

Full discontinuous Galerkin formulation of shells in large deformations with parallel and fracture mechanics applications

BECKER Gauthier & NOELS Ludovic

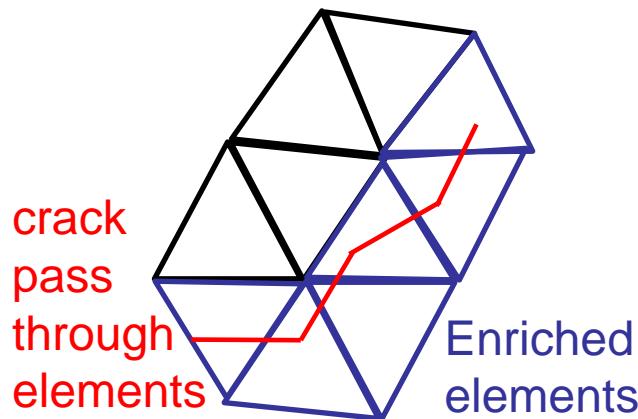
Computational & Multiscale Mechanics of Materials, ULg
Chemin des Chevreuils 1, B4000 Liège, Belgium

Gauthier.Becker@ulg.ac.be

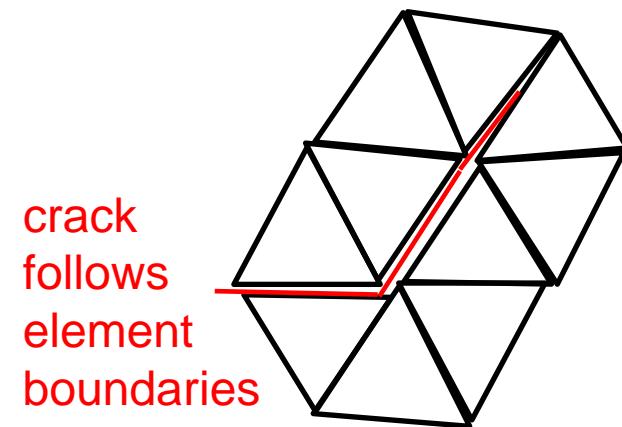
L.Noels@ulg.ac.be

10th WCCM - July 2012

- The fracture process is modeled by cohesive elements to study
 - Dynamic crack propagation
 - Fragmentation
 - XFEM
 - Interface elements

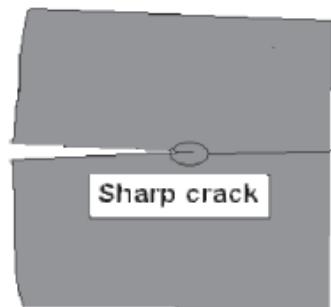
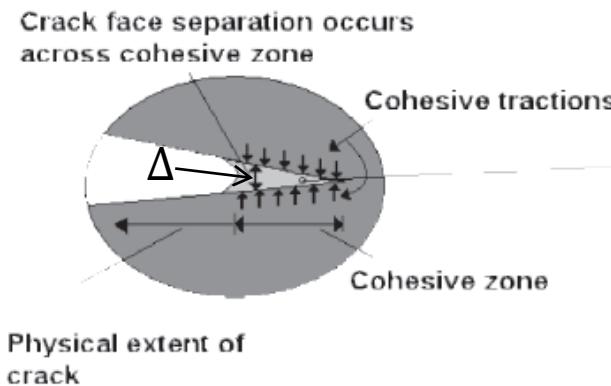


Commonly used for
crack propagation

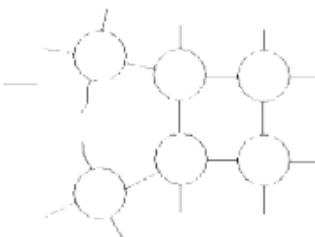


Dynamic phenomena
(crack propagation due to
impact, fragmentation)

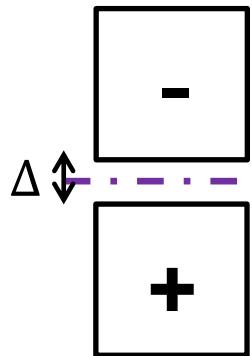
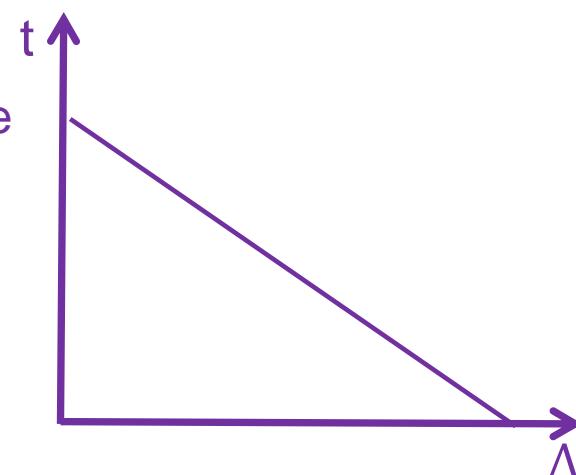
- Cohesive zone model is very appealing to model crack initiations in a numerical model
 - Model the separation of crack lips in brittle materials



Idealization of atomic separation processes in cohesive zone



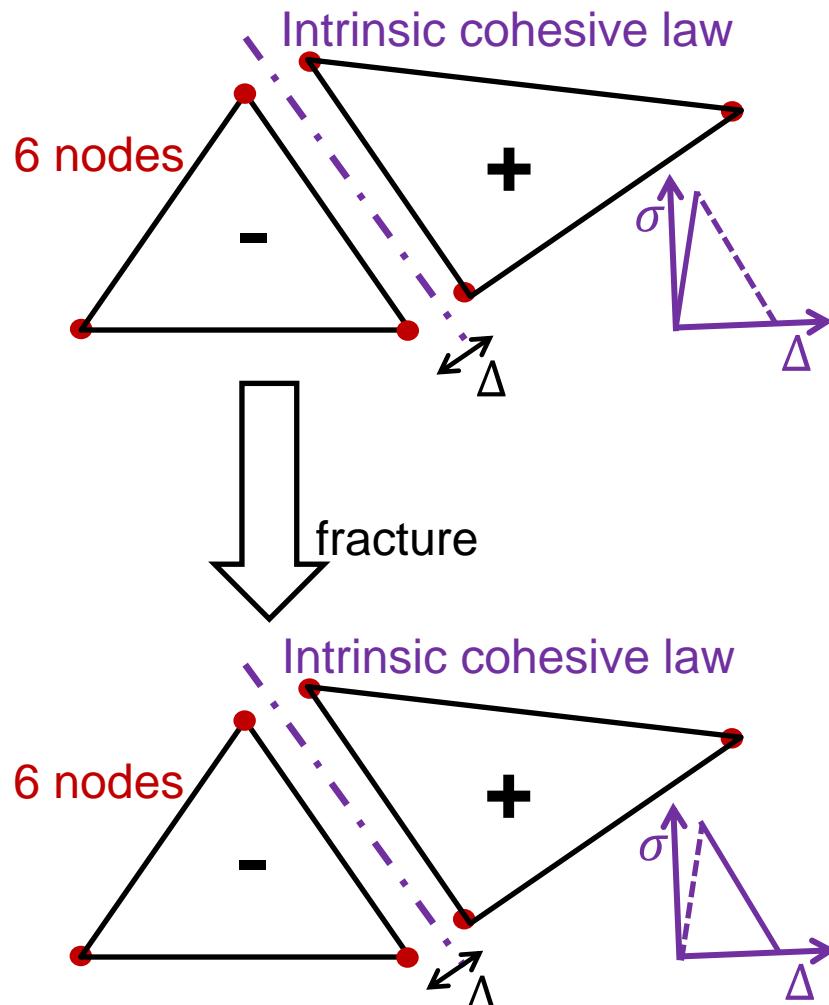
[Seagraves et al 2010]



- The insertion of cohesive elements during the simulation is difficult to implement as it requires topological mesh modifications
 - Extrinsic cohesive approach

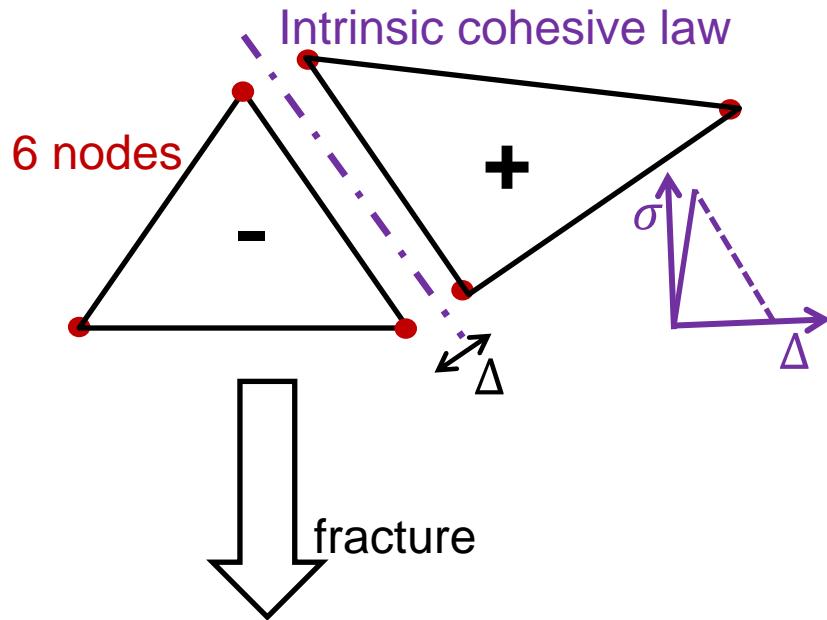
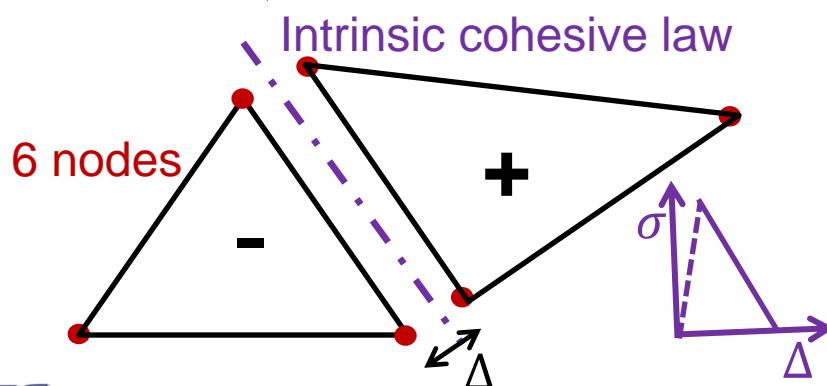


- A recourse to an intrinsic cohesive law is generally done with FEM
 - Intrinsic cohesive approach

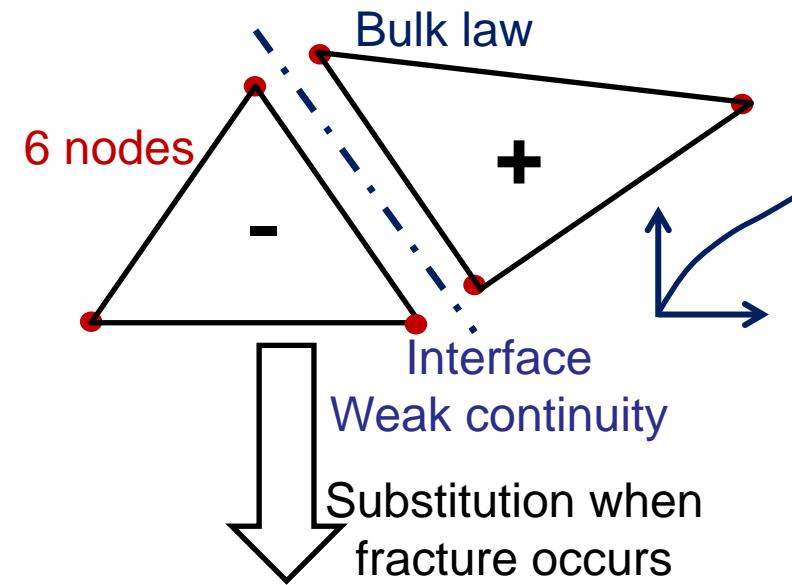
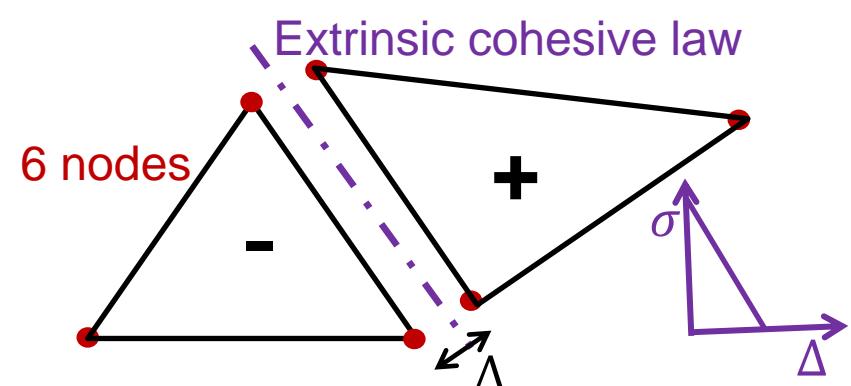


- Intrinsic cohesive law leads to numerical problems [*Seagraves et al 2010*]
 - Spurious stress wave propagation
 - Mesh dependency
 - Crack propagation rate too high

- Use of extrinsic cohesive law is easier when coupled with DG but is only developed for 3D elements
 - FEM (continuous Galerkin)
 - Discontinuous Galerkin



- Discontinuous Galerkin



- Develop a discontinuous Galerkin method for shells
 - One-field formulation
- Discontinuous Galerkin / Extrinsic Cohesive law framework
 - Develop a suitable cohesive law for thin bodies
- Applications
 - Fragmentations, crack propagations under blast loadings

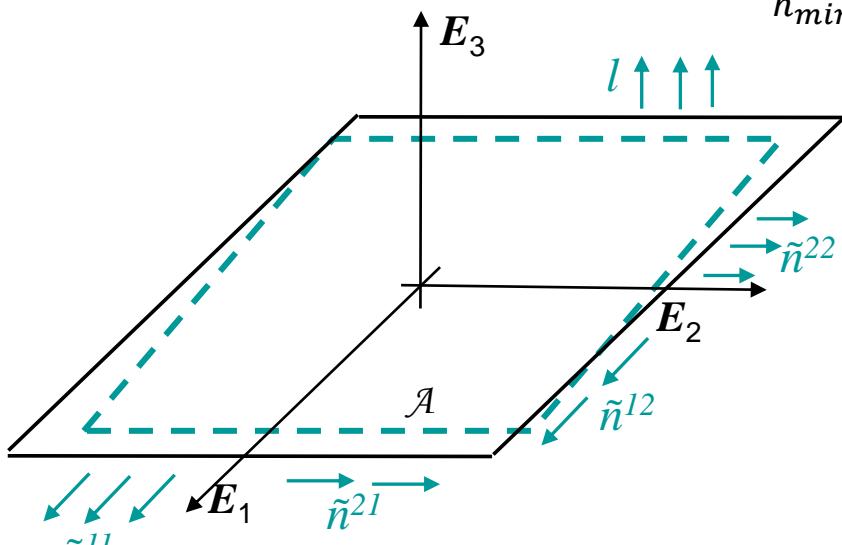
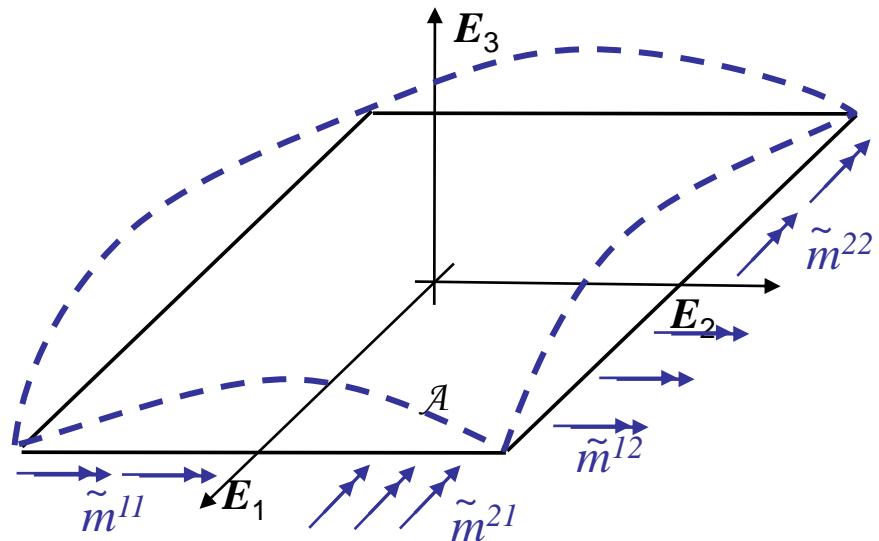
- The stress tensor σ is integrated on the thickness in the convected basis

- Reduced stresses

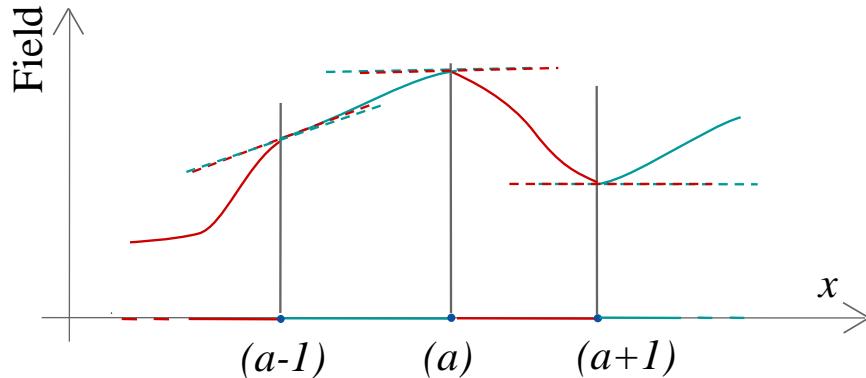
$$\mathbf{n}^\alpha = \frac{1}{j} \int_{h_{min}}^{h_{max}} j \boldsymbol{\sigma} \cdot \mathbf{g}^\alpha d\xi^3 = \boxed{(\tilde{n}^{\alpha\beta} + \lambda_\mu^\beta \tilde{m}^{\alpha\mu}) \boldsymbol{\varphi}_{,\beta}}$$

$$\tilde{\mathbf{m}}^\alpha = \frac{1}{j} \int_{h_{min}}^{h_{max}} j \xi^3 \boldsymbol{\sigma} \cdot \mathbf{g}^\alpha d\xi^3$$

$$\mathbf{l} = \frac{1}{j} \int_{h_{min}}^{h_{max}} j \boldsymbol{\sigma} \cdot \mathbf{g}^3 d\xi^3 \approx 0$$



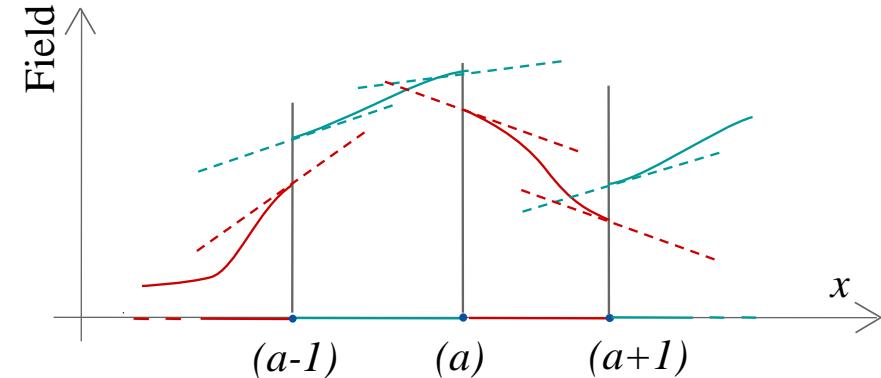
- FEM (Continuous Galerkin)



Integration by parts on the structure

$$\sum_e \int_{A_e} [\bar{j}\mathbf{n}^\alpha \cdot \delta\boldsymbol{\varphi}_{,\alpha} + \bar{j}\tilde{\mathbf{m}}^\alpha \cdot \lambda_h \delta\mathbf{t}_{,\alpha} - \bar{j}\mathbf{l} \cdot \lambda_h \delta\mathbf{t}] dA = 0$$

- Discontinuous Galerkin



Integration by parts on each element (unusual on \mathcal{L})

$$\sum_e \left\{ \int_{A_e} \left[(\bar{j}\mathbf{n}^\alpha)_{,\alpha} \cdot \delta\boldsymbol{\varphi} + (\bar{j}\tilde{\mathbf{m}}^\alpha)_{,\alpha} \cdot \lambda_h \delta\mathbf{t} \right. \right.$$

$$\left. \left. - (\bar{j}\mathbf{l})_{,\alpha} \cdot \int_{\alpha} \lambda_h \delta\mathbf{t} d\alpha' \right] dA \right\}$$

Additional interface terms

$$\boxed{\left. \left. - \int_{\partial A_e} \left[\bar{j}\mathbf{n}^\alpha \cdot \delta\boldsymbol{\varphi} v_\alpha^- + \bar{j}\tilde{\mathbf{m}}^\alpha \cdot \lambda_h \delta\mathbf{t} v_\alpha^- \right. \right. \right. \right. \left. \left. - \bar{j}\mathbf{l} \cdot \int_{\alpha} \lambda_h \delta\mathbf{t} d\alpha' v_\alpha^- \right] dA \right\} = 0}$$

Full-DG formulation of Kirchhoff-Love shells

- The equation of the full-DG formulation [Becker et al cmame2011, Becker et al ijnme2012]

$$\sum_e \int_{A_e} \left[(\bar{j} \mathbf{n}^\alpha)_{,\alpha} \cdot \delta \boldsymbol{\varphi} + (\bar{j} \tilde{\mathbf{m}}^\alpha)_{,\alpha} \cdot \lambda_h \delta \mathbf{t} \right] dA +$$

FEM (CG) equation

$$\sum_s \int_s \left[\langle \bar{j} \mathbf{n}^\alpha \rangle \cdot [\delta \boldsymbol{\varphi}] + [\boldsymbol{\varphi}] \cdot \langle \delta (\bar{j} \mathbf{n}^\alpha) \rangle + [\boldsymbol{\varphi}] \cdot \boldsymbol{\varphi}_{,\gamma} v_\delta^- \left\langle \frac{\beta_2 \mathcal{H}_n^{\alpha\beta\gamma\delta} \bar{j}_0}{h^s} \right\rangle [\delta \boldsymbol{\varphi}] \cdot \boldsymbol{\varphi}_{,\beta} \right] v_\alpha^- d\partial A_e +$$

$$\sum_s \int_s \left[\langle \bar{j} \tilde{\mathbf{m}}^\alpha \rangle \cdot [\lambda_h \delta \mathbf{t}] + [\mathbf{t}] \cdot \langle (\bar{j} \lambda_h \tilde{\mathbf{m}}^\alpha) \rangle + [\mathbf{t}] \cdot \boldsymbol{\varphi}_{,\gamma} v_\delta^- \left\langle \frac{\beta_1 \mathcal{H}_m^{\alpha\beta\gamma\delta} \bar{j}_0}{h^s} \right\rangle [\delta \mathbf{t}] \cdot \boldsymbol{\varphi}_{,\beta} \right] v_\alpha^- d\partial A_e +$$

Consistency terms

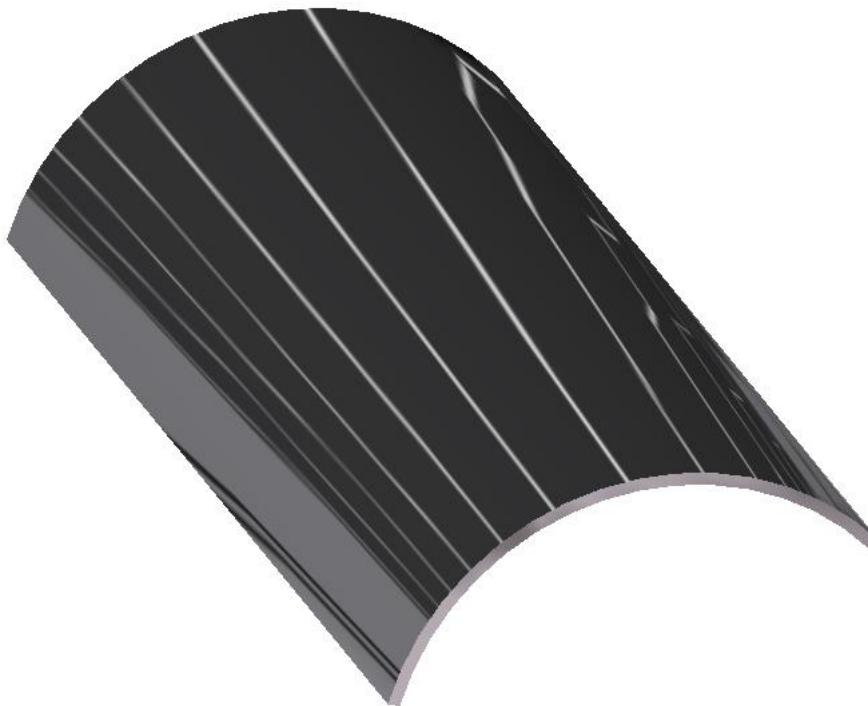
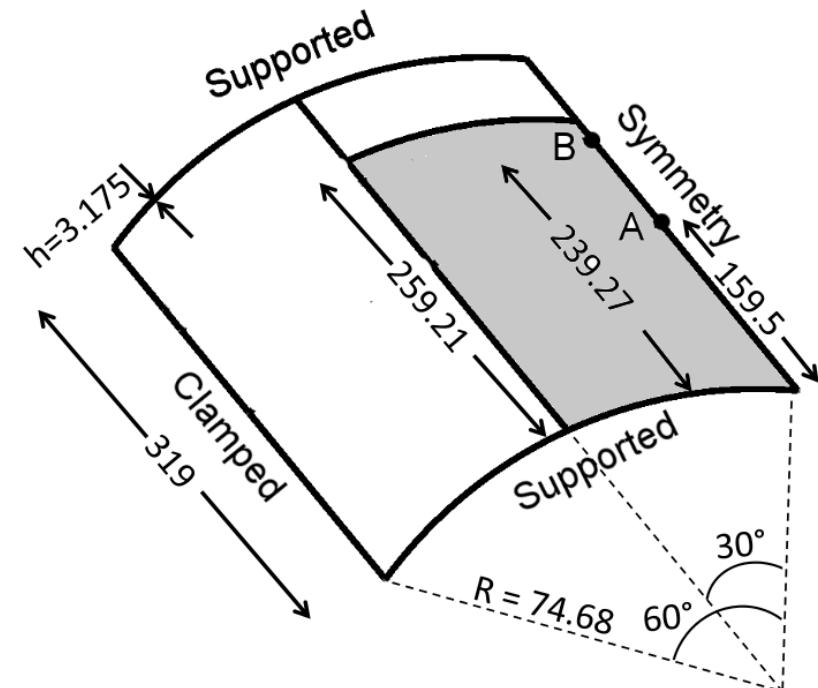
Symmetrization terms

$$\sum_s \int_s [\boldsymbol{\varphi}] \cdot \mathbf{t} v_\beta^- \left\langle \frac{\beta_3 \mathcal{H}_s^{\alpha\beta} \bar{j}_0}{h^s} \right\rangle [\delta \boldsymbol{\varphi}] \cdot \mathbf{t} v_\alpha^- d\partial A_e = 0$$

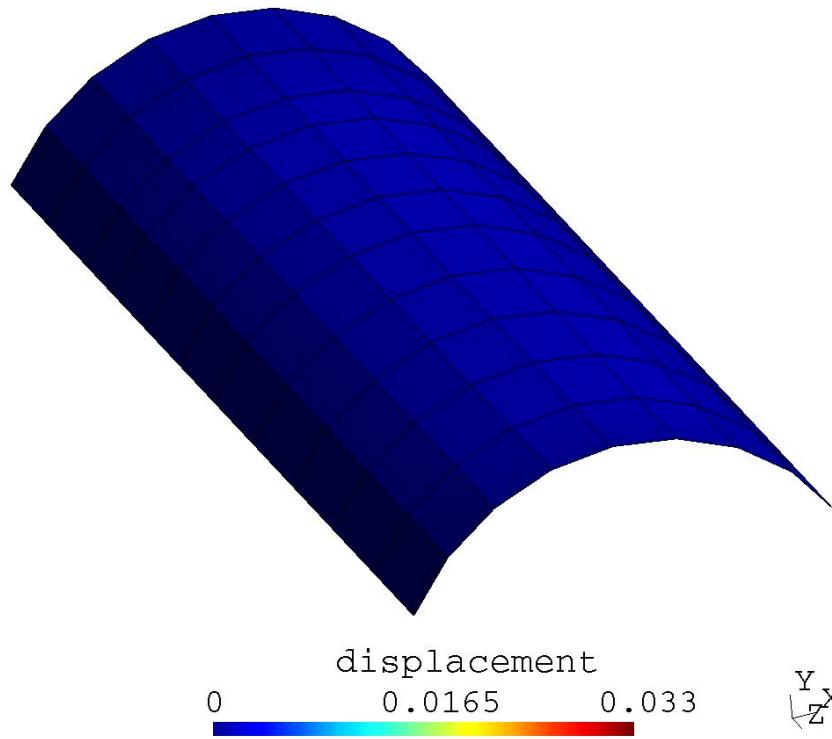
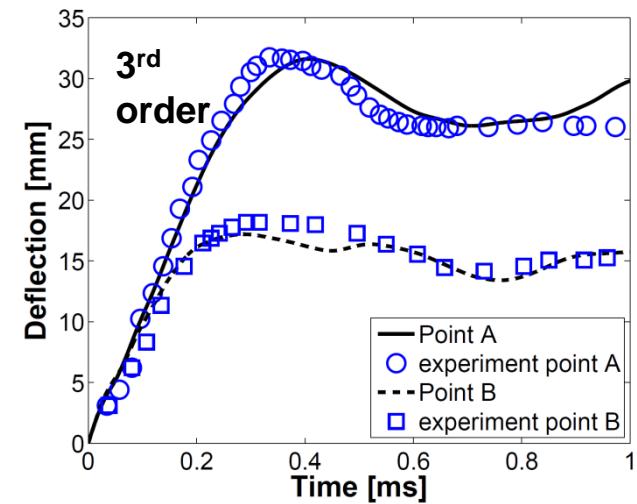
Stabilization terms

- Application of the DG method gives 2 Bulk, 2 consistency, 2 symmetrization and 3 stabilization terms

- A benchmark to prove the ability of the full-DG formulation to model continuous mechanics
 - J_2 -linear hardening (elasto-plastic large deformations) panel loaded dynamically (explicit Hulbert-Chung scheme)



- A benchmark to prove the ability of the full-DG formulation to model continuous mechanics
 - J_2 -linear hardening (elasto-plastic large deformations) panel loaded dynamically (explicit Hulbert-Chung scheme)



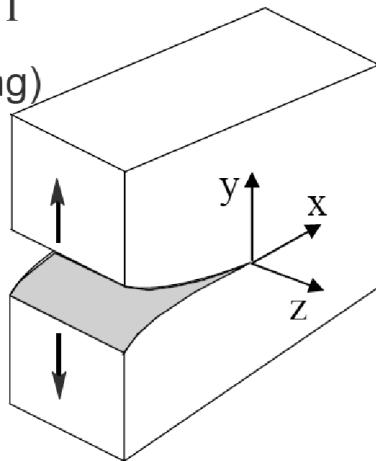
- The results match experimental data

- Develop a discontinuous Galerkin method for shells
 - One-field formulation
- Discontinuous Galerkin / Extrinsic Cohesive law framework
 - Develop a suitable cohesive law for thin bodies
- Applications
 - Fragmentations, crack propagations under blast loadings

- There are 3 fracture modes in fracture mechanics

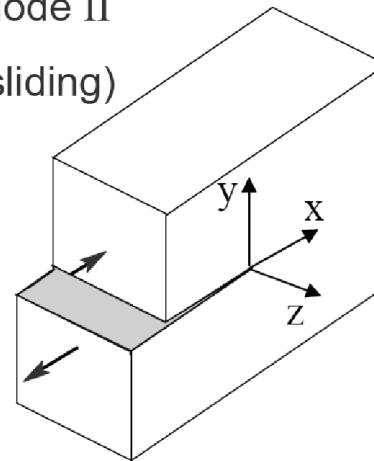
Mode I

(opening)



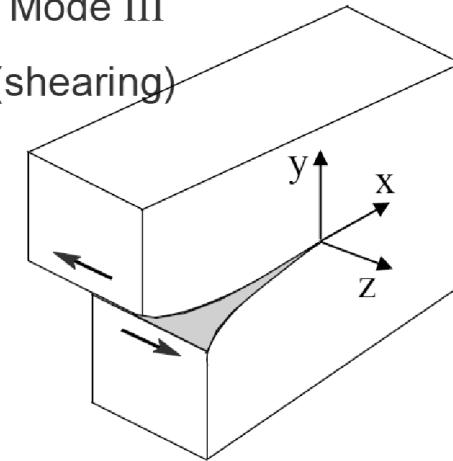
Mode II

(sliding)



Mode III

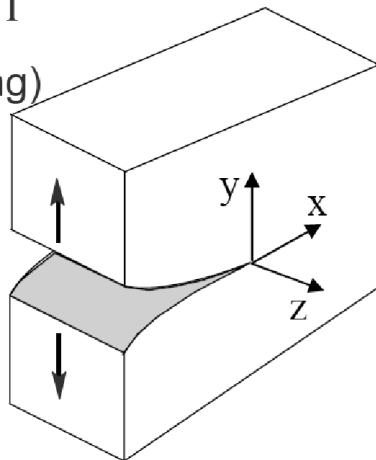
(shearing)



- Only modes I and II can be modeled by Kirchhoff-Love theory
 - Kirchhoff-Love \rightarrow out-of-plane shearing is neglected

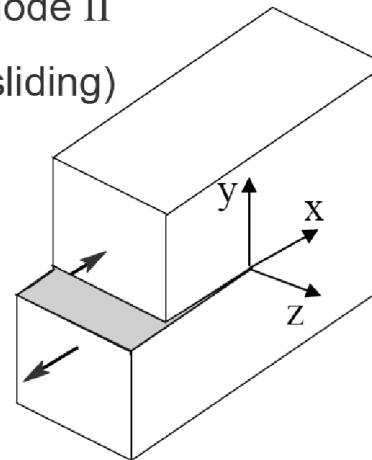
Mode I

(opening)



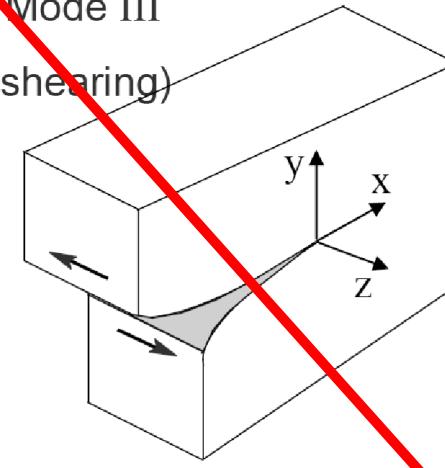
Mode II

(sliding)



Mode III

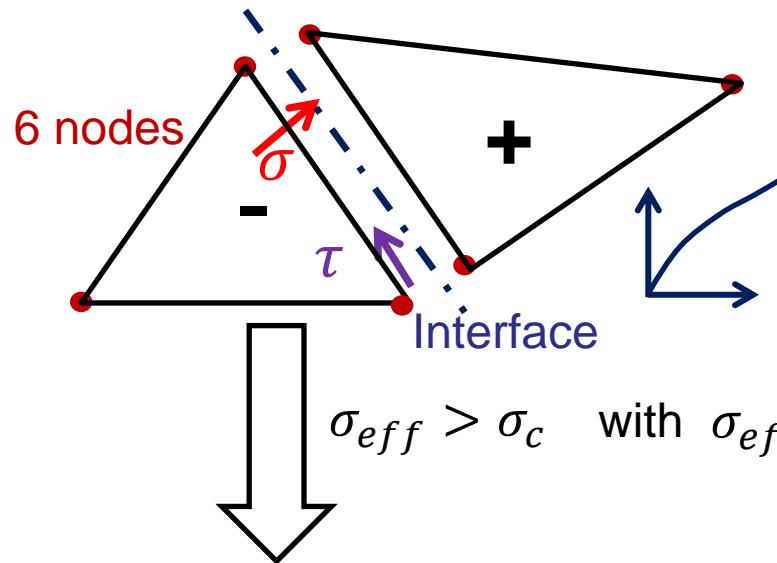
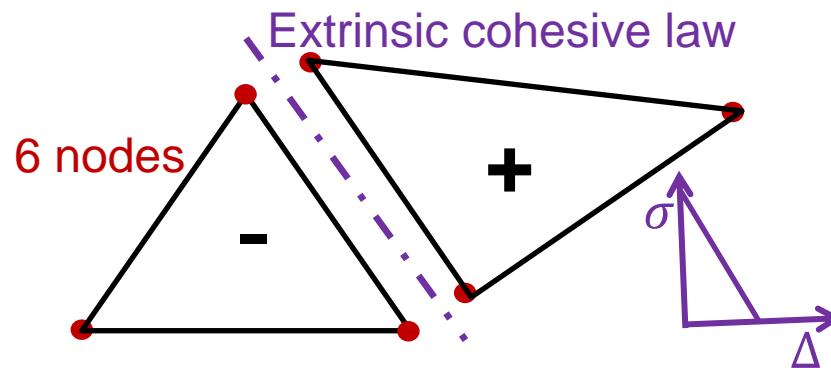
(shearing)



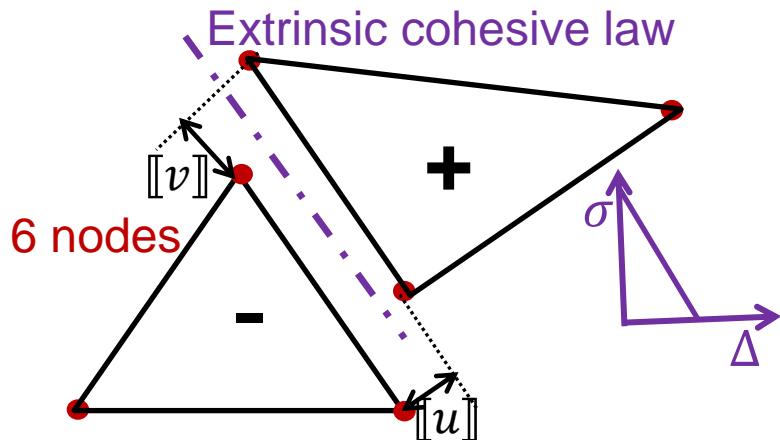
- Model restricted to problems with negligible 3D effects at the crack tip

- Fracture criterion based on an effective stress

- Camacho & Ortiz Fracture criterion [Camacho et al *ijss*1996]



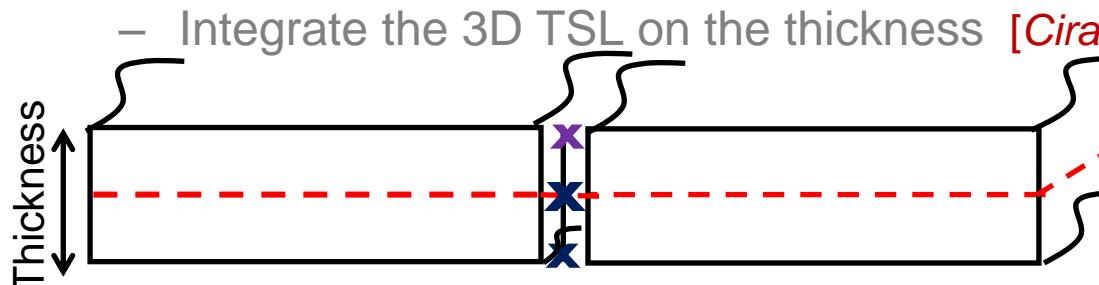
- The cohesive law is formulated in terms of an effective opening
 - Camacho & Ortiz Fracture criterion *[Camacho et al ijss1996]*



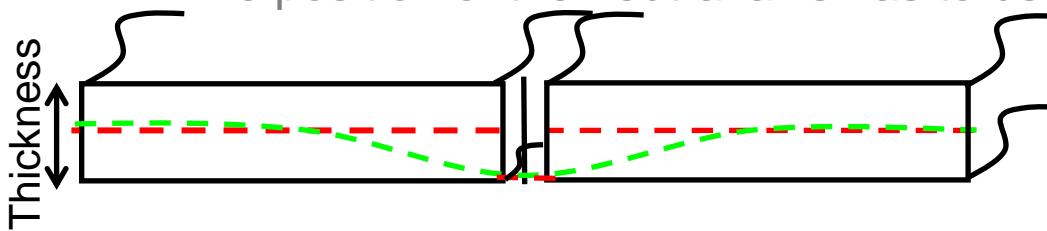
$$\Delta = \sqrt{[u] + \beta^2 [v]}$$

- The through-the-thickness crack propagation is not straightforward with shell elements

- No elements on thickness

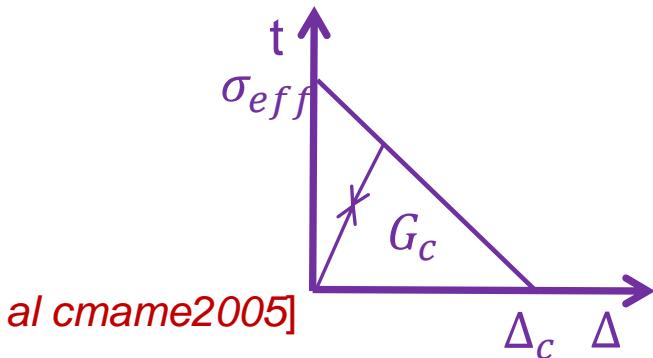


- Integrate the 3D TSL on the thickness [Cirak et al cmame2005]

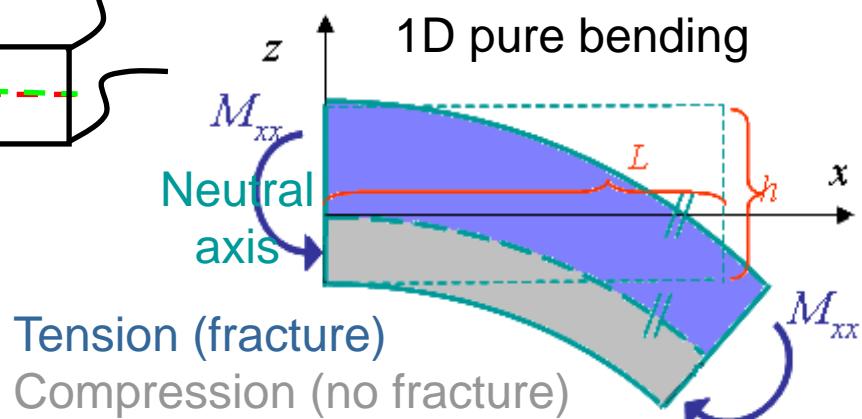


Discontinuity

Continuity (Computation ?)



Fracture criterion is met
→ cohesive law
Unreached fracture
→ bulk law



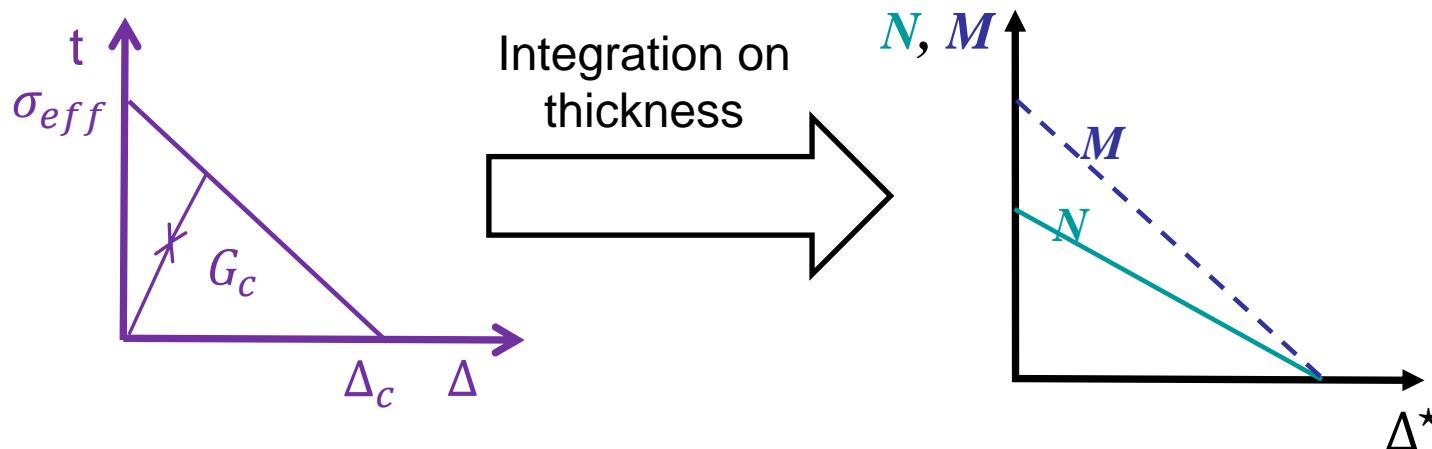
- The cohesive law can be formulated in terms of reduced stresses
 - Same as shell equations

Bulk law
Stress tensor σ

Integration on thickness

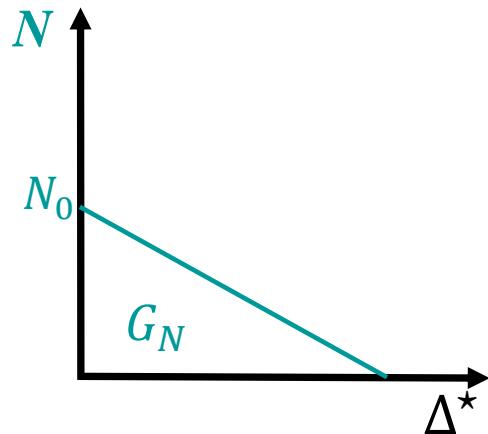
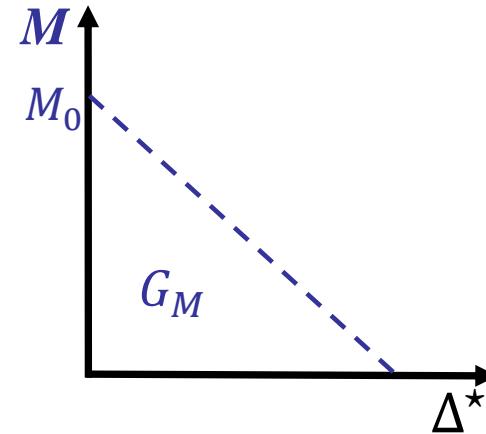
$$\mathbf{n}^\alpha = \frac{1}{j} \int_{h_{min}}^{h_{max}} j \boldsymbol{\sigma} \cdot \mathbf{g}^\alpha d\xi^3$$

$$\tilde{\mathbf{m}}^\alpha = \frac{1}{j} \int_{h_{min}}^{h_{max}} j \xi^3 \boldsymbol{\sigma} \cdot \mathbf{g}^\alpha d\xi^3$$



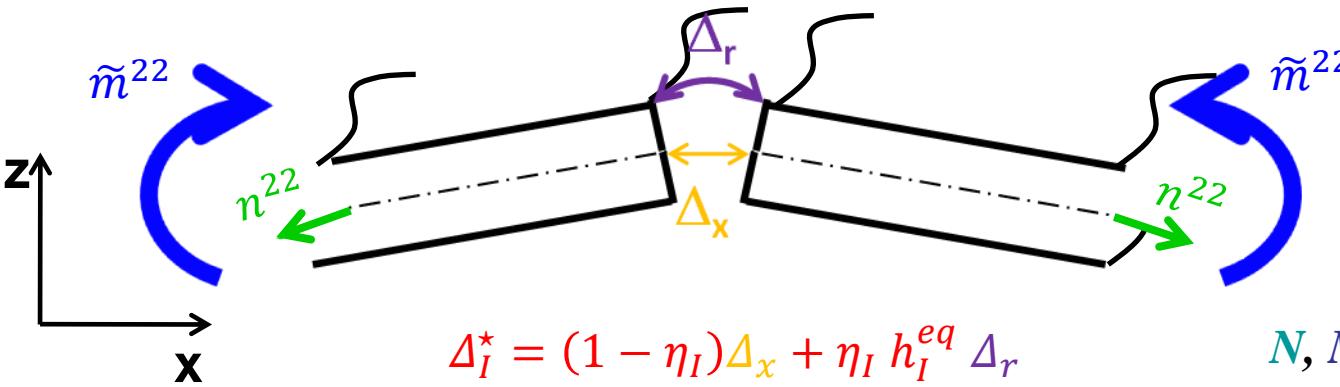
- Similar concept suggested by Zavattieri [Zavattieri jam2006]

- Define Δ^* and $N(\Delta^*), M(\Delta^*)$ to dissipate an energy equal to hG_c during the fracture process *[Becker et al ijnme2012, Becker et al ijf2012]*
 - Integration on thickness



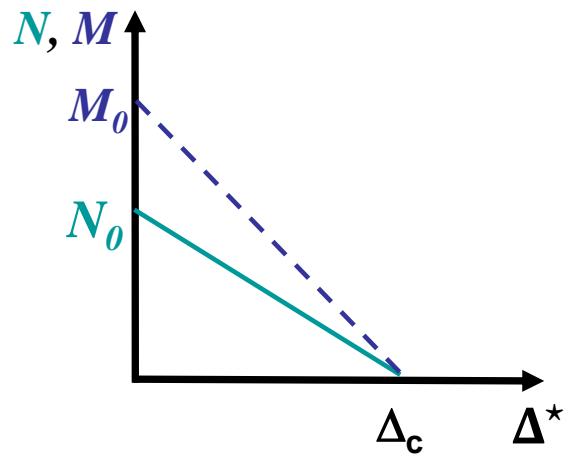
$$G_N + G_M = hG_c$$

- Using the superposition principle the energy released for any couple N, M is equal to hG_c [Becker et al ijmme2011]
 - Pure mode I

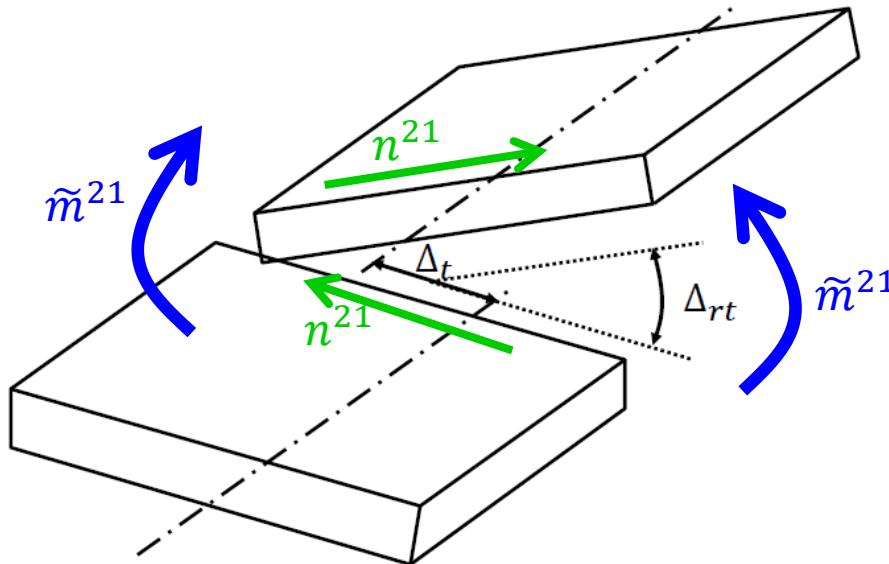


- Coupling parameter

$$\eta_I = \frac{|1/h_I^{eq} M_0|}{N_0 + |1/h_I^{eq} M_0|} = \frac{h\sigma_c - N_0}{h\sigma_c}$$



- The cohesive model for mode I can be extended to mode II

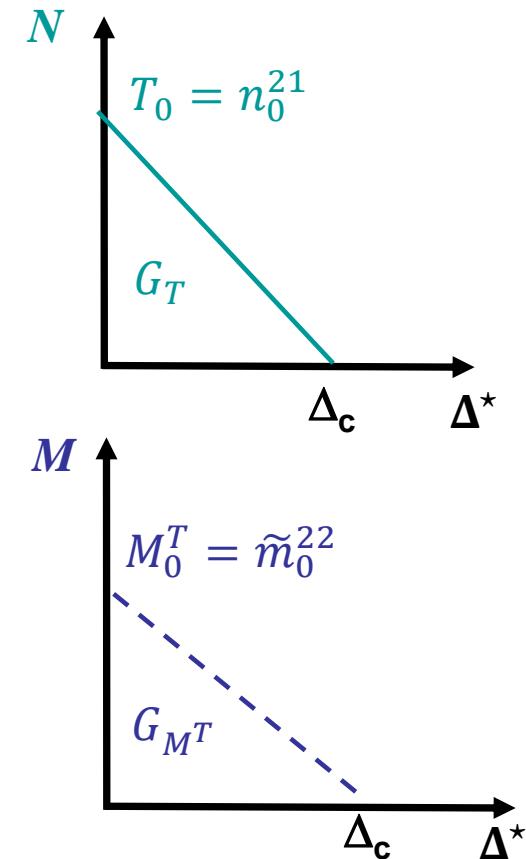


$$\Delta_{II}^* = (1 - \eta_{II})\Delta_t + \eta_{II}h_{II}^{eq}\Delta_{rt}$$

$$h_{II}^{eq} = \frac{M_0^T}{h\beta\sigma_c - T_0}$$

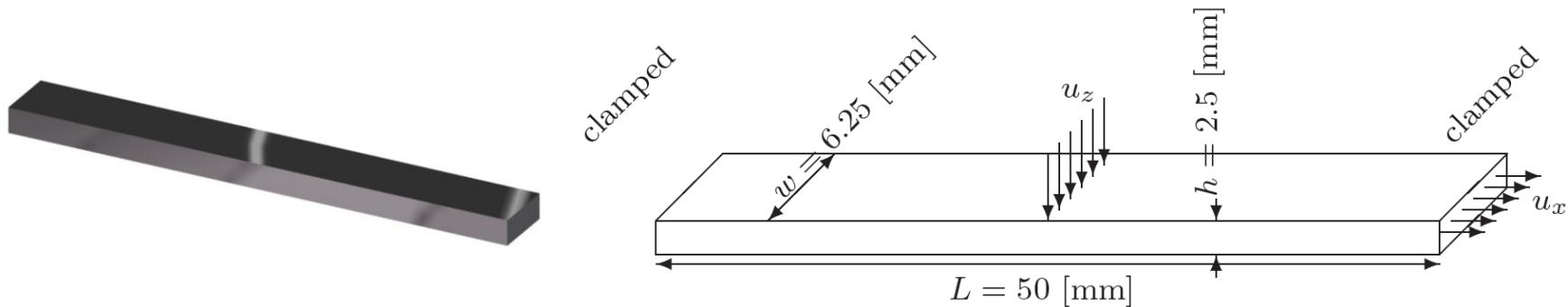
– Coupling parameter

$$\eta_{II} = \frac{|1/h_{II}^{eq} M_0^T|}{T_0 + |1/h_{II}^{eq} M_0^T|} = \frac{h\beta\sigma_c - T_0}{h\beta\sigma_c}$$

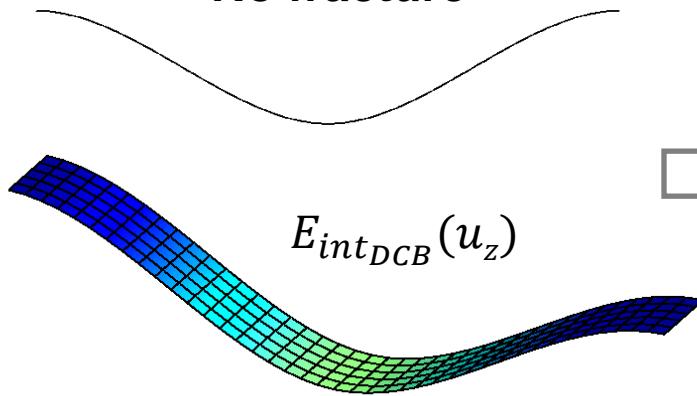


$$G_T + G_{M^T} = h\beta G_c$$

- The transition between uncracked to fully cracked body depends on ΔE_{int}
 - Double clamped elastic beam loaded in a quasi-static way



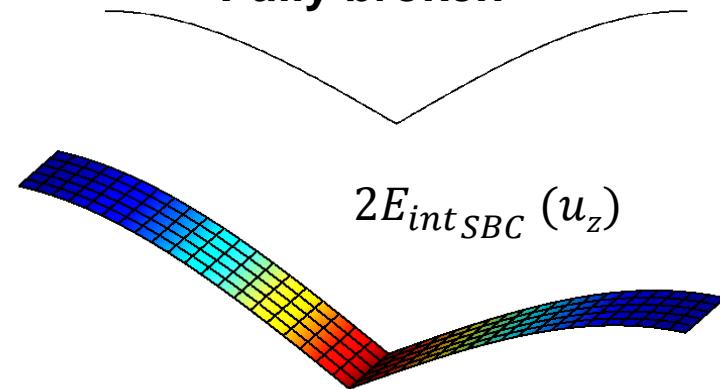
No fracture



Transition

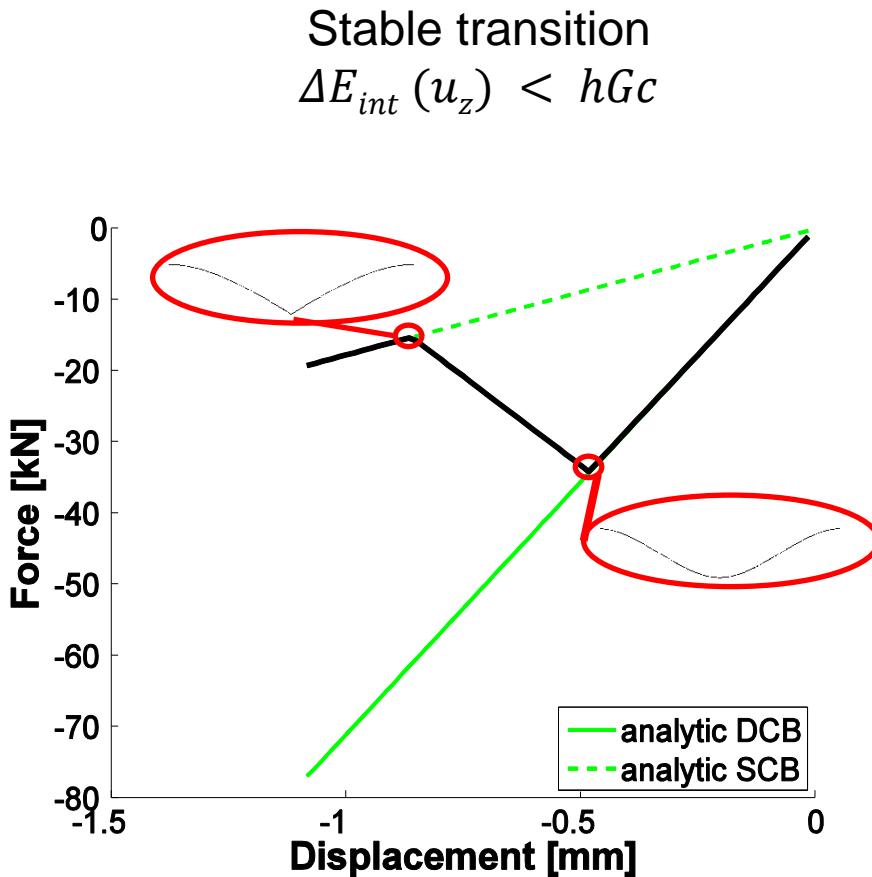
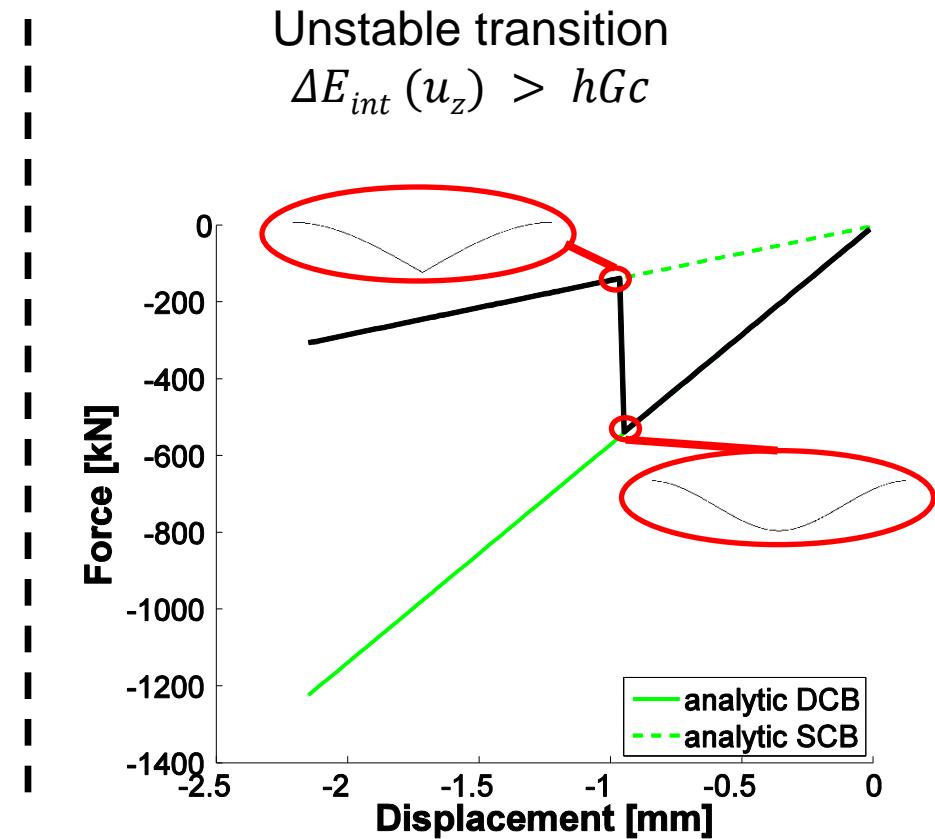
?

Fully broken



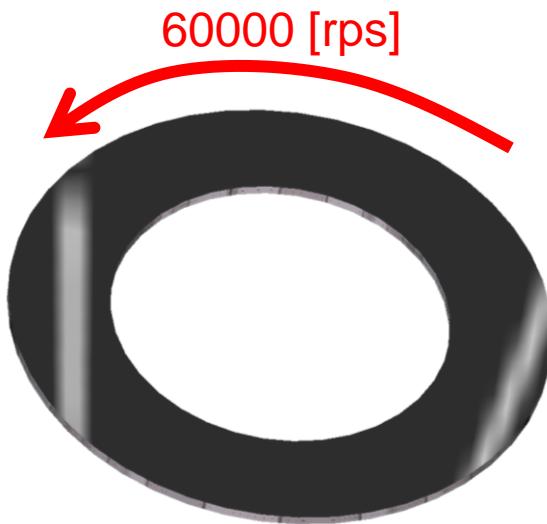
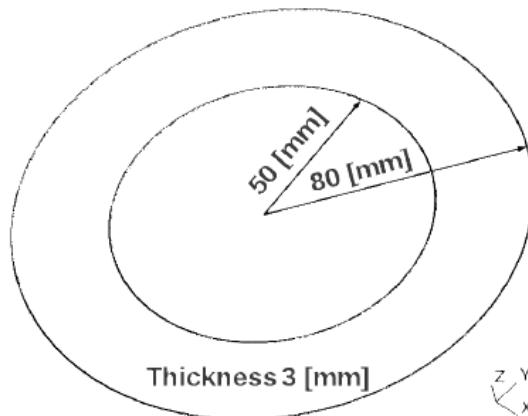
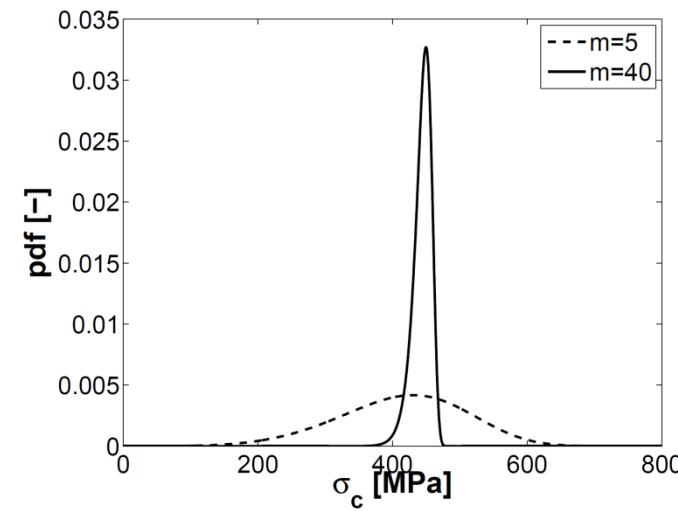
$$\Delta E_{int}(u_z) = E_{int_{DCB}}(u_z) - 2E_{int_{SBC}}(u_z)$$

- The framework can model stable/unstable crack propagation
 - Geometry effect (no pre-strain)

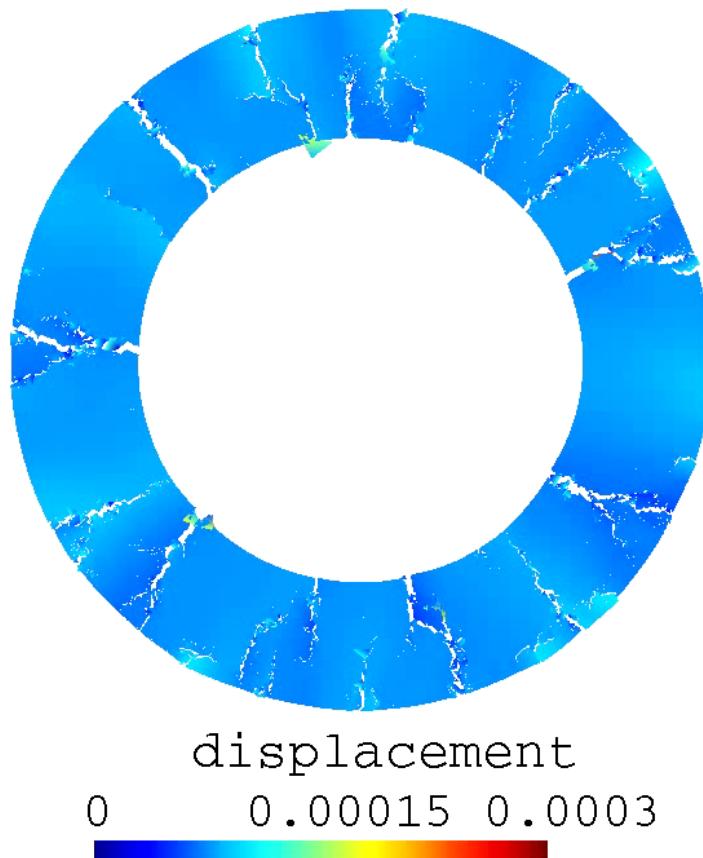
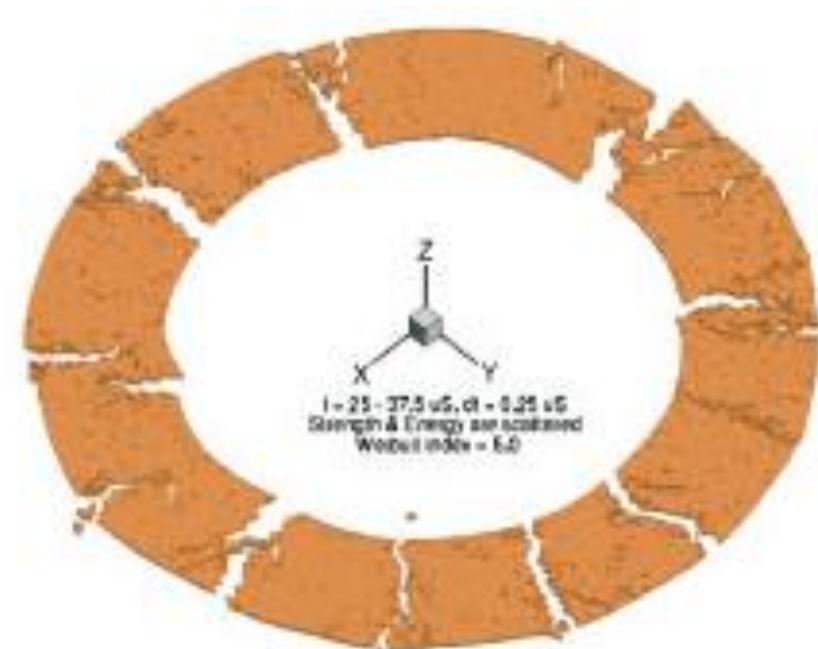


- Develop a discontinuous Galerkin method for shells
 - One-field formulation
- Discontinuous Galerkin / Extrinsic Cohesive law framework
 - Develop a suitable cohesive law for thin bodies
- Applications
 - Fragmentations, crack propagations under blast loadings

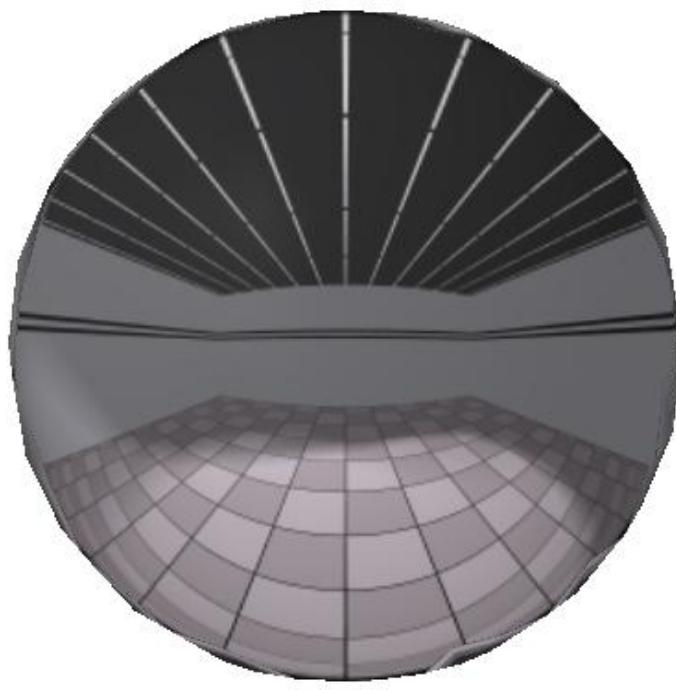
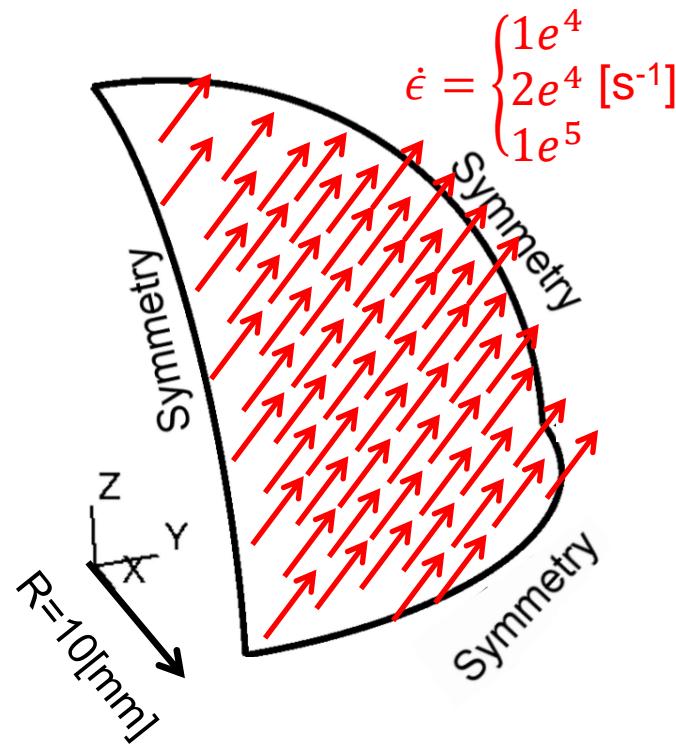
- A benchmark to investigate the fragmentation
 - Elastic plate ring loaded by a centrifugal force



- Fragmentation phenomena can also be studied by the full-DG/ECL framework
 - Results are compared with the literature *[Zhou et al ijmme2004]*

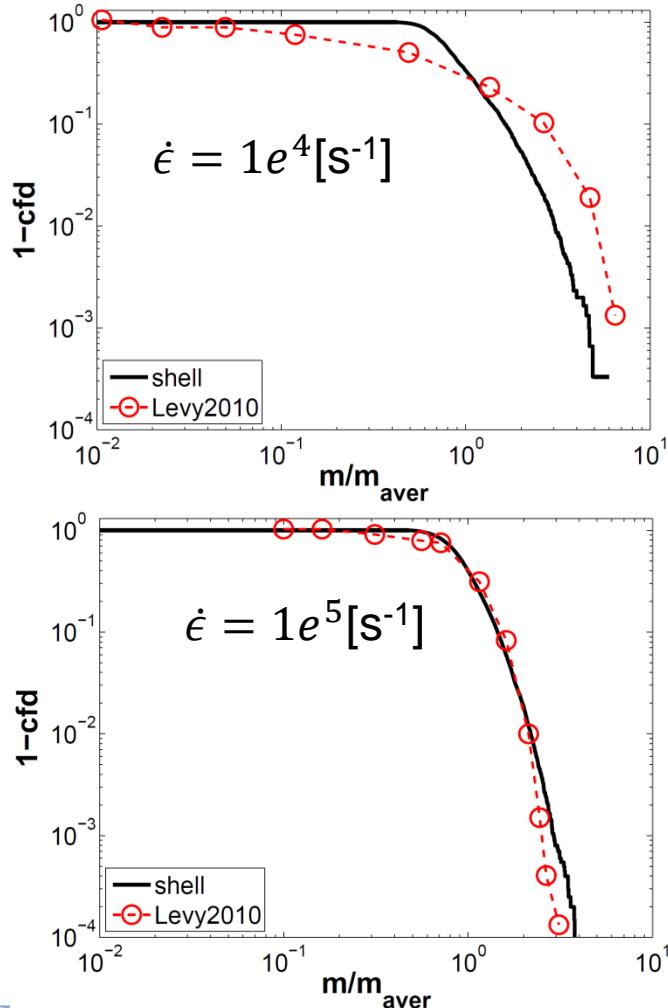
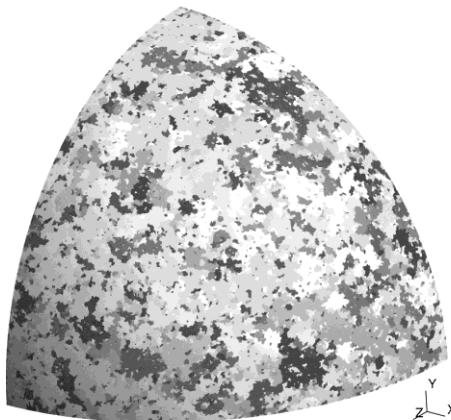
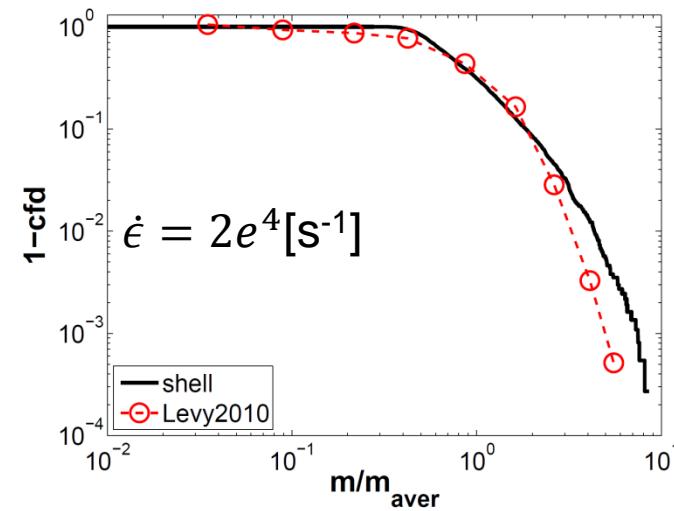


- Application to the dynamic fragmentation of a sphere
 - Elastic sphere under radial uniform expansion

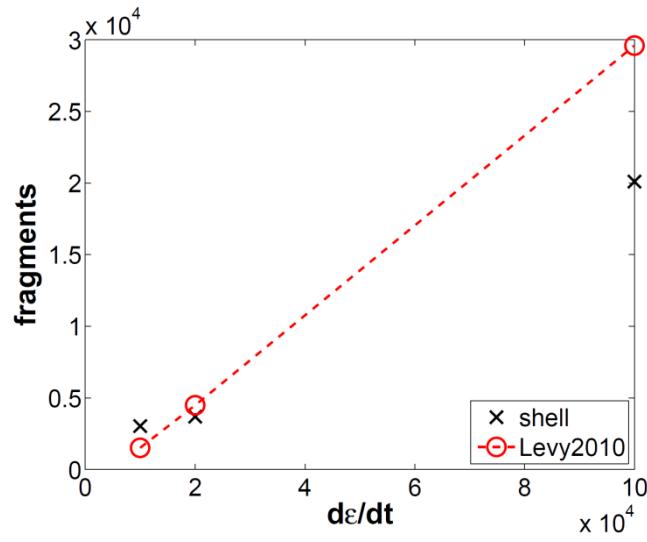


Applications of the DG/ECL framework

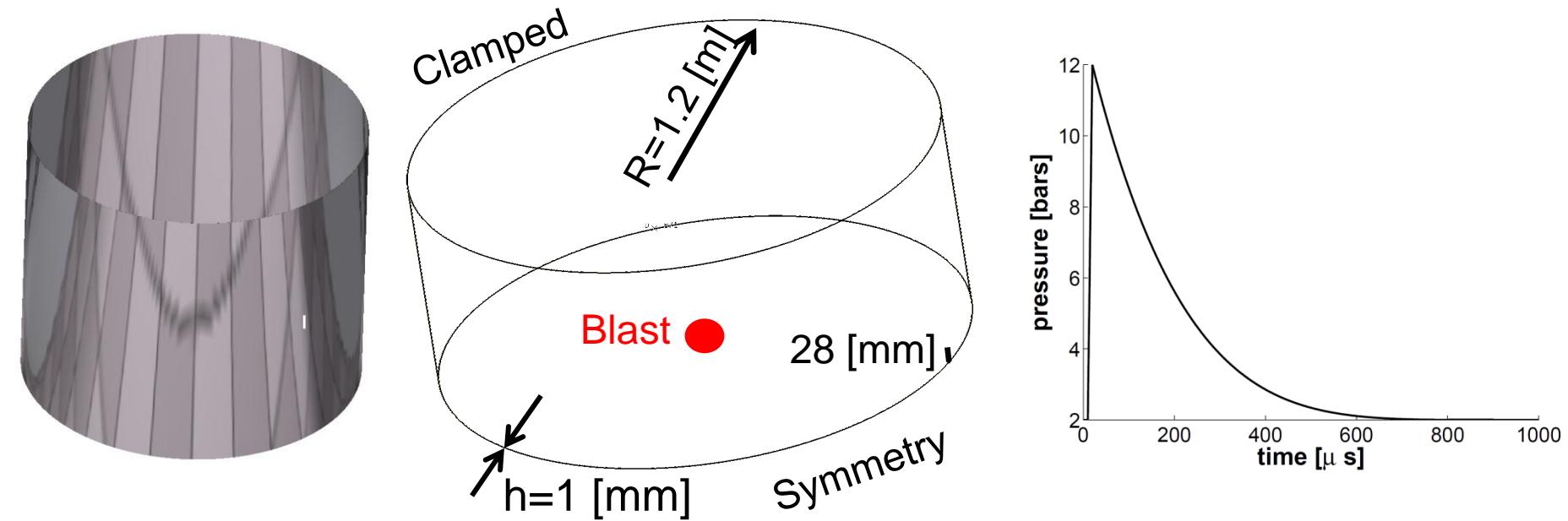
- The distribution of fragments and the number of fragments are in agreement with the literature [Levy EPFL2010]
 - Levy uses 3D elements



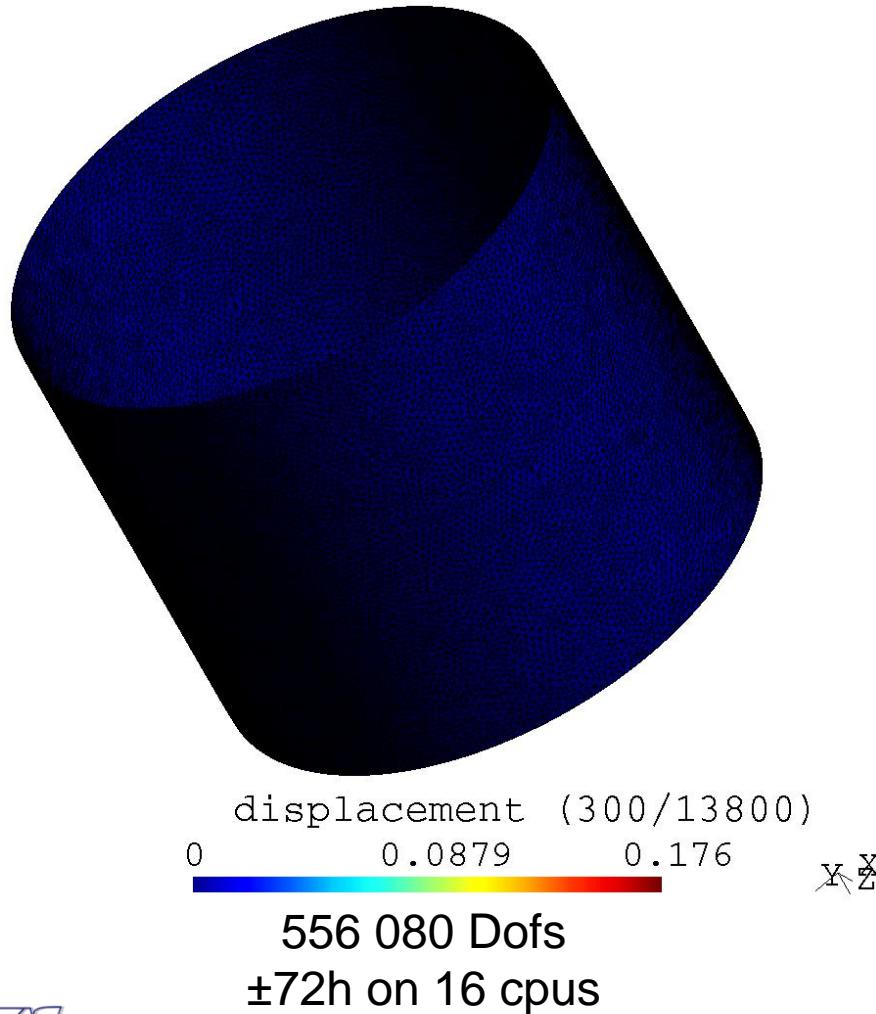
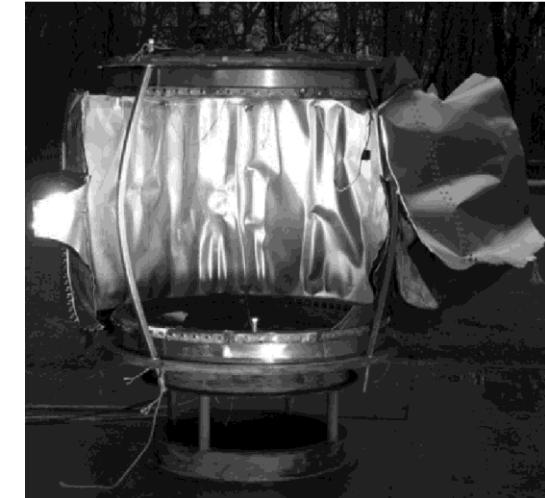
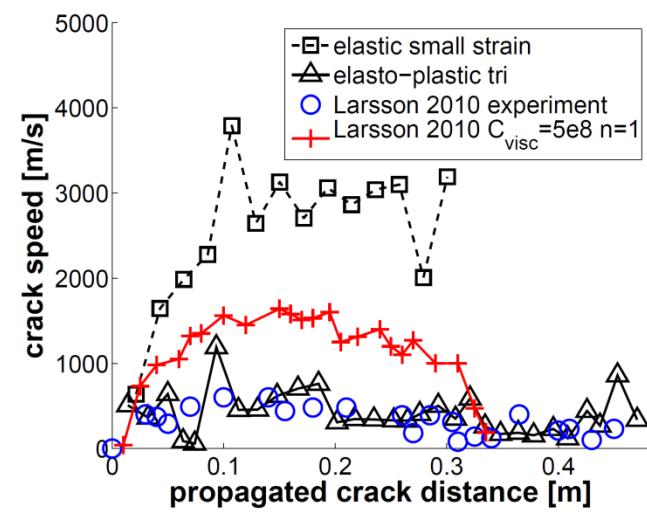
$\dot{\epsilon} = 1e^4 [\text{s}^{-1}]$
2 588 265 Dofs
 $\pm 48\text{h}$ on 32 cpus
($\pm 17\text{h}$ for $\dot{\epsilon} = 1e^5 [\text{s}^{-1}]$)



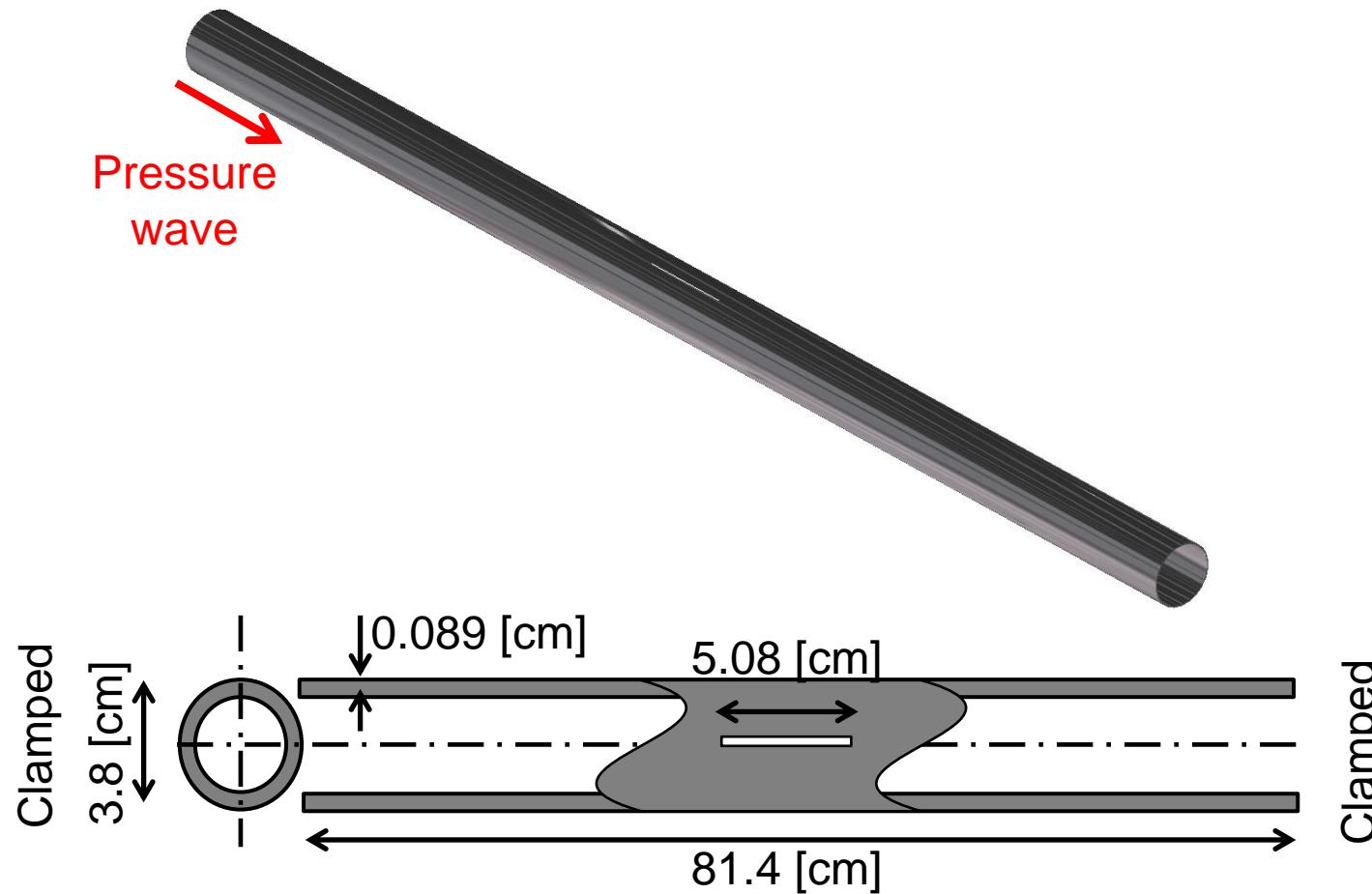
- Blast of an axially notched elasto-plastic cylinder (large deformations)



- Accounting for plasticity allows capturing the crack speed
 - Compare with the literature *[Larsson et al ijnme2011]*



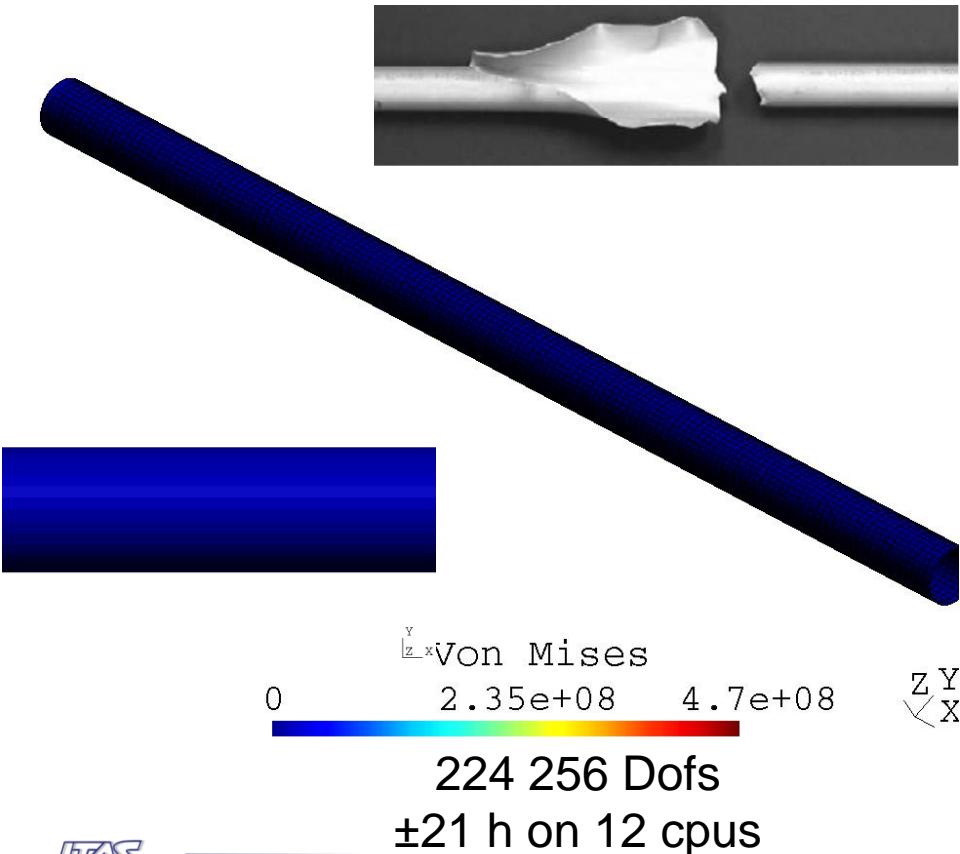
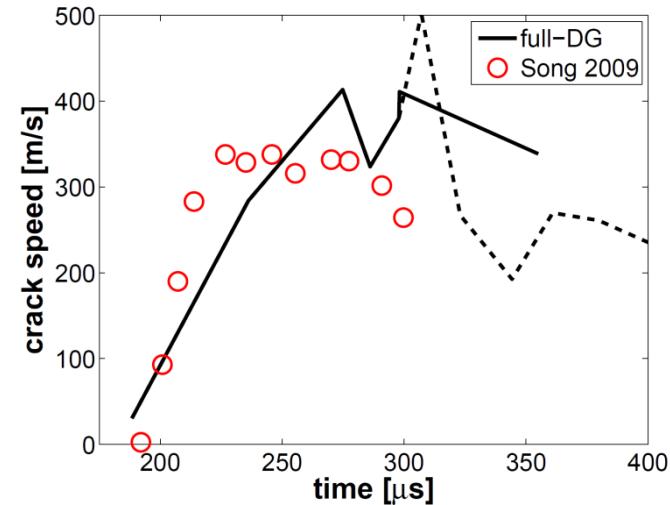
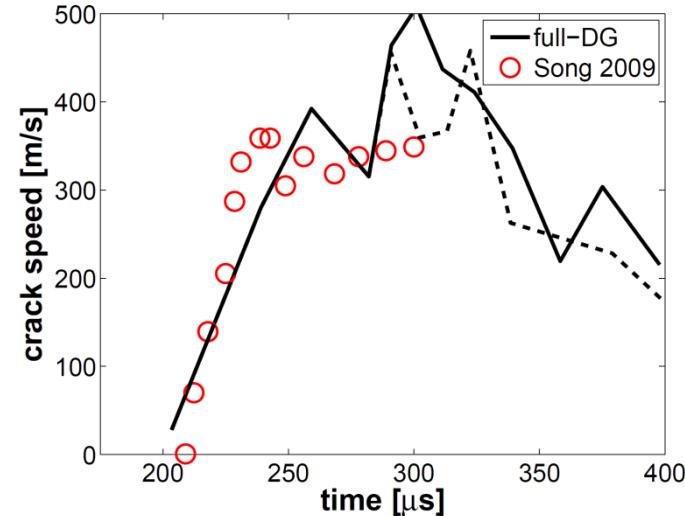
- Pressure wave passes through an axially notched elasto-plastic pipe (large deformations)



Applications of the DG/ECL framework

- Crack path and speed are well captured by the framework

- Compare with the literature
[Song et al jam2009]



Conclusions

- Full-DG / ECL framework allows accounting for fracture in dynamic simulations of thin bodies
 - Crack propagation as well as fragmentation
 - Recourse to an elasto-plastic model is mandatory to capture crack speed
 - Affordable computational time for large models (using // implementation)

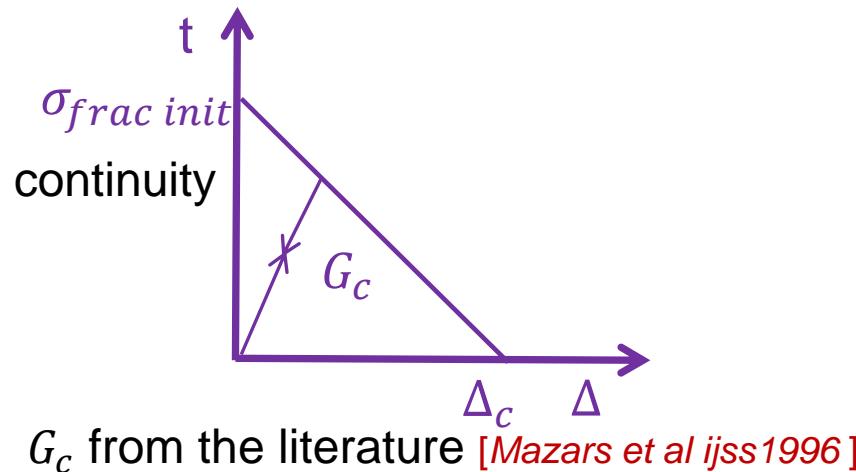
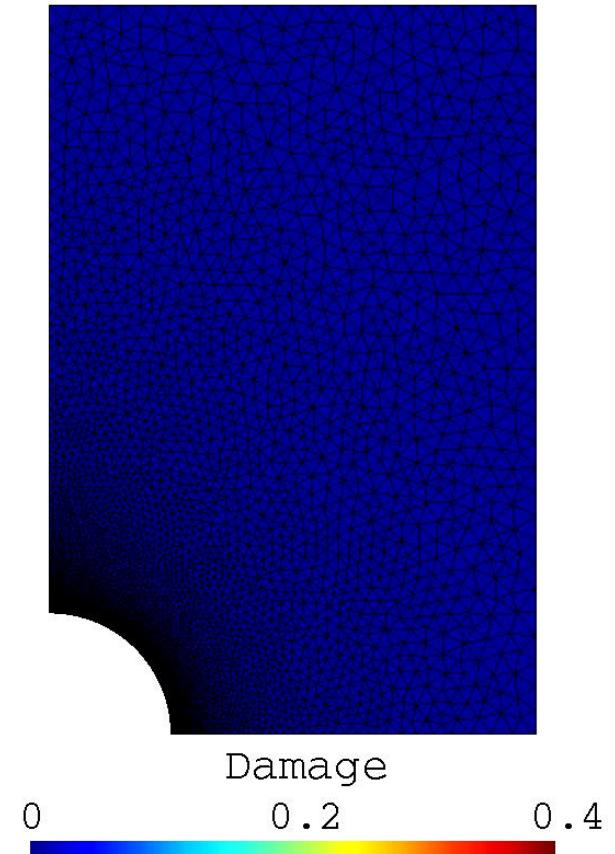
- Model the damage to crack transition by coupling a damage law with the full-DG/ECL framework
 - Replace the criterion based on an effective stress by a criterion based on the damage
 - Define the shape of the cohesive law

- The benchmark shows encouraging perspectives

- Linear damage theory

- Fracture criterion $D > D_c$

- Cohesive shape



- The benchmark shows encouraging perspectives but many improvements are required
 - Non local damage model
 - Account for stress triaxiality (and out-of-plane shearing)
 - Shape of the cohesive law
 - ...

Thank you for your attention