is the Lie grod{¥’(n). R2 x 1 wherer is a position vector in the plane artdis
Basic properties for the special orthogonal grosigs(n) and  grientation (or “heading?”).

special Euclidean groupSE(n), n > 2, can be found in e.g.
[33]. Left-invariant coordination forSE(2) and SE(3) was
already formulated in Lie group notation in [8], [9].

« Group multiplicationg; g2 = (r1 + Qg, 72,61 +62) where
Qy is the rotation of angle. Identity e = (0,0) and
inverseg—! = (—Q_gyr, —0).

) 0 - .
R™: ForG = R", a pointg; € G is denoted by a position ]I5|e aIgebr_ase(2) -k :;RR > ¢ __(U’w)' Operations
vectorry, € R”. g+ (V,w) = (Qov,w) ANA Ry (v, w) = (V+wWQy o1, w).

o _ Adg (v,w) = (Qov — wQrjer,w) and

« Group multiplicationg,g; corresponds to, + r;, in- [(v1,w1), (v2, w2)] = (W1Qr /202 — W2Q7r /201, 0).
verse g, ' to —r;, and identity e to position vector , |n the interpretation of rigid body motiom! is the linear
0. In particular, the group structure is decoupled in  yelocity expressed in body frame! = w” =: w is the

each coordinate and Abelian (i.e. group multiplication is  rotation rate. Fot # 0, v" is not the body’s linear ve-
commutative). Relative positions take the familiar form  |ocity expressed in inertial frame; instead= —<=/24"
; =

Ajk = pjk =15 — T € R™ is the center of the circle drawn by the rigid body moving
o The Lie algebr_a qua[&” itself, operationd.,.. and R, with & = (v",w). In [20], the intuitive argument to
reduce to the identityr € G = R". achieve coordination is to synchronize circle centers
« Adjoint operatorAd, = Id for all r € G = R™ and the this actually synchronizes right-invariant velocities

Lie bracket is identically zero. « InRIC, the agents move with the same velocity expressed
« LIC, RIC and BIC all collapse to the same and just body frame (Fig.2,r). In LIC, they move like a
require identical linear velocities iR™; in particular BIC single rigid body (or “formation”): relative orientations
implies no restrictions on relative positions. Physically  ang relative position vectors on the plane do not change
coordinated motion means a rigid formation of points  (rig.2, 7, andl.). Note that any combination of translation
in R™ moving with a fixed formation orientation. The (as on Fig.2,l;) and rotation (as on Fig.2p) of the
direction of motion can change when varying the velocity  formation composed by the agents is possible.
vector, as bet_vveen Fig.; (a) and F_ig.l (b), but a rotation, |5 BIC, the swarm moves like a single rigid bodyd
of the formation, as going from Fig.1 (a) to Fig.1 (),  each agent has the same velocity expressed in body frame.
would require breaking coordination R". Propositions 2 and 3 characterize,: by (€ =0 <
whvy = wyv! andC Mg by Ady &' = ¢ & (Qp—Id)v! =
SO(3): The special orthogonal groufO(3) describes leﬂ/gr. This leads to three different cases:
3-dimensional rotations. A poirg on SO(3) is represented 0) W' =v! =0 = ema = se(2) andC Mg = SE(2).
by a matrix@ € R3*3 with QTQ = Id anddet(Q) = 1. () w' =0, v #0= cmg = {(v,0) : v € R?} and
« Group multiplication, inverse and identity are the corre- CMg = {(r, 0) : 7 € R?}.
sponding matrix operations. (i) ' # 0, anyv! = g = {(Hv'w) : w € R}



DefineC C R?, the circle of radiué‘li—l”l2 containing
the origin, tangent tov' at the origin and such
thatv! andw! imply rotation in the same direction.
Then solving Ad,§ = £ for g and making a few
calculations shows th&t M. = {(r, 0) : » € C and
Qo' tangent toC' atr}. This is consistent with an
intuitive analysis of possibilities for circular motion
with unitary linear velocity and fixed relative position
vectors and orientations in the plane.
The dimension okm,: (< of C M) is (0) 3, (i) 2 or
(i) 1. In case (0), the configuration is arbitrary but at
rest. In case (i), the agents have the same orientation
and move on parallel straight lines (Fig2). In case
(ii), they move on the same circle and have the san
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e
orientation with respect to their local radius (Figt2). e :
Unlike for LIC, combinations of translationst;( and ///%
rotations {5) of the formation composed by the agent Ay X
would not correspond to BIC. //‘ 2
SE(3): This group describe8-dimensional rigid body I /
motions (translations and rotations). An elemenfdf(3) can
be writteng = (r,Q) € R? x SO(3), with r a position vector 7
in R andQ a rotation matrix describing orientation. //4‘
e §g1g2 = (7’1 + QlTQ,QlQQ), |dent|ty e = (O,Id) and I e
inverseg~! = (—QTr, Q7). /* , E
« Lie algebrase(3) = R3 x s0(3) 3 ¢ = (v,[w]") is / w7k L \
identified withR3 x R? 3 (v,w) with the same mapping /%1 |
as for SO(3). OperationsLg. (v, [w]") = (Qu, Q[w]") // 7 \
and Ry (v, [w]") = (w x r + v, [w]*Q). As for SO(3), /‘? } ,
symbol “x” denotes vector product. { i ey -

Adg (v,w) = (Qu + 7 x (Qw),Qw)

[(’Ul,wl), (’Ug,wg)] = (w1 X Vg —wWo X V1,w1 X wg).

and U1

to

In the interpretation of rigid body motion. left-invariantti9- 2. Coordinated swarms (light color: intermediate pfapositions and

velocities v' and w! are the body’s linear and angular,

orientations in time)r: RIC with varying velocity.l; andis: LIC with wy, = 0
andwy # 0 respectively; note that any combination of translatiép) @nd

velocity respectively, expressed in body frame; the rightstation ¢2) of the formation composed by the agents still correspoads@.

invariantw” is the angular velocity expressed in inertiafi andtz: BIC with w;, = 0 andw), # 0 respectively; note that combinations
. ! . . . . of translations 4; ) and rotations#) of the formation composed by the agents
frame; forw’ 7 0, a physical interpretation for the right-yqi4 not correspond to BIC.

invariantv” is unclear.

Similarly to SE(2), the agents move in RIC with the
same velocity expressed in body frame and in LIC with
fixed relative orientations and relative position vectaors i
R3, like a single rigid body.

In BIC, the swarm moves like a single rigid

body and each agent has the same velocity
expressed in body frame. Propositions 2 and
3 lead to three different cases characterizing

emg Which requires¢!, ] =0
= wlanzoandwlxvn:wnxvl;

C' Mg which requiresdd, ¢' = ¢
& Quw'=w!and(Q —Id)v! = w! x 7.

(0) w' =v' =0 = cmga = se(3) andC M = SE(3).

() W' =00 #0=cma ={(B,an'): BER? a €
R} andCMg = {(r, Q) : r € R3, Q characterizes
rotation of axisv'}.

(i) W' # 0, anyv! = ma = {(av' + Buw!, aw') :
a,8 € R} and CMa = {(r,Q) € SE(3)
describing left-invariant relative positions of agents

that are on the same cylinder of axi and ra-
dius ””L(”l)‘"ﬁ"l‘)/”wl”H, with orientations differing
around axisw' by an angle exactly equal to their
relative angular position on the cylindér

This is again obtained by solving fgrin Ad,¢{ = ¢ and
making several basic computations; it is less obvious than
for SE(2) to find this result intuitively.

The dimension ofcm: (< of CMg) is (o) 6, (i) 4

or (i) 2. In case (0), the configuration is arbitrary but
at rest. In case (i), the agents move on parallel straight
lines and have the same orientation up to rotation around
their linear velocity vector. In case (i), far' — (v!) -
(wh)/||wt]| # 0, the agents draw helices of constaitth
wh-vl = w”-o" on the cylinder; the special casé-v' = 0
gives circular trajectories (see figures in [9], [19]). Ieth
degenerate situationt — (v') - (w')/[|w!|| = 0, all agents
are on the rotation axis.



IIl. COORDINATION AS CONSENSUS IN THHLIE ALGEBRA  C. Left-invariant coordination

Left-invariant coordination require§; = &7 Vj, k, which
suggests to use

Left-invariant systems on Lie groups appear naturally in
many physical systems, such as rigid bodies in space and FGh=, =&)L, k=1.N. (4)
cart-like vehicles. Motivated by examples like 2-axestadit
control and steering control ofiE(2) or SE(3), this paper
considers left-invariant dynamics with affine control %5,2 = ijk(Adgglgj 5; - gg) ,k=1.N (5)

A. Control setting

Using (1), in terms of the left-invariant variables, (4) bees

4o, =Ly with € =a+Bu, ,k=1.N, (2) thanks to( 4 Adg, ) & = Ady, [€}, €L] = 0. To implement (4),
agentk must know the relative positiog, ' g; and velocity¢!

where the Lie algebrg is identified with R®, ¢ € R"™ of j ~ k.
is a constant drift velocity,B € R™*™ has full column A priori, (5) converges as (3), ensuring global exponential
rank and specifies the range of the control tetme R™; coordination for uniformly connecte@. However, in contrast
without loss of generality, the column vectors & are to (3), nothing guarantees that (5) can be implemented in an
assumed orthonormal. The set of all assigna@hlés denoted underactuated setting. At equilibrium, (5) requires
C = {a+ Bu : u € R™}. For fully actuated agents: = n, _
(2) simplifies to g, = Ly, .u; without loss of generality. Ady;(a+ Buj) = a+ Bug Vjk, (6)
The following always consideggendowed with the Euclideanyhich, for arbitrary relative positions of the agents, ntigh
metric. Feedback control laws must be functions of var&blggmit no solution(uy, us, ..., uy). This issue motivates the
which are compatible with the symmetries of the problefyrther study of underactuated LIC in Section V. Similarly,
setting, i.e. left-invariant. In terms of left-invarianawables, piinvariant coordination requires simultaneous consensu

LIC corresponds to fixed (left-invariant) relative posit® |eft- and right-invariant velocities. At equilibrium, timeans
while RIC corresponds to equal (left-invariant) velogtie  that (6) must hold with equal controls, i.e.

In a realistic scalable setting, full communication betwee '
all agents cannot be assumed. The information flow among Ady,.(a+ Buy) = a+ Bup Vj, k, (7)

agents is modeled by a restricted set of communication:link§ich also puts constraints on the relative positions of the
j ~ k denotes thay sends information td:. The communi- agents. For this reason, biinvariant coordination is ferth
cation topology is associated to a graphG is undirected if ¢\ yied in Section IV.

@ ~ ] & _j ~ k. G is uniformly _connecte((see [24], [25]) The cost function V; = 3, ijk | Ady, €L — Adg.§§||2

if there exist an agerit and durations > 0 andT" > 0 such  ,qqqciated to (4) is not left-invariant in general (it ines
that,vt, taking the union of the links appearing for at least positionsgy), so (5) cannot be a left-invariant gradient g

time span(t, ¢+ 77, there is a directed path~> a ~ b... ~ j Nevertheless, lef, be the subclass of compact groups with
from  to every other agent. unitary adjoint representation, i.e. satisfyifigd, ¢|| = ||¢||
Vg € G andV¢ € g (for instanceSO(n) € G,,). It is possible
to define a biinvariant (that is, left- and right-invariant)
Riemannian metric oitz if and only if G € G, [48]. Using
Right-invariant coordination requireg, = 5; Vj, k. In the the Euclidean metric on left-invariant velocities, as ire th
setting (2), this simply implies to agree on equal Vk; present paper, comes down to using a left-invariant metric,
positions A;, can evolve arbitrarily. This problem is solvedaccordance with the left-invariant setting.gfe G,,, then this
by the classical vector space consensus algorithm [28], [2metric is biinvariant, V; = >~ Dk &L — Adgglgj §§.||2
[47], [4], [27], [26] and for fixed undirected, (5) is a gradient descent fa#.

B. Right-invariant coordination

6=, -&) L k=1.N, (3)  In the following, it is assumed that the agents are control-
) ] g lable. Obviously, controllability is sufficient for coortition
Using (2), it translates intozur = 3., (u; — uk)- It 45 it allows the agents to reach any position from any initial
exponentially achieveg; = & Vj k if G is uniformly condition. However, it is not always necessary, as long as
connected. Asymptotic RIC is then ensured for any initigl positions compatible with (6) or (7) are globally reachable
and, of course, any relative positions, which actually ha\l’e in particular, for Abelian groups, all positions satisfy) @nd

”]? ’|nflu:nce. Agent: relies on the left-invariant velocity; (7): in that case, (underactuated) LIC and BIC become trivia
or g ~ k.

V. CONTROL DESIGN FULLY ACTUATED BIINVARIANT

L . . I |
For a time-invariant and undirected communication graph COORDINATION

G, (3) is a gradient descent for the disagreement cost fumctio ) o )
V=3, ijk 1L —5§-H27 with the Euclidean metric in. A. Biinvariant coordination on general Lie groups
Biinvariant coordination requires to satisfy two objeesy
1A right-invariant system is equivalent, simply by redefmithe group LIC and RIC{ S'mU|taneOUS|y- In a f!rSt gtep, assume that the
multiplications. agents are given a reference right-invariant velogity such



that LIC is ensured if each agent has velogjty= Ad;klg" is The following result characterizes the convergence
appliedVk. It remains to simultaneously achieve RIC, whichproperties of controller (8),(10),(12).
as previously shown, involves controlling relative pasis.

Write a general controller Theorem 1:ConsiderN fully actuated agents communicating

g =nl+q, k=1.N, (8) on a fixed, undirected grap@t and evolving on Lie groug~

according to4 g, = L,, .£. with controller (8),(10),(12).
wheren! is a desired velocity angj is necessary for relative 9 0z 9k 91:8k (8).(10).(12)

position control. Thus for the presenf, = Ad;klf. The
guestion is how to desigg, in order to achieve BIC. For
fixed undirected communication grafh inspired by the cost

(i) For any initial conditionsyt. (0), the i (t) = Ad,, 0k ()
exponentially converge tg™ := + >, 7;(0).

: ! i) Define
function for RIC, define ( — L L
‘/t?“(gla g2, gN) = %Zk Z]wk} ||Adgk1777 - AdgjlnTHQ‘
Vir(91,92---9n8) = %Zk ijk Hﬁé —77;”2 All solutions converge to the critical set dof;,.. In

. . articular, left-invariant coordination is asymptotigal
where || || denotes Euclidean normis, characterizes the gchieved for all initial conditions ymprotly
distance from RICassuming that every agent has velocity.., .. . L | ,

. lii) Biinvariant coordination is (at least locally) as -
g = Ad;klf. Smce(%Ad;kl)n = —[¢, Ad;kln] Vi € g, k, ) ( y) asynap

. L . - cally stable.
the time variation ofi;,. due to motion ofgy, is y

d l l l l

aiVir =2 20k 2y (e =) - [ &1 ©) Proof: Regarding convergence, (12) is strictly equivalent to
where- denotes the canonical scalar producg,jmefined with (11). Therefore, (i) simply restates a well-known converge
the Euclidean metric. Thus if, =0 then%Vtr = 0; a proper result for consensus algorithms in vector spaces on fixed
choice ofg; should allow to decreasié,.. Define the bracket undirected graphs [26].

'<I"h> sugh thatil 'ﬁi’ 532 ;’ (€1, 82] - &5 5 0 lvgl’gf’& < g(.j Since the i converge, (8),(10) is an asymptotically
en (9) rewritesgVir =232 > 25 (M —m5) -9k @nd 4 o omous system; the autonomous limit system is obtained

the choice . . . by replacingnfC = Adg‘klﬁ. From the derivation ofy;, in (10),
Qe =~ (s D jure (M — 77j)> (10) i : ; e
J the limit system is a gradient descent f&%.(g1, 92, ...9~),
ensures that},. is non-increasing along the solutions: which is smooth because the adjoint representation is $moot
4 ; . o According to [49], thew-limit sets of an asymptotically
@iV =22 ijk {1k Zg‘wk (= 75))" < 0. autonomous system correspond to the chain recurrent sets

To obtain an autonomous, left-invariant algorithm for biof the limit system. From [50] the chain recurrent set of
invariant coordination, it remains to replace the refeeen@ SmMooth gradient system is equal to its critical points.
velocity ¢&” by estimates on which the agents progressivelerefore thew-limit set of (8),(10) is equal to the critical
agree. Since the goal is to define a common right-invarigbRints of Vi, which proves (ii). Biinvariant coordination

velocity in g, it is natural to proceed as in Section 11Il-C and’t» = 0 is locally asymptotically stable as it is a local (and
use the consensus algorithm global) minimum ofV,,., which proves (iii). A

d r T T
dpr — - 11 _ . . .
at Tk Zﬂ“k (nj = k) (1) Givenn", the region of attraction for BIC is a sublevel-set
which in terms of left-invariant velocities rewrites where V;,. has0 as only critical point (in practice, as only
a1 Iy el - minimum). Other local minima can involve e.g. the evenly
a'le = ijk(AdAjk n; = M) = (&> k) s k=1...N. (12) distributed on a circuIaOg—r with G a ring graph (see [38]).

Thus the overall controller is the cascade of a CONSEeNSUS:ytansions to varying and directe® can be made with
algorithm to agree on a desired velocity for LIC, and 4dditional auxiliary variables along the lines of [51], [5R21],

position pontroller designed to decrease a natura! dietanc [19]: at a first level, consensus algorithms define a desjited
RIC. To implement the controller, agehAtmust receive from and a desireds”, which must be on the same adjoint orbit:

communicating agents - k their relative positions\;x and 4 5 second level, cost functions for individual agents ensu

the values of their left-invariarguxiliary variablesr;. that they asymptotically implement the desired velocitiEse
consensus part is non-trivial to write in a fully left-iniemt
LIC: agree ong” RIC: agree onAd, '¢" setting, becaus¢' and ¢” must belong to thesame adjoint
vector space consensus g Lyapunov-based control ofy, orbit. The present paper proposes no explicit design of this
form. For fixed undirected;, an advantage of algorithms with
« y 1
Fig. 3. Biinvariant coordination as consensus on righg&irant velocity and double ConsenSUSE( and§ ) qud be t_hat BIC bec;omes the
Lyapunov-based control to right-invariant coordination. only locally stable equilibrium: interaction-relatedugs only
depend on the performance of the consensus algorithm,dor th
%In fact (, ) expresses the effect of the Lie bracket on the dual spaggst the agents behave individually. It is shown in [38] how
of g. It is directly related to thecoadjoint representation of¥, commonly . . . .
t auxiliary variables can be used to build consensus algosth

used for mechanical systems; in genefal) does not satisfy the Lie bracke ] . o .
properties. that avoid spurious local minima on various spaces.




B. Biinvariant coordination on Lie groups with a biinvarian (13) defines a valid consensus velocityc C = {a + Bu :
metric u € R™} for underactuated agents provided thgat0) € C

When G € G,, i.e. G has a biinvariant metric, the cost7k- The pnly cha}nge is tha;k., instead of the exact gradient
function vV, =3, 37, ., ||Ac.lg,c§,l€ — Adg,&|]* can be used descent in (14), is its projection onto the control range3of
for Ieft—lnvanant co_ntrol_deS|gn. _ € =a+ Bu, =1, + BB q,.

A natural idea in this context would be to combine the . . . .
cost functions for LIC and RIC, writingV, = V; + V,, When¢' is asymptotically defined with (13), the convergence
and derive a gradient descent fo¥, of the form argument for asymptotically autonomous systems must be
%gi — f(ﬁzlca {%_7 gk_lgj : j ~ k}). However, simulations extended to projections of gradient systems; a generalf proo
of the resulting control law forSO(n) always converge to Of this technical issue is lacking in the present paper. thés
¢ = 0 Vk. A possible explanation for this behavior is thaPnly reason to restrict Theorem 2 to fully actuated agents.

the gradient controls velocities, not explicitly positsgmwhile
it was shown in Section Il that BIC at non-zero velocity Brockett [45] has developed a general double-bracket form

involves restrictions on compatible positions. for gradient algorithms on adjoint orbits of compact semi-
simple groups, using the biinvariant Killing metric. Theneo

Nevertheless, the biinvariant metric allows to switch thection with the present paper is clear: once the consemsus a
roles of LIC and RIC in the method of Subsection IV.Agorithm has converged, the gradient control for agent juwst
using a consensus algorithm to define a common left-invaridivolves a cost function on the adjoint orbit 9f or 7". One

velocity for RIC, and a cost function to drive positions tadLlI €xample in [45] involves minimizing the distance towards a
subset ofy; a similar objective will be pursued in Section V of

RIC: aaree org! LIC: agree onAd. £ th_e present paper_(t?ut with a different clas.s of subs_ets)aﬁnm
g 6 d 9. § difference of [45] is its focus on the evolution of variabieg,
making abstraction of the underlying group, while the pnése
paper actually controls positions of (possibly underaetda
Fig. 4. Biinvariant coordination as consensus on leftiiart velocity and agents onG. If G is a compact group and the biinvariant
Lyapunov-based control to left-invariant coordination. Killing metric coincides with the left-invariant metric dhe
resent paper, thef, ) = —[, | and control (10) forg, with
r = ¢ fixed implies thaty, follows the double bracket flow

Lk = Wk ks X5 = 01 - (15)
This is the case among others f80(3).

vector space consensus g Lyapunov-based control afy

The RIC consensus algorithm on auxiliary variables asym
totically defines a common velocity by

=3 =), k=1.N. (13)
Then defining the cost function

Va(91,92.-98) = 535 2k I Adg, mj, — Adg, m||>  C. Example: Biinvariant coordination isO(3)

= i Ik — Ady, 5|12 _ Control laws for coordination inSO(3) abound in the
] ) ] ) literature — see among others papers about satellite dgtitu
for LIC and proceeding as in the previous subsection, 0@8ntrol mentioned in the Introduction. Biinvariant cooraiion
obtains controller (8) with on SO(3) requires aligned rotation axes, and thus synchronizes
! 1 ! satellite attitudes up to their phase around the rotatias. ax
B = (ks 2 _Adglegf i)} (14) The compact grgupS‘O(Zs)phas a biinvariant metric, so
Theorem 2:ConsiderN fully actuated agents communicatingSection IV.B applies. Algorithm (13) is used verbatim, with
on a connected, fixed, undirected grpland evolving orG € 7! € R? the auxiliary variable associated to angular velocity

G, according to%gk = L,,.£L with controller (8),(13),(14). w.. As mentioned before equation (15),) = —[,] on

(i) For any initial conditionsy},(0), the ! (t) exponentially SO(3). Thus in the fully actuated case, (8),(14) lead to
converge toy' := + >, 1% (0). R ! Tey L _

. R — k=M X Q2 Qe@yn;), k=1.N. (16)

(i) Define Vii(g1, 02, -gn) = 3,5, lAdgnf — ! !

AdgjﬁHQ_ All solutions converge to the critical set OfTheorem 2 can be strengthened as follows for specific graphs.

V. In particular, right-invariant coordination is asymp-Proposition 4:1f G is a tree or complete graph, then BIC is
totically achieved. the only asymptotically stable limit set.
(i) Biinvariant coordination is (at least locally) asytapi-

Proof: According to Theorem 2, it remains to show that BIC
cally stable.

is the only local minimum of;. Fixing n} = w' V&, critical
Proof: The proof is omitted because it is similar to the ongoints of V4, correspond to

of Theorem 1. A (Quw!) x (ijijwz) -0 VE. (17)
The region of attraction for BIC behaves as for Theorem Eor the tree, start with the leavesThen(Q.w') x (Q,w') =0

An advantage of Theorem 2 over Theorem 1 is that contrwhere p is the parent ofc. As a consequence, (17) for the
design is directly extended to underactuated agents. thdegarent becomeg@,w') x ( prl) = 0 where pp is the



parent ofp. Using this argument up to the root, &tQxw') Now assuming a known feasible right-invariant velocity

must be parallel. If the agents are partitioned in two ant{?, the design of a Lyapunov based control to left-invariant

aligned groups, then moving those groups towards each otheordination proceeds similarly to Section IV.A.

decreased/;;; thusVy; = 0 is the only local minimum. For  Define d(n, C) to be the Euclidean distance i from 7

the complete graph, (17) becom@g,w') x 1 = 0 Vk, where to the setC. Let Il¢(n) be the projection ofy on C; since

Y = Zj Q;w!. This implies either that alt),w' must be C is convex,vn Tlc(n) is the unique point inC such that

parallel or thaty = 0. In the first case, further discussion isi(n, C) = d(n, llc(n)) =: ||n — Ue(n)]|. Following the same

as for the tree. Rewritingy; = N? |[w'[|? — ¢ - ¢ shows steps as in Section IV.A, defing, := Ad_'¢". Writing

thaty = 0 corresponds to a maximum &f;. A . .

& =a+ Bup =1le(n,) + Bgr,, k=1..N, (18)
Combining trees and cliques can yield more graphs Witfe task is to desigg, € R™ such that asymptotically is

BIC as only asymptotically stable limit set. For others,dbc griven to a point whereyl, € C and g, converges td); this

minima may exist. Classifying local minima &f; from graph \yould asymptotically ensure LIC. For each individual agent

properties is an open question. k, write the cost function
It is straightforward to adapt (16) for underactuated agjemt

popular underactuation a§iO(3) is to consider 2 orthogonal Vi(gx) = 3/ Ady, '€ — Te(Ady'€")|1* = 5 nj, — Te(ny)l|?
axes of allowed rotations; and e, either controlling both
rotation rates, i.ewfC = wuje; + uges, Or imposing a fixed
rotation rate around one axis, iueﬁC = e; +useo. Both cases
are controllable [33], so the Jurdjevic-Quinn theorem [5
ensures local asymptotic stability of BIC,jf = n! Vk is fixed
in advance or agreed on in finite time. A formal convergence 4V = (n, —e(ny)) - [k, Te(nk,) + Bax] — (19)
proof for the asymptotically autonomous case wherethe
follow (13) is currently missing.

where | || denotes Euclidean norni/, characterizes the
distance fromy!, to C, that is the distance from Li@ssuming

that every agent implement§ = Hc(Ad;klgr). The time
ariation of V;, due to motion ofg;, is

where - denotes the canonical scalar productginTo go on
along the lines of Section IV.A, it must holth — ¢ (n)) -
[, e(n)] < 0 ¥n € Oc; this condition on Lie algebra
V. CONTROL DESIGN UNDERACTUATED LEFT-INVARIANT D e

structure and control setting is satisfied for examplesvaelo

o . C(.)ORDINATION Then (19) implies%- Vi, < f(n}) - gz, where
Biinvariant coordination may appear as a rather academic

objective, whose motivation in applications is not cleaowH fni) = BT (nj,, (i, — Te(ni))) (20)
ever, the methodology developed in Section IV for BIC COhterhen identifyingg with R™
design is instrumental to achieve left-invariant coortiora

of underactuated agents. The latter is well motivated by aw=—f(t), k=1.N. (21)
practical applications. Here the role of the cost functien h‘ h herDe. C C. th . . i
no longer to add a second level of coordination, but to fulfi ote that w eMle & G, t € posmon cont_r?lzf IS unneces
the underactuation constraints. Unlike the academic probl sary and vanishes, yielding simply = Ad V.

k
setting of BIC, the present section explicitly considersthost The overall controller is the cascade of a consensus algo-
general setting of underactuated agents as well as poss

ﬂﬁtl m to agree on a desired velocity for LIC, and a position
directed and time-varying interconnection gra@h controller designed from a natural Lyapunov function toctea

positions compatible with underactuation constraints aod
) . o to actually achieve LIC. To implement the controller, agknt
A. Left-invariant coordination of underactuated agents must get from other agenfs~ k their relative positions\

The control design for underactuated LIC is decomposetid the values of their left-invariartuxiliary variablesné-.
in the two steps illustrated in Fig.5. Analogously to thenbii Since agents only interact through the consensus algarithm
variant coordination design of Section IV.A, a feasiblehtig not through the cost function, a connected fixed undirected
invariant velocity is determined by a consensus algorithmgraph is not required& can be directed and time-varying, as
The corresponding left-invariant velocity is enforced by kng as it remains uniformly connected.
Lyapunov-based feedback that decreases the distance from
C={a+Bu:u€R"} o the consensus velocity. _ .| Agreement: define Implementation: drive
. Th_e consensus algprlthm must. enforce a feasible ”ght'feasibleg" € Oc Ad='¢" to C
invariant velocity, that is a vect@” in the set I

Oc¢ :={Ady§: £ €Candg € G}.

, and a natural control is

synchronization on manifold Lyabunov-based control afy,

If Oc is convex, then it is sufficient to initialize the Consensu@'g. 5. Underactuated left-invariant coordination as t@msed consensus
. ' . . on right-invariant velocity and Lyapunov-based controléfi-invariant coor-

algorithm (12) withn;(0) € C. WhenO¢ is not convex, the gination.

consensus algorithm must be adapted and the present paper ha

no general method. Strategies inspired from [38] for corhpac A general characterization of the behavior of solutionsef t

homogeneous manifolds may be helpful, as illustrated in tkosed-loop system is more difficult here because the positi

example below. controller is not a gradient anymore. A crucial step for vbhic
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the present paper proposes no explicit general solutioheis talgorithms of [19] follow from the present general framelwor
design of an appropriate consensus algorithm on auxilidtiustrations of the algorithms by numerical simulatiomedso
variables. The other assumptions in the following resuit cde found in [19], [56].

be readily checked for any particular case. Using the notations of Section II.C, the position and ori-
§ntation of a rigid body in 3-dimensional space is written

Theorem 3:ConsiderN underactuated agents communicatin S . .
g T, Qk) =: gk, Which is an element of the Special Euclidean

on a uniformly connected grag and evolving on Lie group group SE(3); group multiplication is the usual composition
G according to g, = L, .£L with controller (18),(21) where v I . .
9104 g auSi (18).(21) law for translations and rotations, see Section [I.C. Then

f is defined in (20), assuming th&y € Oc, it holds (n — . ) in f S h that th
Tle(n))-In, Te ()] < 0. Assume that an appropriate consensUgauiring agents to “move in formation”, i.e. such that the

algorithm drives the arbitrarily initiateg,, k¥ = 1...N, such relative position and heading of agehwith respect to agent

that they exponentially agree add,, n, — ¢" € Oc Vk, f's f|xe_d_ n tlh?tr_efere_ncte fran:je_ oft_aganWj,k, 1S eq_unhlilent
independently of the agent motiops(t). o0 requiring left-invariant coordination. Moreover, sinlinear

and angular velocity in body frame correspond to the com-

® ![];glzl?figzlgre controllable, then LIC is locally asympponents(vi,wi) of ¢, the problem of controlling each agent

(ii) If, for any fixed n7 = £, boundedV, implies bounded in its own framewith feedback involvingrelative positions
) andf{ ) _)n(;“i; Iiés o 'kf(AFc)i_l ") — 0} and orientations of other agents only, fits the left-invatria
?ﬁén all angnt tra'ectc?riesi% congér etogthgkse?whéreprOblem setting described in Section Ill. The constraint of
F(Ad=L TQ)’ —0 J 9 steering control— i.e. fixed linear velocity in agent frame
gk S T vl = e; — implies (2) of the form
Proof: The overall system is a cascade of the exponentially 3
stable consensus algorithm and position controller (28),( §e = a+ Bup = (e, up) = C=(e,RY).

vghich is d?coupled for the individual agents. A;sumptior§teering controlled agents ghiE(3) are controllable [33].

@i Vi < f(ny,) - gx @nd (21) exactly mean thag (gx) is non-  Eollowing the method of Section V.A, write auxiliary vari-
increasing along the closed-loop solutions. Thereforéhé ,pes nho= (nb,.mL,); then Te(nk) = (e1,n.,), cost
agents are controllable, Jurdjevic-Quinn theorem [53]liesp fnction 13, = L|nL , — e1]|> and straightforward calculations

local asymptotic stability of the local minimumy, = 0 Yk ghow that (19) become§Vk = (1L, x e1) - q. This means
for the position controller. Then the overall system is thg 4 (n—Tc(n)) - [n, HC(Wt)] —0 aﬁdf . = (n\, xe;). Then

cascade of an exponentially stable system and a system (@),(21) yield the controller i Y

which Vi, = 0 Vk is locally asymptotically stable. Standard

arguments on cascade systems (see e.g. [54], [55]) allow to ug =nl+e X1y, k=1.N. (22)

conclude thatl, = 0 Vk is locally asymptotically stable for
the overall system; this proves (i).

To prove (ii), first consider the case whejg= £” constant
Vk. Then V},, can only decrease, and since it is bound
from below it tends to a limit; thereforg%vk is integrable
in time fort — +o00. For the same reaso, is bounded,
so according to the assumption for (i}, is bounded as
well; then j—;Vk, which is a continuous function of;fc, is
bounded as well for the closed-loop system, such g‘%m

This is the same control law as derived in [19] from intuitive
arguments. If an appropriate consensus algorithm is bbéh
e%ll assumptions of Theorem 3 hold, implying local asymggtoti
stability of 3-dimensional “motion in formation” with steag
control (22); in fact, [19] slightly improves Theorem 3 byal
showing thatglobally, LIC is the only stable limit set.

It remains to design a consensus algorithm for tfie
For this, two cases are distinguished: linear motigh= 0
and helicoidal (of which a special case is circular) motion

is uniformly continuous in time for — +oo. Barbalat's ~, he fi | f
Lemma implies that V;, converges td, which implies that w 7&.0' T € Irst case (@ mOSt? NEVEr appears Irom a consensus
dat ' algorithm with arbitrary. (0); it can however be imposed by

f(nt) converges to 0, concluding the proof. Now in fagt . . . .
ks . ; = >
varies, it exponentially converges to the const@t’k. This o (0) = 0 vk, which will then remain tru&/¢ > 0, in order

changes nothing to the fact thi} tends to a finite limit and to stabilize a coordinated motion in straight line.

4V, is bounded, so the same argument applies. o * If n,x = 0 (linear motion), them, , = Qi and
Oer,0) = {(X,0) € R* x R : ||A]| = 1}. Agreement
Condition%Vk < f(nL)-qx is not always true when # 0; on " in_thg unit sphere can be achieved _fc_)IIow_ing [38],
however, it often holds in practice, as in the following exsden just achieving consensus R® and normalizing; in fact
on steering control of rigid bodies. For this example, Tleaor normalizing is not even necessary, as it would just change
3 is improved by showing that LIC is thenly stablelimit the gain in (22). This leads to
set. In general, possible improvements of the local stgbili d,l _ Ty ol l l
result dgpend onp the geom:try 6t and related consengsus itk = 2ot (@ Qo = 1hoe) =ik X Ty (23)
algorithms; particular settings of the literature featfaely for k =1...N, again as in [19].
large regions of attraction (at least in simulations). o If gfdk # 0, tf;en n o :d (}gngk andn!, = QInr, —
re) X o), an = X a, )
B. Example: Steering control ofE(3) ((J?Ef,'];) € ]5%3k;7ﬁdk|)\7|\ < 1?. Deii(;nir;gﬁa consgnsus
Left-invariant coordination oi$' £/(3) under steering control algorithm, thatboth achieves agreement @fi € O and

is studied in [19], [56]. The present section shows how the can be written with left-invariant variables, appears to be
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difficult. Similarly to the first case, suitable algorithms VI. CONCLUSION
can be built if the overall dimension of the variables used

. . _ This paper proposes a geometric framework for coordina-
for the consensus algorithm is enlarged with respect § paper prop g

n on general Lie groups and methods for the design of
X i Ebhtrollers driving a swarm of underactuated, simple ird&gy
algorithm prcl)posedgln [19] riplaceﬁ by tgree compo- agents towards coordination. It shows how the general frame
nentsay, =1, ), €R", B € R” andy; € R assoqated work provides control laws for coordination of rigid bodies
V‘Q'th thel vectlorsa, B, used to describ€c above; then SO(3), SE(2) andSE(3), and allows to easily handle differ-
M = (i Nwr) = (W + Bu X ax, ax). The advantage g settings. Formal convergence results are local, btioesit

i inap! i -i i . . _ 2 .
of this embetljdln.gz]k - (Ofkabﬁkad%) is tlh?jtfleft mvr?nant working on particular applications have always observétyfa
consensus algorithms can be decoupled forthethe 5, large regions of attraction (at least in simulations).

and the%'d.w'th the notat|or|1$ O.];hthe present dp_apelré the Following the numerous results about coordination on par-
corresponding consensus algorithm proposed in [19] Sicular Lie groups, various directions are still open toesxt

Loy = ijk(Qszaj —ag) —ug X ay the general framework of the present paper. A first case
p B T T often encountered in practice is to stabiliggecific relative
aile = 2jen(Qr Qi85 — P+ Qp (rj — 1)) positionsof the agents (“formation control”). In [20], [21]
—up X B — €1 for instance, the steering controlled agentsii(2) are not
= 2w @QEQv — ) —uk X, only coordinated on a circle, but regular distribution oé th

) o ) __agents on the circle is also stabilized; in the present paper
k = L.V, Comparing left-invariant relative positionye|ative positions of the agents are asymptotically fixed bu
9 '9; = (Qi(r; — ), QFQ;) with the terms and arpitrary. The requirement of synchronization (most promi
factors appearing in this consensus algorithm, oRgntly, “attitude synchronization” o§8O(3)) also fits in this
observes that the latter is indeed left-invariant. It can %tegory. A second important extension would be to consider

verified (see [19]) that this algorithm indeed synchronizgggre complex dynamictke those of mechanical systems.
the nj, = Adg, (v + Br x ak, a).
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