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Coordinated motion design on Lie groups
Alain Sarlette,Member, IEEE, Silvère Bonnabel, and Rodolphe Sepulchre,Senior Member, IEEE

Abstract—The present paper proposes a unified geometric
framework for coordinated motion on Lie groups. It first gives
a general problem formulation and analyzes ensuing conditions
for coordinated motion. Then, it introduces a precise method
to design control laws in fully actuated and underactuated
settings with simple integrator dynamics. It thereby showsthat
coordination can be studied in a systematic way once the Lie
group geometry of the configuration space is well characterized.
Applying the proposed general methodology to particular exam-
ples allows to retrieve control laws that have been proposedin
the literature on intuitive grounds. A link with Brockett’s double
bracket flows is also made. The concepts are illustrated onSO(3),
SE(2) and SE(3).

I. I NTRODUCTION

Recently, many efforts have been devoted to the design and
analysis of control laws that coordinate swarms of identical
autonomous agents — e.g. oscillator synchronization [1], [2],
flocking mechanisms [3], [4], vehicle formations [5], [6], [7],
[8], [9], spacecraft formations [10], [11], [12], [13], [14],
[15], mechanical system networks [16], [17], [18] and mobile
sensor networks [19], [20], [21], [22], [23]. For systems on
vector spaces, so-calledconsensus algorithmsare shown to
be efficient and robust [24], [25], [26], [27], [3], [28], and
allow to address many relevant engineering issues and tasks
[24], [5], [29]. However, in many applications, the agents to
coordinate evolve on nonlinear manifolds: oscillators evolve
on the circleS1 ∼= SO(2), satellite attitudes onSO(3) and
vehicles move inSE(2) or SE(3); these particular manifolds
share the geometric structure of aLie group. Coordination on
nonlinear manifolds is inherently more difficult than on vector
spaces. The goal of the present paper is to propose a unified
geometric framework for coordinated motion on Lie groups,
from a geometric definition of “coordination” to a geometric
derivation of control laws for coordination like those proposed
in [20], [21], [19], [30], [31], [32], in fully actuated and
underactuated settings with simple integrator dynamics. The
objective is to reach a state where themotionof the agents is
coordinated, while the values of their relative positions are a
priori left arbitrary; definitions of “coordinated motion”and
“relative positions” on a Lie group are the subject of Section II.

Symmetries:The key point for the developments in this
paper is invariance (or symmetry) in the behavior of the
swarm of agents with respect to their absolute positionon
the Lie group: only relative positions (on the Lie group)
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puter Science, Université de Liège, Belgium. This paper presents research
results of the Belgian Network DYSCO (Dynamical Systems, Control, and
Optimization), funded by the Interuniversity Attraction Poles Programme, ini-
tiated by the Belgian State, Science Policy Office. The scientific responsibility
rests with its authors. A. Sarlette is supported as an FNRS fellow (Belgian
Fund for Scientific Research).

matter. For instance, the configuration of a rigid body in the
3-dimensional physical world is given by an orientation and
a position vector inR3, whose combination corresponds to a
position on Lie groupSE(3). For rigid body coordination, it
is then natural to write control laws that can be interpreted
as internal forces in the swarm, rather than forces depending
on an external reference frame which would privilegiate some
arbitrary choice of orientation and origin. Independence with
respect to reference frame corresponds to invariance with
respect to applying to all agents the same Lie group translation
on SE(3).

The symmetries determine how to define meaningful
quantities for the swarm, like “relative positions” on the
Lie group, and what the dynamics of the coupled agents
can be.Coordinated motion— in short coordination— is
defined as all situations where relative positions on the Lie
group are fixed. Feedback control laws that asymptotically
enforce coordination must be designed on the basis of error
measurements involving appropriately invariant quantities
(e.g. relative agent positions on the Lie group).

Previous work:Results about synchronization (“reaching
a common point”) and coordinated motion (“moving in an
organized way”) on vector spaces are becoming well estab-
lished [28], [24], [27], [26]. Because a vector space can be
identified with its tangent plane, both synchronization and
coordinated motion can be seen as consensus problems on the
same vector space: the former is aposition consensus while
the latter is avelocity consensus. Note that considering the
motion of agentswith the Lie group structure ofRn implies
that only position vectorsin R

n and associatedtranslational
motionare covered. In contrast, as soon asorientation/rotation
of the vehicles or of the formation moving in a vector space
is considered, the configuration space becomes the non-trivial
Lie groupSE(n). In general, when the configuration space is
a Lie group, synchronization and coordinated motion are fun-
damentally different. The geometric viewpoint for dynamical
systems on Lie groups is very well studied; see basic results
in [33], [34] for simplified dynamics like those considered in
the present paper, and [35], [36], [37], [34] for a geometric
theory of mechanicalsystems on Lie groups. General results
for synchronizationon compact Lie groups are proposed in
[38], which points to related examples in the literature. But
to the best of the authors’ knowledge, a unified geometric
viewpoint forcoordinated motion— in shortcoordination—
on Lie groups is still lacking. Close to the present paper in its
geometric flavor, [39] builds invariantobserversfor systems
with Lie group symmetries; observer design can be seen as
two-agent leader-follower synchronization on Lie groups.

In applications, the ubiquitous example of motion on Lie
groups is a rigid body inRn. When translational motion is
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discarded, the configuration space reduces to the compact
Lie group SO(n) characterizing the body’s orientation; an
element ofSO(n) can be represented by then × n rotation
matrix between a frame attached to the rigid body and a
hypothetical fixed reference frame. The standard example of
this type is satellite attitude control, wheresynchronization,
i.e. obtaining equal orientations, has recently attractedmuch
attention [10], [11], [13], [40], [12], [41], [42], [18], [43],
[31], [15], with and without external reference tracking; note
that synchronization is a very special case of coordination.
Considering rotationsand translations, the configuration space
of an n-dimensional rigid body becomes the non-compact
Lie group SE(n) = Rn ⋉ SO(n). Recently, coordination
has been investigated onSE(2) [8], [20], [21] and SE(3)
[9], [19], [16], [17] in the underactuated setting ofsteering
control where the linear velocity is fixed in the body’s frame.
Motion onSE(n) with steering control is also directly linked
to the evolution of a Serret-Frenet frame with curvature
control, as explained in [33]. Results taking into account the
full mechanical dynamics for rigid body motion are more
difficult to obtain — see for instance applications of the
framework of [35] for coordination onSO(3) andSE(3) in
[18], [43] and [16], [17] respectively. Considering simplified
dynamics, as in the present paper, can be useful either to
build a high-level planning controller or as a preliminary step
towards an integrated mechanical controller, as illustrated for
synchronization onSO(3) in [31] and [32], [44] respectively.

Contributions: The main goal of the present paper is
to provide a unified geometric framework for coordinated
motion on Lie groups, proceeding as follows. (i) Coordination
on Lie groups is defined from first principles of symmetry,
distinguishing three variants:left-invariant, right-invariantand
biinvariant coordination. (ii) Expressing the conditions for co-
ordination in the associated Lie algebra, a direct link is drawn
between coordination on Lie groups and consensus in vector
spaces. (iii) It is investigated how biinvariant coordination
restricts compatible relative positions through a geometrically
meaningful relation. These properties are independent of the
dynamics. Going over to control laws, simplified first-order
dynamics are assumed for individual agents, but underactu-
ation is explicitly modeled; communication among agents is
restricted to a reduced set of links that can possibly be directed
and time-varying. (iv) Control laws based on standard vector
space consensus algorithms are given that achieve the easier
tasks of right-invariant coordination and fully actuated left-
invariant coordination for any initial condition on general Lie
groups. (v) A general method is proposed to design control
laws that achieve biinvariant coordination of fully actuated
agents when communication links are undirected and fixed;
extension to more general communication settings can be
made along the lines of [21]. Biinvariant coordination is a
rather academic problem, but (vi) the proposed design method
is shown to apply to the practically most relevant problem
of left-invariant coordination of underactuated agents. The
proposed controller architecture consists of two steps, adding
to the consensus algorithm a position controller derived from
geometric Lyapunov functions. The position controllers are

directly linked to the double bracket flows of [45] for gradient
systems on adjoint orbits.

The power of the geometry is illustrated onSO(3), SE(2)
andSE(3) by analyzing the meaning of the geometric condi-
tions for coordination, and by designing corresponding control
laws with the proposed general methodology. The obtained
controllers have been previously proposed in the literature, but
were derived on the basis of intuitive arguments for particular
applications. In that sense, the novelty of the present paper is
not in the expression of the control laws but in showing that
they can be derived in a unifying and systematic manner with
the proper geometric setting.

The present paper focuses on the achievement of
coordinatedmotion only, in the sense that the objective is
for the swarm to move andconserverelative positions on
the Lie group; the actualvalues of the relative positions
on the Lie group, as long as they are compatible with the
coordinated motion, are not controlled. However, applications
often require to stabilize particular relative positions on
the Lie group which are more efficient than others e.g. for
sensing, power consumption or at least collision avoidance.
The focus of the present work — motion with fixed relative
positions on the Lie group — can be viewed as “orthogonal”
to driving the agents towards particular relative positions on
the Lie group. Therefore it is expected that the results of the
present work can be combined with appropriately invariant
relative position control algorithms on the Lie group (as e.g.
from [38]), in order to both reach a particular configurationof
relative positions on the Lie group and stabilize a coordinated
motion of the resulting configuration. A corresponding result
is proposed in [20] for steering control of planar vehicles
(Lie group SE(2)); remaining issues concerning a general
theory for this combination are discussed in [46].

Table of contents:The paper is organized as follows.
Section II examines the geometric properties of coordination
on Lie groups (contributions (i), (ii) and (iii)). Section III
presents the control setting and basic control laws for right-
invariant coordination and fully actuated left-invariantcoordi-
nation (contribution (iv)). Sections IV and V present control
law design methods respectively for biinvariant coordination
(contribution (v)) and for underactuated left-invariant coordi-
nation (contribution (vi)). Examples are treated at the endof
Sections II, IV and V.

II. T HE GEOMETRY OF COORDINATION

This section proposes definitions for coordination on Lie
groups by starting from basic symmetry principles. It estab-
lishes conditions on velocities for coordination and examines
implications. Except that the symmetries must be compatible,
these developments are independent of the dynamics consid-
ered for the control problem. Notations are adapted from [34].

A. Relative positions and coordination

ConsiderN “agents” evolving on a Lie groupG, with
gk(t) ∈ G denoting the position of agentk at time t. Let
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g−1
k denote the group inverse ofgk, Lh : g 7→ hg denote left

multiplication, andRh : g 7→ gh right multiplication onG.

Definition 1:The left-invariant relative position onG of agent
j with respect to agentk is λjk = g−1

k gj . The right-invariant
relative position onG of j with respect tok is ρjk = gj g

−1
k .

Indeed,λjk (resp.ρjk) is invariant under left (resp. right)
multiplication: (hgk)−1(hgj) = g−1

k gj ∀h ∈ G. Left-/right-
invariant relative positions are thejoint invariants associated
to left-/right-invariant action ofG onG×G...×G (N copies).
In the following, “relative positions” always refer to relative
positions onG unless otherwise specified.

The two definitions of relative position lead to two types of
coordination; a third type is defined by combining them.

Definition 2: Left-invariant coordination(LIC) means constant
left-invariant relative positionsλjk(t) = g−1

k gj — resp.right-
invariant coordination(RIC) means constant right-invariant
relative positionsρjk = gjg

−1
k — for all pairs of agentsj, k.

Biinvariant coordination(BIC) means simultaneous LIC and
RIC: g−1

k gj andgjg
−1
k are constant for allj, k.

The present paper thus associatescoordination to fixed
relative positions. In contrast,synchronizationis the situation
where all agents are at the same point onG: gk(t) = gj(t)
∀j, k; this is a very particular case of biinvariant coordination.

B. Velocities and coordination

Denote byg the Lie algebra ofG, i.e. its tangent space at
identity e. This paper always considersg endowed with the
Euclidean metric. Denote by[ , ] the Lie bracket ong. Let
Lh∗ : TGg → TGhg andRh∗ : TGg → TGgh be the maps
on tangent spaces induced byLh and Rh respectively. Let
Adg = Rg−1∗Lg∗ : g→ g denote theadjoint representation.

Definition 4:Left-invariant velocityξl
k ∈ g and right-invariant

velocity ξr
k ∈ g of agent k are defined byξl

k(τ) =
Lg−1(τ)∗(

d
dtgk(t)|t=τ ) andξr

k(τ) = Rg−1(τ)∗(
d
dtgk(t)|t=τ ).

Indeed,gk(t) andLhgk(t) (resp.Rhgk(t)) have the same
left-invariant (resp. right-invariant) velocityξl

k(t) (resp.ξr
k(t)),

for any fixedh ∈ G. Note the important equality

ξr
k = Adgk

ξl
k . (1)

The adjoint orbit of ξ ∈ g is setOξ = {Adg ξ : g ∈ G} ⊆ g.

Proposition 1: Left-invariant coordination corresponds to
equal right-invariant velocitiesξr

j = ξr
k ∀j, k. Right-invariant

coordination corresponds to equal left-invariant velocitiesξl
j =

ξl
k ∀j, k.

Proof: For λjk, d
dt (g

−1
k gj) = Lg−1

k ∗
d
dtgj + Rgj∗

d
dtg

−1
k .

But if d
dtgk = Lgk∗ξ

l
k, then d

dtg
−1
k = −Lg−1

k
∗Adgk

ξl
k.

Thus d
dt(g

−1
k gj) = Lg−1

k gj∗
ξl
j − Lg−1

k ∗Rgj∗Adgk
ξl
k =

Lg−1

k gj∗
Ad−1

gj
(Adgj ξ

l
j − Adgk

ξl
k). SinceLg−1

k gj∗
andAdg−1

j

are invertible,d
dt (λjk) = 0 is equivalent toAdgj ξ

l
j = Adgk

ξl
k

or equivalently ξr
j = ξr

k. The proof for right-invariant
coordination is strictly analogous. △

Proposition 1 shows that coordination on the Lie groupG
is equivalent to consensus in the vector spaceg. Consensus
in vector spaces is well-studied, see [28], [24], [25], [47],
[4], [27], [26]. Biinvariant coordination requiressimultaneous
consensus onξl

k andξr
k; but the latter are not independent, they

are linked through (1) which depends on the agents’ positions.

Proposition 2:Biinvariant coordination on a Lie groupG is
equivalent to the following condition in the Lie algebrag:

∀k = 1...N, ξl
k = ξl ∈

⋂

i,j

ker(Adλij − Id) or equivalently

ξr
k = ξr ∈

⋂

i,j

ker(Adρij − Id)

Proof: RIC requiresξl
k = ξl

j ∀j, k; denote the common value
of the ξl

k by ξl. Then LIC requiresAdgk
ξl = Adgj ξ

l ⇔
ξl = Adλjk

ξl ∀j, k. The proof withξr is similar. △

Proposition 2 shows that biinvariant coordination puts no
constraints on the relative positions when the group is Abelian,
sinceAdλjk

= Id ∀λjk in this case. In contrast, on a general
Lie group, biinvariant coordination with non-zero velocity can
restrict the set of possible relative positions as follows.

Proposition 3:Let CMξ := {g ∈ G : Adg ξ = ξ}.
a. For everyξ ∈ g, CMξ is a subgroup ofG.
b. The Lie algebra ofCMξ is the kernel ofadξ = [ξ, ], i.e.
cmξ = {η ∈ g : [ξ, η] = 0}.

Proof: a. Ade ξ = ξ ∀ξ sinceAde is the identity operator.
Adg ξ = ξ implies Adg−1 ξ = ξ by simple inversion of the
relation. Moreover, ifAdg1

ξ = ξ and Adg2
ξ = ξ, then

Adg1g2
ξ = Adg1

Adg2
ξ = Adg1

ξ = ξ. ThusCMξ satisfies
all group axioms and must be a subgroup ofG.
b. Let g(t) ∈ CM(ξ) with g(τ) = e and d

dtg(t)|τ = η. Then
η ∈ cmξ = the tangent space toCMξ at e. For constantξ,
Adg(t)ξ = ξ implies d

dt (Adg(t))ξ = 0, with the basic Lie
group property d

dt (Adg(t))|τ = adη. Therefore[η, ξ] = 0
is necessary. It is also sufficient since, for anyη such that
[η, ξ] = 0, the group exponential curveg(t) = exp(ηt)
belongs toCMξ. △

CMξ andcmξ are called the isotropy subgroup and isotropy
Lie algebra ofξ; these are classical objects in group theory
[35]. From Propositions 2 and 3, one method to obtain a
biinvariantly coordinated motion onG is to (1) chooseξl in
the vector spaceg and setξl

k = ξl ∀k (2) position the agents
on G such thatλjk ∈ CMξl for pairs j, k corresponding to
the edges of an undirected tree graph; the Lie group property
of CMξl then ensures thatλjk ∈ CMξl for all pairsj, k. The
same can be done withξr and theρjk. Note that a swarm at
rest (ξl

k = ξr
k = 0 ∀k) is always biinvariantly coordinated.

Remark 1:In many applications involving coordinated motion,
reaching a particularconfiguration, i.e. specific valuesof the
relative positions, is also relevant. Specific configurations are
defined as extrema of a cost function in [38]. Imposing relative
positions in the (intersection of) set(s)CMξ for someξ can be
another way to classify specific configurations; unlike [38], it
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Fig. 1. Coordinated motion onR2 (LIC = RIC = BIC). (a) An initial situation
of coordinated motion; circles represent agent positions,arrows their linear
velocities. (b) The same swarm in coordinated motion with a different velocity.
(c) A coordinated motion that the swarm of the first plotcannotreach without
breaking the coordinated motion to re-position the agents.

works for non-compact Lie groups. For compact groups, there
seems to be no connection between configurations character-
ized throughCMξ and those defined by [38].

Remark 2:One can also first fix relative positionsλjk and then
characterize the set of velocitiesξ compatible with biinvariant
coordination. For non-Abelian groups and a sufficiently large
numberN of agents, this set generically reduces toξ = 0.

C. Examples

The Lie groupRn has trivial properties; it is presented
to clarify the distinction with “motion of rigid bodies in
Rn”, whose configuration space is the Lie groupSE(n).
Basic properties for the special orthogonal groupsSO(n) and
special Euclidean groupsSE(n), n ≥ 2, can be found in e.g.
[33]. Left-invariant coordination forSE(2) and SE(3) was
already formulated in Lie group notation in [8], [9].

R
n: ForG = R

n, a pointgk ∈ G is denoted by a position
vectorrk ∈ Rn.

• Group multiplicationgkgj corresponds tork + rj , in-
verse g−1

k to −rk, and identity e to position vector
0. In particular, the group structure is decoupled in
each coordinate and Abelian (i.e. group multiplication is
commutative). Relative positions take the familiar form
λjk = ρjk = rj − rk ∈ Rn.

• The Lie algebra equalsRn itself, operationsLr∗ andRr∗

reduce to the identity∀r ∈ G = Rn.
• Adjoint operatorAdr = Id for all r ∈ G = Rn and the

Lie bracket is identically zero.
• LIC, RIC and BIC all collapse to the same and just

require identical linear velocities inRn; in particular BIC
implies no restrictions on relative positions. Physically,
coordinated motion means a rigid formation of points
in Rn moving with a fixed formation orientation. The
direction of motion can change when varying the velocity
vector, as between Fig.1 (a) and Fig.1 (b), but a rotation
of the formation, as going from Fig.1 (a) to Fig.1 (c),
would require breaking coordination inRn.

SO(3): The special orthogonal groupSO(3) describes
3-dimensional rotations. A pointg on SO(3) is represented
by a matrixQ ∈ R

3×3 with QTQ = Id anddet(Q) = 1.

• Group multiplication, inverse and identity are the corre-
sponding matrix operations.

• The Lie algebraso(3) is the set of skew-symmetric3×3
matrices[ω]∧, operationsLQ∗ξ andRQ∗ξ are represented
byQ[ω]∧ and[ω]∧Q respectively. The invertible mapping
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identifiesso(3) ∋ [ω]∧ with R
3 ∋ ω.

• With this identification,AdQω = Qω and [ωk, ωj] =
[ωk]∧ωj = ωk × ωj (vector product).

• In the standard interpretation ofQ as rigid body orien-
tation,ωl andωr are the angular velocities expressed in
body frame and in inertial frame respectively.

• LIC (equal ωr
k), RIC (equalωl

k) and BIC have a clear
physical interpretation in this case.

• For BIC with ω 6= 0, cmω = {λω : λ ∈ R} and
CMω = {rotations around axisω}. The dimension of
cmξl (⇔ of CMξl ) is 1. Agents in BIC rotate with the
same angular velocityωr

k in inertial space and have the
same orientation up to a rotation aroundωr

k.

SE(2): The special Euclidean group in the planeSE(2)
describes planar rigid body motions (translations and rota-
tions). An element ofSE(2) can be writteng = (r, θ) ∈
R2 × S1 wherer is a position vector in the plane andθ is
orientation (or “heading”).

• Group multiplicationg1g2 = (r1 +Qθ1
r2, θ1 +θ2) where

Qθ is the rotation of angleθ. Identity e = (0, 0) and
inverseg−1 = (−Q−θr,−θ).

• Lie algebrase(2) = R2 × R ∋ ξ = (v, ω). Operations
Lg∗(v, ω) = (Qθv, ω) andRg∗(v, ω) = (v+ωQπ/2r, ω).

• Adg (v, ω) = (Qθv − ωQπ/2r, ω) and
[(v1, ω1), (v2, ω2)] = (ω1Qπ/2v2 − ω2Qπ/2v1, 0).

• In the interpretation of rigid body motion,vl is the linear
velocity expressed in body frame,ωl = ωr =: ω is the
rotation rate. Forω 6= 0, vr is not the body’s linear ve-
locity expressed in inertial frame; instead,s =

−Qπ/2

ω vr

is the center of the circle drawn by the rigid body moving
with ξr = (vr, ω). In [20], the intuitive argument to
achieve coordination is to synchronize circle centerssk;
this actually synchronizes right-invariant velocitiesvr

k.
• In RIC, the agents move with the same velocity expressed

in body frame (Fig.2,r). In LIC, they move like a
single rigid body (or “formation”): relative orientations
and relative position vectors on the plane do not change
(Fig.2,l1 andl2). Note that any combination of translation
(as on Fig.2,l1) and rotation (as on Fig.2,l2) of the
formation composed by the agents is possible.

• In BIC, the swarm moves like a single rigid bodyand
each agent has the same velocity expressed in body frame.
Propositions 2 and 3 characterizecmξl by [ξl, η] = 0 ⇔
ωlvη = ωηv

l andCMξl byAdg ξ
l = ξl ⇔ (Qθ−Id)v

l =
ωlQπ/2r. This leads to three different cases:

(o) ωl = vl = 0 ⇒ cmξl = se(2) andCMξl = SE(2).
(i) ωl = 0, vl 6= 0 ⇒ cmξl = {(v, 0) : v ∈ R2} and

CMξl = {(r, 0) : r ∈ R
2}.

(ii) ωl 6= 0, any vl ⇒ cmξl = {( ω
ωl v

l, ω) : ω ∈ R}.
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DefineC ⊂ R2, the circle of radius‖vl‖2

|ωl|
containing

the origin, tangent tovl at the origin and such
that vl andωl imply rotation in the same direction.
Then solvingAdgξ = ξ for g and making a few
calculations shows thatCMξl = {(r, θ) : r ∈ C and
Qθv

l tangent toC at r}. This is consistent with an
intuitive analysis of possibilities for circular motion
with unitary linear velocity and fixed relative position
vectors and orientations in the plane.

The dimension ofcmξl (⇔ of CMξl) is (o) 3, (i) 2 or
(ii) 1. In case (o), the configuration is arbitrary but at
rest. In case (i), the agents have the same orientation
and move on parallel straight lines (Fig.2,t1). In case
(ii), they move on the same circle and have the same
orientation with respect to their local radius (Fig.2,t2).
Unlike for LIC, combinations of translations (t1) and
rotations (t2) of the formation composed by the agents
would not correspond to BIC.

SE(3): This group describes3-dimensional rigid body
motions (translations and rotations). An element ofSE(3) can
be writteng = (r,Q) ∈ R

3×SO(3), with r a position vector
in R3 andQ a rotation matrix describing orientation.

• g1g2 = (r1 + Q1r2, Q1Q2), identity e = (0, Id) and
inverseg−1 = (−QT r,QT ).

• Lie algebrase(3) = R3 × so(3) ∋ ξ = (v, [ω]∧) is
identified withR3×R3 ∋ (v, ω) with the same mapping
as for SO(3). OperationsLg∗(v, [ω]∧) = (Qv,Q[ω]∧)
andRg∗(v, [ω]∧) = (ω × r + v, [ω]∧Q). As for SO(3),
symbol “×” denotes vector product.

• Adg (v, ω) = (Qv + r × (Qω), Qω) and
[(v1, ω1), (v2, ω2)] = (ω1 × v2 − ω2 × v1, ω1 × ω2).

• In the interpretation of rigid body motion, left-invariant
velocities vl and ωl are the body’s linear and angular
velocity respectively, expressed in body frame; the right-
invariantωr is the angular velocity expressed in inertial
frame; forωl 6= 0, a physical interpretation for the right-
invariantvr is unclear.

• Similarly to SE(2), the agents move in RIC with the
same velocity expressed in body frame and in LIC with
fixed relative orientations and relative position vectors in
R3, like a single rigid body.

• In BIC, the swarm moves like a single rigid
body and each agent has the same velocity
expressed in body frame. Propositions 2 and
3 lead to three different cases characterizing
cmξl which requires[ξl, η] = 0
⇔ ωl × ωη = 0 andωl × vη = ωη × v

l;
CMξl which requiresAdg ξ

l = ξl

⇔ Qωl = ωl and (Q− Id)vl = ωl × r.

(o) ωl = vl = 0 ⇒ cmξl = se(3) andCMξl = SE(3).
(i) ωl = 0, vl 6= 0 ⇒ cmξl = {(β, αvl) : β ∈ R3, α ∈

R} andCMξl = {(r, Q) : r ∈ R3, Q characterizes
rotation of axisvl}.

(ii) ωl 6= 0, any vl ⇒ cmξl = {(αvl + βωl, αωl) :
α, β ∈ R} and CMξl = {(r, Q) ∈ SE(3)
describing left-invariant relative positions of agents

r

l1 l2

t1 t2

Fig. 2. Coordinated swarms (light color: intermediate planar positions and
orientations in time).r: RIC with varying velocity.l1 andl2: LIC with ωk = 0

and ωk 6= 0 respectively; note that any combination of translation (l1) and
rotation (l2) of the formation composed by the agents still corresponds to LIC.
t1 andt2: BIC with ωk = 0 andωk 6= 0 respectively; note that combinations
of translations (t1) and rotations (t2) of the formation composed by the agents
would not correspond to BIC.

that are on the same cylinder of axisωl and ra-
dius ‖vl−(vl)·(ωl)/‖ωl‖‖

‖ωl‖ , with orientations differing
around axisωl by an angle exactly equal to their
relative angular position on the cylinder}.

This is again obtained by solving forg in Adgξ = ξ and
making several basic computations; it is less obvious than
for SE(2) to find this result intuitively.
The dimension ofcmξl (⇔ of CMξl) is (o) 6, (i) 4
or (ii) 2. In case (o), the configuration is arbitrary but
at rest. In case (i), the agents move on parallel straight
lines and have the same orientation up to rotation around
their linear velocity vector. In case (ii), forvl − (vl) ·
(ωl)/‖ωl‖ 6= 0, the agents draw helices of constantpitch
ωl ·vl = ωr ·vr on the cylinder; the special caseωl ·vl = 0
gives circular trajectories (see figures in [9], [19]). In the
degenerate situationvl − (vl) · (ωl)/‖ωl‖ = 0, all agents
are on the rotation axis.
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III. C OORDINATION AS CONSENSUS IN THEL IE ALGEBRA

A. Control setting

Left-invariant1 systems on Lie groups appear naturally in
many physical systems, such as rigid bodies in space and
cart-like vehicles. Motivated by examples like 2-axes attitude
control and steering control onSE(2) or SE(3), this paper
considers left-invariant dynamics with affine control

d
dtgk = Lgk∗ξ

l
k with ξl

k = a+Buk , k = 1...N , (2)

where the Lie algebrag is identified with R
n, a ∈ R

n

is a constant drift velocity,B ∈ Rn×m has full column
rank and specifies the range of the control termuk ∈ Rm;
without loss of generality, the column vectors ofB are
assumed orthonormal. The set of all assignableξl

k is denoted
C = {a + Bu : u ∈ Rm}. For fully actuated agentsm = n,
(2) simplifies to d

dtgk = Lgk∗uk without loss of generality.
The following always considersg endowed with the Euclidean
metric. Feedback control laws must be functions of variables
which are compatible with the symmetries of the problem
setting, i.e. left-invariant. In terms of left-invariant variables,
LIC corresponds to fixed (left-invariant) relative positions,
while RIC corresponds to equal (left-invariant) velocities.

In a realistic scalable setting, full communication between
all agents cannot be assumed. The information flow among
agents is modeled by a restricted set of communication links;
j  k denotes thatj sends information tok. The communi-
cation topology is associated to a graphG. G is undirected if
k  j ⇔ j  k. G is uniformly connected(see [24], [25])
if there exist an agentk and durationsδ > 0 andT > 0 such
that,∀t, taking the union of the links appearing for at leastδ in
time span[t, t+T ], there is a directed pathk  a b... j
from k to every other agentj.

B. Right-invariant coordination

Right-invariant coordination requiresξl
k = ξl

j ∀j, k. In the
setting (2), this simply implies to agree on equaluk ∀k;
positionsλjk can evolve arbitrarily. This problem is solved
by the classical vector space consensus algorithm [28], [25],
[47], [4], [27], [26]

d
dtξ

l
k =

∑

j k (ξl
j − ξ

l
k) , k = 1...N , (3)

Using (2), it translates intod
dtuk =

∑

j k (uj − uk). It
exponentially achievesξl

k = ξl
j ∀j, k if G is uniformly

connected. Asymptotic RIC is then ensured for any initialuk

and, of course, any relative positionsλjk which actually have
no influence. Agentk relies on the left-invariant velocityξl

j

of j  k.

For a time-invariant and undirected communication graph
G, (3) is a gradient descent for the disagreement cost function
Vr =

∑

k

∑

j k ‖ξ
l
k − ξ

l
j‖

2 , with the Euclidean metric ing.

1A right-invariant system is equivalent, simply by redefining the group
multiplications.

C. Left-invariant coordination

Left-invariant coordination requiresξr
k = ξr

j ∀j, k, which
suggests to use

d
dtξ

r
k =

∑

j k (ξr
j − ξ

r
k) , k = 1...N . (4)

Using (1), in terms of the left-invariant variables, (4) becomes

d
dtξ

l
k =

∑

j k(Adg−1

k gj
ξl
j − ξ

l
k) , k = 1...N (5)

thanks to( d
dtAdgk

) ξl
k = Adgk

[ξl
k, ξ

l
k] = 0. To implement (4),

agentk must know the relative positiong−1
k gj and velocityξl

j

of j  k.
A priori, (5) converges as (3), ensuring global exponential

coordination for uniformly connectedG. However, in contrast
to (3), nothing guarantees that (5) can be implemented in an
underactuated setting. At equilibrium, (5) requires

Adλjk
(a+Buj) = a+Buk ∀j, k , (6)

which, for arbitrary relative positions of the agents, might
admit no solution(u1, u2, ..., uN ). This issue motivates the
further study of underactuated LIC in Section V. Similarly,
biinvariant coordination requires simultaneous consensus on
left- and right-invariant velocities. At equilibrium, this means
that (6) must hold with equal controlsuk, i.e.

Adλjk
(a+Buk) = a+Buk ∀j, k , (7)

which also puts constraints on the relative positions of the
agents. For this reason, biinvariant coordination is further
studied in Section IV.

The cost function Vl =
∑

k

∑

j k ‖Adgk
ξl
k − Adgj ξ

l
j‖

2

associated to (4) is not left-invariant in general (it involves
positionsgk), so (5) cannot be a left-invariant gradient ofVl.

Nevertheless, letGu be the subclass of compact groups with
unitary adjoint representation, i.e. satisfying‖Adg ξ‖ = ‖ξ‖
∀g ∈ G and∀ξ ∈ g (for instanceSO(n) ∈ Gu). It is possible
to define a biinvariant (that is, left- and right-invariant)
Riemannian metric onG if and only if G ∈ Gu [48]. Using
the Euclidean metric on left-invariant velocities, as in the
present paper, comes down to using a left-invariant metric,in
accordance with the left-invariant setting. IfG ∈ Gu, then this
metric is biinvariant, Vl =

∑

k

∑

j k ‖ξ
l
k − Adg−1

k gj
ξl
j‖

2

and for fixed undirectedG, (5) is a gradient descent forVl.

In the following, it is assumed that the agents are control-
lable. Obviously, controllability is sufficient for coordination
as it allows the agents to reach any position from any initial
condition. However, it is not always necessary, as long as
positions compatible with (6) or (7) are globally reachable;
in particular, for Abelian groups, all positions satisfy (6) and
(7); in that case, (underactuated) LIC and BIC become trivial.

IV. CONTROL DESIGN: FULLY ACTUATED BIINVARIANT

COORDINATION

A. Biinvariant coordination on general Lie groups

Biinvariant coordination requires to satisfy two objectives,
LIC and RIC, simultaneously. In a first step, assume that the
agents are given a reference right-invariant velocityξr, such
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that LIC is ensured if each agent has velocityξl
k = Ad−1

gk
ξr is

applied∀k. It remains to simultaneously achieve RIC, which,
as previously shown, involves controlling relative positions.
Write a general controller

ξl
k = ηl

k + qk , k = 1...N , (8)

whereηl
k is a desired velocity andqk is necessary for relative

position control. Thus for the present,ηl
k = Ad−1

gk
ξr. The

question is how to designqk in order to achieve BIC. For
fixed undirected communication graphG, inspired by the cost
function for RIC, define

Vtr(g1, g2...gN ) = 1
2

∑

k

∑

j k ‖η
l
k − η

l
j‖

2

where ‖ ‖ denotes Euclidean norm.Vtr characterizes the
distance from RICassuming that every agent has velocity
ξl
k = Ad−1

gk
ξr. Since ( d

dtAd
−1
gk

)η = −[ξl
k, Ad

−1
gk
η] ∀η ∈ g,

the time variation ofVtr due to motion ofgk is

d
dtVtr = 2

∑

k

∑

j k (ηl
k − η

l
j) · [η

l
k, ξ

l
k] (9)

where· denotes the canonical scalar product ing, defined with
the Euclidean metric. Thus ifqk = 0 then d

dtVtr = 0; a proper
choice ofqk should allow to decreaseVtr. Define2 the bracket
〈 , 〉 such thatξ1 · 〈ξ2, ξ3〉 + [ξ1, ξ2] · ξ3 = 0 ∀ξ1, ξ2, ξ3 ∈ g.
Then (9) rewritesd

dtVtr = 2
∑

k

∑

j k 〈η
l
k, η

l
k − η

l
j〉 · qk and

the choice
qk = −〈ηl

k,
∑

j k (ηl
k − η

l
j)〉 (10)

ensures thatVtr is non-increasing along the solutions:

d
dtVtr = −2

∑

k

∑

j k 〈η
l
k,

∑

j k (ηl
k − η

l
j)〉

2 ≤ 0 .

To obtain an autonomous, left-invariant algorithm for bi-
invariant coordination, it remains to replace the reference
velocity ξr by estimates on which the agents progressively
agree. Since the goal is to define a common right-invariant
velocity in g, it is natural to proceed as in Section III-C and
use the consensus algorithm

d
dtη

r
k =

∑

j k (ηr
j − η

r
k) (11)

which in terms of left-invariant velocities rewrites

d
dtη

l
k =

∑

j k(Adλjk
ηl

j − η
l
k) − [ξl

k, η
l
k] , k = 1...N. (12)

Thus the overall controller is the cascade of a consensus
algorithm to agree on a desired velocity for LIC, and a
position controller designed to decrease a natural distance to
RIC. To implement the controller, agentk must receive from
communicating agentsj  k their relative positionsλjk and
the values of their left-invariantauxiliary variablesηl

j .

LIC: agree onξr

vector space consensus ing
- RIC: agree onAd−1

gk
ξr

Lyapunov-based control ofgk

Fig. 3. Biinvariant coordination as consensus on right-invariant velocity and
Lyapunov-based control to right-invariant coordination.

2In fact 〈 , 〉 expresses the effect of the Lie bracket on the dual space
of g. It is directly related to thecoadjoint representation ofG, commonly
used for mechanical systems; in general,〈 , 〉 does not satisfy the Lie bracket
properties.

The following result characterizes the convergence
properties of controller (8),(10),(12).

Theorem 1:ConsiderN fully actuated agents communicating
on a fixed, undirected graphG and evolving on Lie groupG
according to d

dtgk = Lgk∗ξ
l
k with controller (8),(10),(12).

(i) For any initial conditionsηl
k(0), the ηr

k(t) = Adgk
ηl

k(t)
exponentially converge toηr := 1

N

∑

k η
r
k(0).

(ii) Define
Vtr(g1, g2, ...gN) := 1

2

∑

k

∑

j k ‖Ad
−1
gk
ηr − Ad−1

gj
ηr‖2.

All solutions converge to the critical set ofVtr . In
particular, left-invariant coordination is asymptotically
achieved for all initial conditions.

(iii) Biinvariant coordination is (at least locally) asymptoti-
cally stable.

Proof: Regarding convergence, (12) is strictly equivalent to
(11). Therefore, (i) simply restates a well-known convergence
result for consensus algorithms in vector spaces on fixed
undirected graphs [26].

Since the ηr
k converge, (8),(10) is an asymptotically

autonomous system; the autonomous limit system is obtained
by replacingηl

k = Ad−1
gk
ηr. From the derivation ofqk in (10),

the limit system is a gradient descent forVtr(g1, g2, ...gN ),
which is smooth because the adjoint representation is smooth.
According to [49], theω-limit sets of an asymptotically
autonomous system correspond to the chain recurrent sets
of the limit system. From [50] the chain recurrent set of
a smooth gradient system is equal to its critical points.
Therefore theω-limit set of (8),(10) is equal to the critical
points of Vtr, which proves (ii). Biinvariant coordination
Vtr = 0 is locally asymptotically stable as it is a local (and
global) minimum ofVtr , which proves (iii). △

Given ηr, the region of attraction for BIC is a sublevel-set
whereVtr has 0 as only critical point (in practice, as only
minimum). Other local minima can involve e.g. theηl

k evenly
distributed on a circularOξr with G a ring graph (see [38]).

Extensions to varying and directedG can be made with
additional auxiliary variables along the lines of [51], [52], [21],
[19]: at a first level, consensus algorithms define a desiredξl

and a desiredξr, which must be on the same adjoint orbit;
at a second level, cost functions for individual agents ensure
that they asymptotically implement the desired velocities. The
consensus part is non-trivial to write in a fully left-invariant
setting, becauseξl and ξr must belong to thesame adjoint
orbit. The present paper proposes no explicit design of this
form. For fixed undirectedG, an advantage of algorithms with
“double consensus” (ξr andξl) would be that BIC becomes the
only locally stable equilibrium: interaction-related issues only
depend on the performance of the consensus algorithm, for the
rest the agents behave individually. It is shown in [38] how
auxiliary variables can be used to build consensus algorithms
that avoid spurious local minima on various spaces.
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B. Biinvariant coordination on Lie groups with a biinvariant
metric

When G ∈ Gu, i.e. G has a biinvariant metric, the cost
function Vl =

∑

k

∑

j k ‖Adgk
ξl
k −Adgj ξ

l
j‖

2 can be used
for left-invariant control design.

A natural idea in this context would be to combine the
cost functions for LIC and RIC, writingVt = Vl + Vr,
and derive a gradient descent forVt of the form
d
dtξ

l
k = f(ξl

k, {ξ
l
j , g

−1
k gj : j  k}). However, simulations

of the resulting control law forSO(n) always converge to
ξl
k = 0 ∀k. A possible explanation for this behavior is that

the gradient controls velocities, not explicitly positions, while
it was shown in Section II that BIC at non-zero velocity
involves restrictions on compatible positions.

Nevertheless, the biinvariant metric allows to switch the
roles of LIC and RIC in the method of Subsection IV.A,
using a consensus algorithm to define a common left-invariant
velocity for RIC, and a cost function to drive positions to LIC.

RIC: agree onξl

vector space consensus ing
- LIC: agree onAdgk

ξl

Lyapunov-based control ofgk

Fig. 4. Biinvariant coordination as consensus on left-invariant velocity and
Lyapunov-based control to left-invariant coordination.

The RIC consensus algorithm on auxiliary variables asymp-
totically defines a common velocityξl by

d
dtη

l
k =

∑

j k (ηl
j − η

l
k) , k = 1...N . (13)

Then defining the cost function

Vtl(g1, g2...gN ) = 1
2

∑

k

∑

j k ‖Adgk
ηl

k −Adgj η
l
j‖

2

= 1
2

∑

k

∑

j k ‖η
l
k −Adg−1

k gj
ηl

j‖
2

for LIC and proceeding as in the previous subsection, one
obtains controller (8) with

qk = 〈ηl
k,

∑

j k (ηl
k −Adg−1

k gj
ηl

j)〉 . (14)

Theorem 2:ConsiderN fully actuated agents communicating
on a connected, fixed, undirected graphG and evolving onG ∈
Gu according to d

dtgk = Lgk∗ξ
l
k with controller (8),(13),(14).

(i) For any initial conditionsηl
k(0), the ηl

k(t) exponentially
converge toηl := 1

N

∑

k η
l
k(0).

(ii) Define Vtl(g1, g2, ...gN ) := 1
2

∑

k

∑

j k ‖Adgk
ηl −

Adgjη
l‖2. All solutions converge to the critical set of

Vtl. In particular, right-invariant coordination is asymp-
totically achieved.

(iii) Biinvariant coordination is (at least locally) asymptoti-
cally stable.

Proof: The proof is omitted because it is similar to the one
of Theorem 1. △

The region of attraction for BIC behaves as for Theorem 1.
An advantage of Theorem 2 over Theorem 1 is that control

design is directly extended to underactuated agents. Indeed,

(13) defines a valid consensus velocityξl ∈ C = {a + Bu :
u ∈ Rm} for underactuated agents provided thatηl

k(0) ∈ C
∀k. The only change is thatqk, instead of the exact gradient
descent in (14), is its projection onto the control range ofB:

ξl
k = a+Buk = ηl

k +BBT qk .

Whenξl is asymptotically defined with (13), the convergence
argument for asymptotically autonomous systems must be
extended to projections of gradient systems; a general proof
of this technical issue is lacking in the present paper. It isthe
only reason to restrict Theorem 2 to fully actuated agents.

Brockett [45] has developed a general double-bracket form
for gradient algorithms on adjoint orbits of compact semi-
simple groups, using the biinvariant Killing metric. The con-
nection with the present paper is clear: once the consensus al-
gorithm has converged, the gradient control for agent positions
involves a cost function on the adjoint orbit ofηl or ηr. One
example in [45] involves minimizing the distance towards a
subset ofg; a similar objective will be pursued in Section V of
the present paper (but with a different class of subsets). A main
difference of [45] is its focus on the evolution of variablesin g,
making abstraction of the underlying group, while the present
paper actually controls positions of (possibly underactuated)
agents onG. If G is a compact group and the biinvariant
Killing metric coincides with the left-invariant metric ofthe
present paper, then〈 , 〉 = −[ , ] and control (10) forgk with
ηr

k = ξr fixed implies thatηl
k follows the double bracket flow

d
dtη

l
k = [ηl

k, [ηl
k,

∑

j k(ηl
k − η

l
j)]] . (15)

This is the case among others forSO(3).

C. Example: Biinvariant coordination inSO(3)

Control laws for coordination inSO(3) abound in the
literature — see among others papers about satellite attitude
control mentioned in the Introduction. Biinvariant coordination
onSO(3) requires aligned rotation axes, and thus synchronizes
satellite attitudes up to their phase around the rotation axis.

The compact groupSO(3) has a biinvariant metric, so
Section IV.B applies. Algorithm (13) is used verbatim, with
ηl

k ∈ R
3 the auxiliary variable associated to angular velocity

ωl
k. As mentioned before equation (15),〈 , 〉 = −[ , ] on
SO(3). Thus in the fully actuated case, (8),(14) lead to

ωl
k = ηl

k + ηl
k × (

∑

j k Q
T
kQjη

l
j) , k = 1...N . (16)

Theorem 2 can be strengthened as follows for specific graphs.

Proposition 4: If G is a tree or complete graph, then BIC is
the only asymptotically stable limit set.

Proof: According to Theorem 2, it remains to show that BIC
is the only local minimum ofVtl. Fixing ηl

k = ωl ∀k, critical
points ofVtl correspond to

(Qkω
l)× (

∑

j kQjω
l) = 0 ∀k . (17)

For the tree, start with the leavesc. Then(Qcω
l)×(Qpω

l) = 0
where p is the parent ofc. As a consequence, (17) for the
parent becomes(Qpω

l) × (QT
ppω

l) = 0 where pp is the
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parent ofp. Using this argument up to the root, all(Qkω
l)

must be parallel. If the agents are partitioned in two anti-
aligned groups, then moving those groups towards each other
decreasesVtl; thus Vtl = 0 is the only local minimum. For
the complete graph, (17) becomes(Qkω

l)×ψ = 0 ∀k, where
ψ =

∑

j Qjω
l. This implies either that allQkω

l must be
parallel or thatψ = 0. In the first case, further discussion is
as for the tree. RewritingVtl = N2 ‖ωl‖2 − 1

2ψ · ψ shows
thatψ = 0 corresponds to a maximum ofVtl. △

Combining trees and cliques can yield more graphs with
BIC as only asymptotically stable limit set. For others, local
minima may exist. Classifying local minima ofVtl from graph
properties is an open question.

It is straightforward to adapt (16) for underactuated agents; a
popular underactuation onSO(3) is to consider 2 orthogonal
axes of allowed rotationse1 and e2, either controlling both
rotation rates, i.e.ωl

k = u1e1 + u2e2, or imposing a fixed
rotation rate around one axis, i.e.ωl

k = e1 +u2e2. Both cases
are controllable [33], so the Jurdjevic-Quinn theorem [53]
ensures local asymptotic stability of BIC, ifηl

k = ηl ∀k is fixed
in advance or agreed on in finite time. A formal convergence
proof for the asymptotically autonomous case where theηl

k

follow (13) is currently missing.

V. CONTROL DESIGN: UNDERACTUATED LEFT-INVARIANT

COORDINATION

Biinvariant coordination may appear as a rather academic
objective, whose motivation in applications is not clear. How-
ever, the methodology developed in Section IV for BIC control
design is instrumental to achieve left-invariant coordination
of underactuated agents. The latter is well motivated by
practical applications. Here the role of the cost function is
no longer to add a second level of coordination, but to fulfill
the underactuation constraints. Unlike the academic problem
setting of BIC, the present section explicitly considers the most
general setting of underactuated agents as well as possibly
directed and time-varying interconnection graphG.

A. Left-invariant coordination of underactuated agents

The control design for underactuated LIC is decomposed
in the two steps illustrated in Fig.5. Analogously to the biin-
variant coordination design of Section IV.A, a feasible right-
invariant velocity is determined by a consensus algorithm.
The corresponding left-invariant velocity is enforced by a
Lyapunov-based feedback that decreases the distance from
C = {a+Bu : u ∈ Rm} to the consensus velocity.

The consensus algorithm must enforce a feasible right-
invariant velocity, that is a vectorξr in the set

OC := {Adgξ : ξ ∈ C andg ∈ G} .

If OC is convex, then it is sufficient to initialize the consensus
algorithm (12) withηl

k(0) ∈ C. WhenOC is not convex, the
consensus algorithm must be adapted and the present paper has
no general method. Strategies inspired from [38] for compact
homogeneous manifolds may be helpful, as illustrated in the
example below.

Now assuming a known feasible right-invariant velocity
ξr, the design of a Lyapunov based control to left-invariant
coordination proceeds similarly to Section IV.A.

Define d(η, C) to be the Euclidean distance ing from η
to the setC. Let ΠC(η) be the projection ofη on C; since
C is convex,∀η ΠC(η) is the unique point inC such that
d(η, C) = d(η, ΠC(η)) =: ‖η − ΠC(η)‖. Following the same
steps as in Section IV.A, defineηl

k := Ad−1
gk
ξr. Writing

ξl
k = a+Buk = ΠC(ηl

k) +Bqk , k = 1...N , (18)

the task is to designqk ∈ Rm such that asymptotically,gk is
driven to a point whereηl

k ∈ C and qk converges to0; this
would asymptotically ensure LIC. For each individual agent
k, write the cost function

Vk(gk) = 1
2‖Ad

−1
gk
ξr −ΠC(Ad−1

gk
ξr)‖2 = 1

2‖η
l
k −ΠC(ηl

k)‖2

where ‖ ‖ denotes Euclidean norm.Vk characterizes the
distance fromηl

k to C, that is the distance from LICassuming
that every agent implementsξl

k = ΠC(Ad−1
gk
ξr). The time

variation ofVk due to motion ofgk is

d
dtVk = (ηl

k −ΠC(ηl
k)) · [ηl

k, ΠC(ηl
k) +Bqk] (19)

where · denotes the canonical scalar product ing. To go on
along the lines of Section IV.A, it must hold(η − ΠC(η)) ·
[η, ΠC(η)] ≤ 0 ∀η ∈ OC ; this condition on Lie algebra
structure and control setting is satisfied for examples below.
Then (19) impliesd

dtVk ≤ f(ηl
k) · qk, where

f(ηl
k) = BT 〈 ηl

k, (ηl
k −ΠC(ηl

k)) 〉 (20)

when identifyingg with Rn, and a natural control is

qk = −f(ηl
k) , k = 1...N . (21)

Note that whenOξr ⊆ C, the position controlqk is unneces-
sary and vanishes, yielding simplyξl

k = Ad−1
gk
ξr ∀t.

The overall controller is the cascade of a consensus algo-
rithm to agree on a desired velocity for LIC, and a position
controller designed from a natural Lyapunov function to reach
positions compatible with underactuation constraints andso
to actually achieve LIC. To implement the controller, agentk
must get from other agentsj  k their relative positionsλjk

and the values of their left-invariantauxiliary variablesηl
j .

Since agents only interact through the consensus algorithm,
not through the cost function, a connected fixed undirected
graph is not required:G can be directed and time-varying, as
long as it remains uniformly connected.

Agreement: define
feasibleξr ∈ OC

synchronization on manifold

-
Implementation: drive
Ad−1

gk
ξr to C

Lyapunov-based control ofgk

Fig. 5. Underactuated left-invariant coordination as constrained consensus
on right-invariant velocity and Lyapunov-based control toleft-invariant coor-
dination.

A general characterization of the behavior of solutions of the
closed-loop system is more difficult here because the position
controller is not a gradient anymore. A crucial step for which
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the present paper proposes no explicit general solution is the
design of an appropriate consensus algorithm on auxiliary
variables. The other assumptions in the following result can
be readily checked for any particular case.

Theorem 3:ConsiderN underactuated agents communicating
on a uniformly connected graphG and evolving on Lie group
G according tod

dtgk = Lgk∗ξ
l
k with controller (18),(21) where

f is defined in (20), assuming that∀η ∈ OC , it holds (η −
ΠC(η))·[η, ΠC(η)] ≤ 0. Assume that an appropriate consensus
algorithm drives the arbitrarily initiatedηl

k, k = 1...N , such
that they exponentially agree onAdgk

ηl
k → ξr ∈ OC ∀k,

independently of the agent motionsgk(t).
(i) If the agents are controllable, then LIC is locally asymp-

totically stable.
(ii) If, for any fixed ηr

k = ξr, boundedVk implies bounded
ηl

k, andf(ηl
k)→ 0 implies gk → {g : f(Ad−1

g ηr
k) = 0},

then all agent trajectories onG converge to the set where
f(Ad−1

gk
ξr) = 0.

Proof: The overall system is a cascade of the exponentially
stable consensus algorithm and position controller (18),(21)
which is decoupled for the individual agents. Assumptions
d
dtVk ≤ f(ηl

k) · qk and (21) exactly mean thatVk(gk) is non-
increasing along the closed-loop solutions. Therefore, ifthe
agents are controllable, Jurdjevic-Quinn theorem [53] implies
local asymptotic stability of the local minimumVk = 0 ∀k
for the position controller. Then the overall system is the
cascade of an exponentially stable system and a system for
which Vk = 0 ∀k is locally asymptotically stable. Standard
arguments on cascade systems (see e.g. [54], [55]) allow to
conclude thatVk = 0 ∀k is locally asymptotically stable for
the overall system; this proves (i).

To prove (ii), first consider the case whereηr
k = ξr constant

∀k. Then Vk can only decrease, and since it is bounded
from below it tends to a limit; thereforeddtVk is integrable
in time for t → +∞. For the same reason,Vk is bounded,
so according to the assumption for (ii)ηl

k is bounded as
well; then d2

dt2Vk, which is a continuous function ofηl
k, is

bounded as well for the closed-loop system, such thatd
dtVk

is uniformly continuous in time fort → +∞. Barbalat’s
Lemma implies thatddtVk converges to0, which implies that
f(ηl

k) converges to 0, concluding the proof. Now in factηr
k

varies, it exponentially converges to the constantξr ∀k. This
changes nothing to the fact thatVk tends to a finite limit and
d2

dt2Vk is bounded, so the same argument applies. △

Condition d
dtVk ≤ f(ηl

k) ·qk is not always true whena 6= 0;
however, it often holds in practice, as in the following example
on steering control of rigid bodies. For this example, Theorem
3 is improved by showing that LIC is theonly stablelimit
set. In general, possible improvements of the local stability
result depend on the geometry ofOC and related consensus
algorithms; particular settings of the literature featurefairly
large regions of attraction (at least in simulations).

B. Example: Steering control onSE(3)

Left-invariant coordination onSE(3) under steering control
is studied in [19], [56]. The present section shows how the

algorithms of [19] follow from the present general framework.
Illustrations of the algorithms by numerical simulation can also
be found in [19], [56].

Using the notations of Section II.C, the position and ori-
entation of a rigid body in 3-dimensional space is written
(rk, Qk) =: gk, which is an element of the Special Euclidean
groupSE(3); group multiplication is the usual composition
law for translations and rotations, see Section II.C. Then
requiring agents to “move in formation”, i.e. such that the
relative position and heading of agentj with respect to agent
k is fixed in the reference frame of agentk, ∀j, k, is equivalent
to requiring left-invariant coordination. Moreover, since linear
and angular velocity in body frame correspond to the com-
ponents(vl

k, ω
l
k) of ξl

k, the problem of controlling each agent
in its own framewith feedback involvingrelative positions
and orientations of other agents only, fits the left-invariant
problem setting described in Section III. The constraint of
steering control— i.e. fixed linear velocity in agent frame
vl

k = e1 — implies (2) of the form

ξl
k = a+Buk = (e1, uk) ⇒ C = (e1,R

3) .

Steering controlled agents onSE(3) are controllable [33].
Following the method of Section V.A, write auxiliary vari-

ables ηl
k = (ηl

v k, η
l
ω k); then ΠC(ηl

k) = (e1, η
l
ω k), cost

functionVk = 1
2‖η

l
v k − e1‖

2 and straightforward calculations
show that (19) becomesddtVk = (ηl

v k × e1) · qk. This means
that (η−ΠC(η)) · [η, ΠC(η)] = 0 andfηl

k
= (ηl

v k×e1). Then
(18),(21) yield the controller

uk = ηl
ω k + e1 × η

l
v k , k = 1...N . (22)

This is the same control law as derived in [19] from intuitive
arguments. If an appropriate consensus algorithm is built,then
all assumptions of Theorem 3 hold, implying local asymptotic
stability of 3-dimensional “motion in formation” with steering
control (22); in fact, [19] slightly improves Theorem 3 by also
showing thatglobally, LIC is the only stable limit set.

It remains to design a consensus algorithm for theηl
k.

For this, two cases are distinguished: linear motionωr = 0
and helicoidal (of which a special case is circular) motion
ωr 6= 0. The first case (almost) never appears from a consensus
algorithm with arbitraryηl

k(0); it can however be imposed by
ηl

ω k(0) = 0 ∀k, which will then remain true∀t ≥ 0, in order
to stabilize a coordinated motion in straight line.

• If ηl
ω k = 0 (linear motion), thenηl

v k = QT
k η

r
v k and

O(e1,0) = {(λ, 0) ∈ R3 × R3 : ‖λ‖ = 1}. Agreement
on vr in the unit sphere can be achieved following [38],
just achieving consensus inR3 and normalizing; in fact
normalizing is not even necessary, as it would just change
the gain in (22). This leads to

d
dtη

l
v k =

∑

j k(QT
kQjη

l
v j − η

l
v k)− uk × η

l
v k (23)

for k = 1...N , again as in [19].
• If ηl

ω k 6= 0, then ηl
ω k = QT

k η
r
ω k and ηl

v k = QT
k η

r
v k −

(QT
k rk) × (QT

k η
r
ω k), and OC = {(γ + β × α, α) :

α, β, γ ∈ R3 and‖γ‖ ≤ 1}. Designing a consensus
algorithm, thatboth achieves agreement onξr ∈ OC and
can be written with left-invariant variables, appears to be



11

difficult. Similarly to the first case, suitable algorithms
can be built if the overall dimension of the variables used
for the consensus algorithm is enlarged with respect to
the dimension of the configuration space. The consensus
algorithm proposed in [19] replacesηl

k by three compo-
nentsαk = ηl

ω k ∈ R
3, βk ∈ R

3 andγk ∈ R
3 associated

with the vectorsα, β, γ used to describeOC above; then
ηl

k = (ηl
v k, η

l
ω k) = (γk + βk × αk, αk). The advantage

of this embeddingηl
k → (αk, βk, γk) is that left-invariant

consensus algorithms can be decoupled for theαk, theβk

and theγk. With the notations of the present paper, the
corresponding consensus algorithm proposed in [19] is

d
dtαk =

∑

j k(QT
kQjαj − αk) − uk × αk

d
dtβk =

∑

j k(QT
kQjβj − βk +QT

k (rj − rk))

−uk × βk − e1

d
dtγk =

∑

j k(QT
kQjγj − γk) − uk × γk ,

k = 1...N . Comparing left-invariant relative position
g−1

k gj = (QT
k (rj − rk), QT

kQj) with the terms and
factors appearing in this consensus algorithm, one
observes that the latter is indeed left-invariant. It can be
verified (see [19]) that this algorithm indeed synchronizes
the ηr

k = Adgk
(γk + βk × αk, αk).

Remark 3:LIC in linear motion, i.e. withηl
ω k = 0 ∀k, under

steering control requires to align vectorsQke1 for all agents.
This is in fact equivalent to BIC onSO(3) with ηl

k = ωl = e1

∀k. The present section thus illustrates the method for BIC on
SO(3) for uniformly connectedG (instead of fixed undirected
G as in Section IV).

Remark 4:LIC under steering control onSE(2) is treated
in [21], [20], where numerical simulations of the resulting
algorithms can also be found. As forSE(3), control algo-
rithms obtained intuitively, with several simplificationsdue to
the lower dimension, can be recovered with the general method
of the present paper.

In fact, the group structure and control setting of steering
control onSE(2) are such that∀g ∈ SE(2) and ∀ steering
controlsu ∈ R, one has

ξr = Adgξ
l = Adg(a+Bu) = α(g, u) +Bu

with α(g, u) ⊥ Bu . (24)

On SE(2) explicitly, a + Bu = (e1, u) ∈ R
2 × R and

Adg(e1, u) = (Qθe1 − uQπ/2r, u), so α(g, u) = (Qθe1 −
uQπ/2r, 0) and Bu = (0, u). Then LIC automatically im-
plies equaluk, thus RIC, meaning thatunderactuated LIC is
equivalent to BICand imposes the same constraints on relative
positionsλjk. This is the case for any group and control setting
satisfying (24).

For steering control onSE(3), LIC is slightly different from
BIC becauseAdg(e1, u) = (Qe1 + r × (Qu), Qu), so (24)
would require(Qu) · (Qe1) = u · e1 = 0 which is not true in
general. Therefore, for LIC under steering control theωl

k = uk

can differ by arbitrary rotations arounde1, while BIC would
require equalωl

k.

VI. CONCLUSION

This paper proposes a geometric framework for coordina-
tion on general Lie groups and methods for the design of
controllers driving a swarm of underactuated, simple integrator
agents towards coordination. It shows how the general frame-
work provides control laws for coordination of rigid bodies, on
SO(3), SE(2) andSE(3), and allows to easily handle differ-
ent settings. Formal convergence results are local, but authors
working on particular applications have always observed fairly
large regions of attraction (at least in simulations).

Following the numerous results about coordination on par-
ticular Lie groups, various directions are still open to extend
the general framework of the present paper. A first case
often encountered in practice is to stabilizespecific relative
positions of the agents (“formation control”). In [20], [21]
for instance, the steering controlled agents onSE(2) are not
only coordinated on a circle, but regular distribution of the
agents on the circle is also stabilized; in the present paper,
relative positions of the agents are asymptotically fixed but
arbitrary. The requirement of synchronization (most promi-
nently, “attitude synchronization” onSO(3)) also fits in this
category. A second important extension would be to consider
more complex dynamics, like those of mechanical systems.
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Liège, Belgium.r.sepulchre@ulg.ac.be.
He received his engineering degree and Ph.D. de-
gree in applied mathematics from the University of
Louvain, Belgium, in 1990 and 1994 respectively.
He held research or teaching positions at the Uni-
versity of California, Santa Barbara (1994-1996),
Princeton(2002-2003), and Louvain(2001-2009).

His research interests include nonlinear control
systems, dynamical systems, and optimization on manifolds. He is the
recipient of the 2008 IEEE Antonio Ruberti prize.

Silvère Bonnabelwas born in Marseille, France, in
1981. He graduated from Mines ParisTech, France,
in 2004, and received the Ph.D. degree in mathemat-
ics and control at Mines ParisTech, France, in 2007.
He was a Postdoctoral Fellow at the University of
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