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Abstract. We compute the cardinality of the syntactic monoid of the language0∗ repb(mN) made
of baseb expansions of the multiples of the integerm. We also give lower bounds for the syntactic
complexity of any (ultimately) periodic set of integers written in baseb. We apply our results to a
well studied problem: decide whether or not ab-recognizable set of integers is ultimately periodic.

1. Introduction

This paper is dedicated to Tero Harju’s 60th birthday. As we shall explain, it can be related to a decision
problem studied by Tero a long time ago [13, 12]. Happy birthday Tero!

Syntactic complexity has received some recent and renewed interest. See for instance [7] for some
background, and we quote: “In spite of suggestions that syntactic semigroups deserve to be studied
further, relatively little has been done on the syntactic complexity of a regular language.”

In this paper, which is an extended version of the conferencepaper [18], we first compute the syntac-
tic complexity of the setmN written in baseb, i.e., the cardinalityMb,m of the syntactic monoid of the
language0∗ repb(mN) made of baseb expansions of the multiples of the integerm. A similar problem
was solved for the state complexity of the language0∗ repb(mN), i.e., the number of states of its minimal
automaton. As usual(m,n) denotes the greatest common divisor ofm andn.

Theorem 1.1. (B. Alexeev [1])
Let b,m ≥ 2 be integers. LetN,M be such thatbN < m ≤ bN+1 and (m, 1) < (m, b) < · · · <
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(m, bM ) = (m, bM+1) = (m, bM+2) = · · · . The minimal automaton of0∗ repb(mN) has exactly

m

(m, bN+1)
+

inf{N,M−1}
∑

t=0

bt

(m, bt)
states.

For the binary system, the first few values ofM2,m are given in Table 1. Letb ≥ 2. An explicit

m 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M2,m 3 6 5 20 13 21 7 54 41 110 20 156 43 60 9 136 109 342 62

m 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

M2,m 126 221 253 27 500 313 486 65 812 121 155 11 330 273 420 164

Table 1. The first values of the syntactic complexity in the base2 case.

formula forMb,m is obtained as a consequence of Theorems 3.1, 3.2 and 3.3 for the following three
cases: the constantm and the baseb are coprime or,m is a power ofb or, m = bnq with (q, b) = 1,
q ≥ 2 andn ≥ 1. Extending the results of [18], we provide lower bounds for the syntactic complexity of
any ultimately periodic set of integers written in baseb, i.e., any finite union of arithmetic progressions.
In particular, we include the general case where the periodm is of the kinddbnq with (q, b) = 1 and the
set of prime factors ofd is a subset of the one ofb. In the framework of numeration systems, syntactic
complexity has an advantage in comparison to left or right quotients, we have the opportunity to work
simultaneously on prefixes and suffixes of baseb expansions, that is on most and least significant digits.

Motivation for this work comes from the following decision problem. LetS be an abstract numer-
ation system built on a regular language. See [4, Chap. 3] forbackground. It is well-known that any
ultimately periodic set isS-recognizable, i.e., it has a regular language of representations within the sys-
temS. An instance of the decision problem is given by an abstract numeration systemS and a DFA
accepting someS-recognizable setX ⊆ N. The question is therefore to decide whetherX is ultimately
periodic or not. This problem was settled positively for integer base systems by Honkala in [14]. See
also [2] and in particular [5] for a first order logic approach. Recently this decision problem was settled
positively in [3] for a large class of numeration systems based on linear recurrence sequences. Consider-
ing this decision problem for any abstract numeration system turns out to be equivalent to the so-called
ω-HD0L ultimate periodicity decision problem, see again [4,15]. For instance, the pure morphic case,
i.e., theω-D0L ultimate periodicity decision problem was solved in [13]. Relying on combinatorics on
words techniques, the general case has very recently received a positive answer [9, 10, 16].

Since syntactic complexity provides an alternative measure for the complexity of a regular language,
one could try to develop new decision procedures based on thesyntactic complexity instead of the state
complexity of the corresponding languages. A step in that direction is to first consider integer base
numeration systems. As a consequence of our results, we present such a procedure in Section 5, using a
similar approach as in [14].

In the next section, we recall basic definitions, fix notationand discuss the case ofn-definite lan-
guages. Letb ≥ 2. Any integerm can be uniquely written asm = dbnq with (q, b) = 1, such thatn ≥ 0
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andq ≥ 1 are chosen maximal. In Section 3, whenm = dbnq with d = 1, we present exact formulae
for the syntactic complexity ofmN and a lower bound on the number of infinite classes of the syntactic
monoid of a periodic set of periodm. In Section 4, we provide such a lower bound in the general case,
i.e.,d ≥ 1. We end the paper with a procedure for the decision problem described above.

2. Basics

For i ≤ j, we denote by[[i, j]] the interval of integers{i, i + 1, . . . , j − 1, j}. A deterministic finite
automaton(or DFA) over the alphabetA is a5-tupleA = (Q, q0, F,A, δ) whereQ is the set of states,q0
is the initial state,F is the set of final states andδ : Q × A∗ → Q is the (extended) transition function.
We denote by|u| the length of the wordu ∈ A∗ and by#P the cardinality ofP .

2.1. Integer base numeration systems

Let b ≥ 2 be an integer. We denote byAb the canonical alphabet of digits[[0, b − 1]]. For any word
u = uℓ · · · u0 ∈ A∗

b , we define thenumerical valueof u as

valb(u) =

ℓ
∑

i=0

ui b
i.

Note thatvalb(uv) = valb(u) b
|v|+valb(v) for all u, v ∈ A∗

b . For any integern > 0, we denote the usual
baseb expansion ofn by repb(n). We assume that such a greedy expansion does not start with0. By
convention,repb(0) is the empty wordε. A setX of integers is said to beb-recognizableif the language
repb(X) ⊆ A∗

b is a regular language accepted by some DFA.
A setX ⊆ N is periodicof periodp if for all n ∈ N, n ∈ X ⇔ n + p ∈ X. The period is always

understood to be the minimal period ofX. In particular, ifX ⊆ N is periodic of periodp, then for all
i, j ∈ N,

i 6≡ j mod p ⇒ ∃r ∈ [[0, p − 1]] : (i+ r ∈ X, j + r 6∈ X) or (i+ r 6∈ X, j + r ∈ X). (1)

A setX ⊆ N is ultimately periodicof periodp andindexI > 0 if, for all n ≥ I, n ∈ X ⇔ n + p ∈ X
and exactly one of the two elementsI − 1, I + p − 1 is in X. Again, index and period are always
understood to be minimal. It is easy to see that any ultimately periodic set isb-recognizable for all bases
b ≥ 2.

2.2. Syntactic complexity andn-definite languages

LetL be a language over the finite alphabetA. Thecontextof a wordu ∈ A∗ with respect toL is given
by the set of pairs

CL(u) = {(x, y) ∈ A∗ ×A∗ | xuy ∈ L}.

If L is clearly understood, we will simply writeC(u). Define theMyhill congruence[17] of L by
u ↔L v if and only if, for all x, y ∈ A∗, xuy ∈ L ⇔ xvy ∈ L. In other words,u ↔L v if and only if
CL(u) = CL(v). This congruence is also known as thesyntactic congruenceof L. The monoidA∗/↔L

made of the equivalence classes of the relation↔L, is thesyntactic monoidof L. It is well-known that
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L is a regular language if and only ifA∗/↔L is finite. Thesyntactic complexityof L is the cardinality of
its syntactic monoid. IfX ⊆ N is ab-recognizable set of integers, by extension we define thesyntactic
complexityof X (w.r.t. b) as the syntactic complexity of the language0∗ repb(X).

Proposition 2.1. Let L be a language overA. Two wordsu, v ∈ A∗ are such thatu ↔L v if and
only if they perform the same transformation on the set of states of the minimal automatonML =
(QL, q0,L, FL, A, δL) of L, i.e., for all r ∈ QL, δL(r, u) = δL(r, v). In particular, ifu, v are such that
δL(q0,L, u) 6= δL(q0,L, v), thenu 6↔L v.

Definition 2.1. Let QL = {q1, . . . , qn} be the set of states of the minimal automaton ofL. The trans-
formation automatonof L has(QL)

n as set of states,(q1, . . . , qn) as initial state and for allw ∈ A∗,
(r1, . . . , rn) ∈ (QL)

n, its transition functionτ : (QL)
n×A∗ → (QL)

n is given byτ((r1, . . . , rn), w) =
(δL(r1, w), . . . , δL(rn, w)). We will only consider the accessible part of this automaton. Thanks to the
above proposition,u ↔L v if and only if τ((q1, . . . , qn), u) = τ((q1, . . . , qn), v).

Definition 2.2. A languageL ⊆ A∗ is weaklyn-definite, if for anyx, y ∈ A∗ satisfying|x| ≥ n, |y| ≥ n
and having the same suffix of lengthn, x ∈ L if and only if y ∈ L [19, 6]. In other words,L can be
written asG ∪ A∗F whereF (resp.G) is finite and contains only words of lengthn (resp. less thann).
Let n ≥ 1. A language isn-definiteif it is weakly n-definite and not weakly(n − 1)-definite. One also
finds the terminologysuffix testablein the literature, see [20].

It is well-known that if a languageL isn-definite, then its minimal automaton has at leastn+1 states
[19]. In particular, its syntactic monoid also has at leastn+ 1 elements. We adapt this result to get extra
information about such a monoid in the case of sets of integers.

Lemma 2.1. LetX be a set of integers. IfL = 0∗ repb(X) isn-definite, then there exist arbitrarily large
integerst1, . . . , tn+1 such that then+1 wordsrepb(t1), . . . , repb(tn+1) belong to different equivalence
classes of↔L.

Proof:
Note that there existk wordss1, . . . , sk of lengthn such that a word of length at leastn belongs toL if
and only if it belongs toA∗

b{s1, . . . , sk}. Define an accessible DFAA = (Q, qε, F,Ab, δ) where

Qn = {qw | |w| = n} andQ = Qn ∪ {qw | |w| < n}

and for allu ∈ A∗
b such that|u| < n anda ∈ Ab, we haveδ(qu, a) = qua. Now if |u| = n, thenu = cx

for somec ∈ Ab, |x| = n− 1 and we haveδ(qu, a) = qxa. Notice thatA restricted to the states inQn is
a strongly connected component isomorphic to the de Bruijn graph of ordern overAb. The set of final
states ofA is easily defined in such a way that the language accepted byA is L. In particular, a state in
Qn is final if and only if it is of the formqsi for i ∈ [[1, k]].

Consider the minimal automaton ofL denoted byML = (QL, q0,L, FL, Ab, δL) and the canonical
morphism [11] of automataΦ : Q → QL from A to ML such thatΦ(δ(r, w)) = δL(Φ(r), w) for all
r ∈ Q andw ∈ A∗

b . LetR := Φ(Qn). In other words,R is the set of states ofML reached by words of
length at leastn. Using the same arguments as in [19], let us show that#R ≥ n + 1. For all r, r′ ∈ R
andi ≥ 0, define

Ei(r, r
′) ⇔ (∀x ∈ A∗

b)
[

|x| ≥ i ⇒ (δL(r, x) ∈ FL ⇔ δL(r
′, x) ∈ FL)

]

.
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This equivalence relationEi overR induces a partitionPi of R into #Pi equivalence classes. It is clear
thatEi(r, r

′) impliesEi+1(r, r
′) and thus#Pi ≥ #Pi+1. SinceL is n-definite, there exist a wordV =

v1 · · · vn−1 of lengthn−1 and two symbolsσ, τ ∈ Ab such thatσV ∈ L andτV 6∈ L. LetT ≥ n andi ∈
[[0, n − 1]]. Take the two statesr = Φ(δ(qε, 10

Tσv1 · · · vn−i−1)) andr′ = Φ(δ(qε, 10
T τv1 · · · vn−i−1))

in R. By considering the wordvn−i · · · vn−1 of lengthi, the statesr andr′ do not satisfyEi(r, r
′) but

for all wordsu of length at leasti+ 1, we have

δ(qε, 10
Tσv1 · · · vn−i−1u) = qS = δ(qε, 10

T τv1 · · · vn−i−1u)

whereS is the suffix of lengthn of v1 · · · vn−i−1u and thusEi+1(r, r
′). We have just shown thatEi is a

refinement ofEi+1 and#P0 > #P1 > · · · > #Pn−1 > #Pn ≥ 1. Consequently,#R ≥ #P0 ≥ n+1.
The minimal automatonML of L contains at leastn + 1 distinct states of the kindΦ(qu1

), . . .,
Φ(qun+1

) ∈ R for some wordsu1, . . . , un+1 ∈ A∗
b of lengthn. Let I > 0. Take a large enoughT such

that, for alli ∈ [[1, n + 1]], valb(10T ui) > I and observe that

Φ(δ(qε, 10
T ui)) = Φ(qui

) = δL(q0,L, 10
Tui) ∈ R.

The words10Tui, i = 1, . . . , n + 1, perform pairwise distinct transformations on the set of states of
the minimal automatonML and the syntactic monoid ofL contains at leastn + 1 classes (see Proposi-
tion 2.1). ⊓⊔

3. First results on the syntactic complexity

Letm,x ≥ 2 be integers such that(m,x) = 1. We denote byordm(x) the order ofx in the multiplicative
groupU(Z/mZ) made of the invertible elements inZ/mZ. That isordm(x) is the smallest positive
integerj such thatxj ≡ 1 mod m. In particular,ordm(x) is the period of the sequence(xn mod m)n≥0.

We first consider the case where the base and the period are coprime. Interestingly, the syntactic
complexity depends only on the period and not on the structure of the periodic set.

Theorem 3.1. Let m, b ≥ 2 be integers such that(m, b) = 1. If X ⊆ N is periodic of (minimal) period
m, then the syntactic complexity of0∗ repb(X) is given bym. ordm(b). In particular, this result holds
for X = mN. Moreover, for each class of↔0∗ repb(X), there exists an arbitrarily large integerk such
thatrepb(k) belongs to this class.

Proof:
LetX ⊆ N be a periodic set of periodm. Letu, v ∈ A∗

b . Let us first show that we have

u ↔0∗ repb(X) v ⇔ C(u) = C(v) ⇔

{

valb(u) ≡ valb(v) mod m,

|u| ≡ |v| mod ordm(b).
(2)

Letα be a multiple ofordm(b) such thatbα > m. Since(bi mod m)i≥0 is a purely periodic sequence of
periodordm(b), it follows thatvalb(u0α) ≡ valb(u) mod m. Assume thatvalb(u) 6≡ valb(v) mod m.
Using (1) there existsr ∈ [[0,m − 1]] such thatvalb(u) + r ∈ X andvalb(v) + r 6∈ X (the other
case is treated similarly). So(ε, 0α−| repb(r)| repb(r)) belongs toC(u) and not toC(v). Now assume
that valb(u) ≡ valb(v) mod m and |u| 6≡ |v| mod ordm(b). In that case, we obtain thatvalb(1u) 6≡
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valb(1v) mod m and we can proceed as in the first situation, there exists somer ∈ [[0,m− 1]] such that
(1, 0α−| repb(r)| repb(r)) belongs toC(u) and not toC(v).

Now proceed to the converse and assume thatu, v are such thatvalb(u) ≡ valb(v) mod m and
|u| ≡ |v| mod ordm(b). For allx, y ∈ A∗

b , we have

valb(xuy) = valb(x) b
|u|+|y| + valb(u) b

|y| + valb(y)

≡ valb(x) b
|v|+|y| + valb(v) b

|y| + valb(y) ≡ valb(xvy) mod m

and we have again used the fact that the sequence(bi mod m)i≥0 is purely periodic of periodordm(b).
To conclude the proof, by considering words of the kind0α−| repb(r)|+j repb(r), for r ∈ [[0,m − 1]]

andj ∈ [[1, ordm(b)]], it follows from (2) that we havem. ordm(b) non-empty classes of↔0∗ repb(X).
Moreover each class contains representations of arbitrarily large integers. For allT ≥ 0 and for all
u ∈ A∗

b , using (2) we have
u ↔0∗ repb(X) (1 0

ordm(b)−1)Tm u.

⊓⊔

Remark 3.1. Note that the characterization of equation (2) implies thattwo periodic sets of minimal
periodm coprime withb have isomorphic syntactic monoids.

Example 3.1. Consider the setX = 3N in base 2. The minimal automaton of0∗ rep2(X) is depicted
in Figure 1. Table 2 gives the corresponding multiplicationtable of the syntactic monoid of0∗ rep2(X)
where each class is given by one of its representatives.

1

1

0

0

0 1

Figure 1. The minimal automaton of0∗ rep
2
(3N).

Now consider the case where the period is a power of the base.

Theorem 3.2. Let b ≥ 2 andm = bn with n ≥ 1. Then the syntactic complexity of0∗ repb(mN) is
given by2n+ 1.

Proof:
The wordsε, 0, . . . , 0n, 1, 10, . . . , 10n−1 have pairwise different contexts w.r.t. the language0∗ repb(mN).
For i = 0, . . . , n, (10n−i, ε) belongs toC(0i+ℓ), for all ℓ ≥ 0, but does not belong toC(0j) for j < i nor
C(10k), for 0 ≤ k ≤ n−1. In the same way, fori = 1, . . . , n, (ε, 0i) belongs toC(10n−j), for 0 ≤ j ≤ i,
but not toC(10j) for j < n − i. So the syntactic monoid of0∗ repb(mN) has at least2n + 1 elements.
Now consider some wordu ∈ A+

b . Write u = v0i wherev is either empty or ends with a non-zero digit.
If i ≥ n, thenu ↔0∗ repb(mN) 0

n. If v 6= ε andi < n, thenu ↔0∗ repb(mN) 10
i. If v = ε andi < n, the

caseu = 0i was already considered. ⊓⊔
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ε 0 1 01 10 101

ε ε 0 1 01 10 101

0 0 ε 01 1 101 10

1 1 10 ε 101 0 01

01 01 101 0 10 ε 1

10 10 1 101 ε 01 0

101 101 01 10 0 1 ε

Table 2. The multiplication table of the syntactic monoid of0∗ rep
2
(3N).

Proposition 3.1. Let b ≥ 2. If X ⊆ N is a periodic set of (minimal) periodm = bn with n ≥ 1,
then the syntactic complexity ofL = 0∗ repb(X) is greater than or equal ton + 1. Moreover there
exist arbitrarily large integerst1, . . . , tn+1 such that then+ 1 wordsrepb(t1), . . . , repb(tn+1) belong to
different equivalence classes of↔L.

Proof:
Let X ⊆ N be a periodic set of periodbn, n ≥ 1. By minimality of the period there existV ∈ A∗

b ,
σ, τ ∈ Ab such thatσ 6= τ , |V | = n − 1, and for allu ∈ A∗

b , we havevalb(uσV ) ∈ X and, for
all u ∈ A∗

b , valb(uτV ) 6∈ X. (If that was not the case, the fact that a wordw belongs toL would
only depend on its suffix of lengthn − 1, so in particular, we would havevalb(w) ∈ X if and only if
valb(w)+bn−1 ∈ X for all wordsw. This contradicts the fact thatbn is the period ofX.) In other words,
L is an-definite language. One can conclude using Lemma 2.1.

⊓⊔

Remark 3.2. The bound in Proposition 3.1 is tight. One can for instance consider the set5+8N written
in base 2. The minimal automaton of0∗ rep2(5 + 8N) is depicted in Figure 2. The corresponding

a b c d

0 1

1 0 1

0
0

1

Figure 2. The minimal automaton of0∗ rep
2
(5 + 8N).

transformation automaton (see Definition 2.1) is given in Figure 3 displaying one strongly connected
component with four elements. The syntactic monoid has exactly four infinite equivalence classes.

For the sake of completeness, we state the following result.See [18, Theorem 4].
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bdbd aaaa bbbb cccc

acac bbdbabcd

dddd
0

1

1 0
1

0

1

0

1

0

10

1 0 1 0

Figure 3. The transformation automaton of0∗ rep
2
(5 + 8N).

Theorem 3.3. Let b ≥ 2 andm = bnq wheren ≥ 1 and(q, b) = 1 andq ≥ 2. Then the syntactic
complexity of0∗ repb(mN) is given by(n+ 1).q. ordq(b) + n.

4. Lower bound in the general case

Let b ≥ 2. Notice that any integerm can be uniquely written as

m = dbnq with (q, b) = 1 (3)

such thatn ≥ 0 andq ≥ 1 are chosen maximal. Hence, ifpα1

1 · · · pαk

k denotes the prime decomposition

of b with αi > 0, for all i ∈ [[1, k]], thend = pδ11 · · · pδkk with δi ≥ 0, for all i ∈ [[1, k]] and there existsr
such thatδr < αr. For convenience, we sets := ordq (b) in all what follows. Let

η := min{j ∈ N | ∀i ∈ [[1, k]], nαi + δi ≤ jαi}.

In other words,η is the smallestj such thatdbn|bj . Note thatη ≥ n.

Remark 4.1. Sincedbn|bk, for all k ≥ η, a word has its numerical value modulodbn completely deter-
mined by its suffix of lengthη. In particular, if two wordsu, v ∈ A∗

b of length at leastη have same suffix
of lengthη and are such thatvalb(u) ≡ valb(v) mod q, thenvalb(u) ≡ valb(v) mod m.

Lemma 4.1. Let b ≥ 2 andm = dbnq be given as in (3). LetX ⊆ N be a periodic set of (minimal)
periodm. For any wordsu, v ∈ A∗

b of length at leastη, we have

(|u| ≡ |v| mod s) ∧ (valb(u) ≡ valb(v) mod m) ⇒ u ↔0∗ repb(X) v. (4)
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Proof:
Let u, v ∈ A∗

b be two words of length at leastη. Using the fact thatbk ≡ bk+s mod q, for all k ≥ 0
and bk ≡ bk+s mod dbn, for all k ≥ η, we have thatbk ≡ bk+s mod m, for all k ≥ η. Notice
that if u, v are such that|u| ≡ |v| mod s and valb(u) ≡ valb(v) mod m, then, for allx, y ∈ A∗

b ,
valb(xuy) ≡ valb(xvy) mod m which means thatu ↔0∗ repb(X) v. ⊓⊔

Lemma 4.2. Let b ≥ 2 andm = dbnq given as in (3). LetX ⊆ N be a periodic set of (minimal) period
m. For any wordsu, v ∈ A∗

b , we have

((|u| 6≡ |v| mod s) ∨ (valb(u) 6≡ valb(v) mod q)) ⇒ u 6↔0∗ repb(X) v. (5)

The reader may notice that the main difference between (4) and (5) is that congruences of numerical
values are considered modulom andq respectively.

Proof:
As a first case, suppose thatvalb(u) 6≡ valb(v) mod q. Takeα ∈ N such thatbα > m. Since(b, q) = 1,
we get thatvalb(u)bα 6≡ valb(v)b

α mod q. Hencevalb(u) bα 6≡ valb(v) b
α mod m and, using (1),

there existsr ∈ [[0,m − 1]] such thatvalb(u)bα + r ∈ X andvalb(v)b
α + r 6∈ X (the other case

is treated similarly). We can conclude that(ε, 0α−| repb(r)| repb(r)) belongs toC(u) and not toC(v).
As a second case, suppose thatvalb(u) ≡ valb(v) mod q but that|u| 6≡ |v| mod s. This implies that
b|u| 6≡ b|v| mod q. Thereforevalb(1u) 6≡ valb(1v) mod q and we proceed as in the first case. There
existsr ∈ [[0,m− 1]] such that(1, 0α−| repb(r)| repb(r)) belongs toC(u) and not toC(v). ⊓⊔

Lemma 4.3. For all wordsw ∈ A∗
b , i ∈ [[0, q−1]], ℓ ∈ [[0, s−1]] andI > 0, there exists a wordu having

w as suffix and such thatvalb(u) ≡ i mod q, |u| ≡ ℓ mod s andvalb(u) > I.

Proof:
LetL ≥ |w| be a multiple ofs. We setz = valb(w) mod q. Using the periodicity of(bk mod q)k≥0, we
havebL+ks ≡ 1 mod q, for all k ≥ 0, and

valb[(0
s−11)i+q−z 0L−|w|w] ≡

i+q−z−1
∑

k=0

bL+ks + z ≡ i mod q.

To conclude the proof, one has to add a prefix of the kind0ℓ(0s−11)tq . ⊓⊔

Definition 4.1. Take a periodic setX ⊆ N of periodm = dbnq given as in (3). Consider the character-
istic word(xt)t≥0 ∈ {0, 1}ω of X wherext = 1 if and only if t ∈ X. This infinite word is periodic of
periodm. Theq infinite words(xqt)t≥0, (xqt+1)t≥0, . . . , (xqt+q−1)t≥0 are periodic and each of their
periods dividesdbn. Asm is the minimal period ofX (for details, see [14]), there exist a non-empty set
J ⊆ [[0, q − 1]] such that, for allj ∈ J , (xqt+j)t≥0 has exactly periodPj satisfying

Pj := p
βj,1

1 · · · p
βj,k

k where max
r∈[[1,k]]

βj,r = max
r∈[[1,k]]

(nαr + δr). (6)

We set
γj := min{g ∈ N | ∀r ∈ [[1, k]], gαr ≥ βj,r}. (7)
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In other words,γj is the smallestg such thatPj |b
g. Now choosei ∈ J such that the correspondingγi

is maximal (if severali’s fulfill this condition, to avoid ambiguity, we take the smallest suchi) and we
will denoteP andγ the correspondingPi andγi. Clearly,γ is a function ofd, n andq. In particular,
bγ−1 6≡ 0 mod P .

Remark 4.2. Note that ifn → +∞ or d → +∞, thenγ → +∞.

Example 4.1. Let b = 75, i.e., p1 = 3, p2 = 5, α1 = 1 andα2 = 2. Consider two infinite words
over{0, 1}, v having a1 at multiples of9, w at multiples of25. We definex by interleaving these two
words. This wordx has period2.9.25, i.e.,d = 3, n = 1 andq = 2. Henceδ1 = 1, δ2 = 0 and we get
nα1 + δ1 = nα2+ δ2 = 2. Observe that(x2t)t≥0 = v (resp.(x2t+1)t≥0 = w) has periodP0 = 32 (resp.
P1 = 52) which satisfies condition (6). We getJ = {0, 1}, γ0 = 2 andγ1 = 1. So we choosei = 0 and
setP = 32 andγ = 2.

Proposition 4.1. Let b ≥ 2 andm = dbnq be given as in (3). IfX ⊆ N is a periodic set of (minimal)
periodm, then the syntactic complexity of0∗ repb(X) is greater than or equal toM = max{q.s, γ+1

q.s
}.

Moreover there exist arbitrarily large integerst1,. . .,tM such thatrepb(t1), . . . , repb(tM ) belong to dif-
ferent equivalence classes of↔0∗ repb(X).

Proof:
Thanks to Lemma 4.3, for alli ∈ [[0, q − 1]], ℓ ∈ [[0, s − 1]] andI > 0, we can construct a wordu ∈ A∗

b

such thatvalb(u) ≡ i mod q, |u| ≡ ℓ mod s andvalb(u) > I. Thus, by (5), any two such words are in
different classes for↔0∗ repb(X). Hence we have at leastq.s different classes and each of them contains
representations of arbitrary large elements.

Consideri ∈ [[0, q − 1]], P andγ given in Definition 4.1 such that(xqt+i)t≥0 has exactly periodP .
TakeT ≥ 0 such that| repb(qT + i)| ≥ γ. Note that ifj 6≡ k mod P , thenrepb(q(T + j) + i) and
repb(q(T + k) + i) have different suffixes of lengthγ. Indeed, assume thatrepb(q(T + j) + i) and
repb(q(T + k) + i) have the same suffix of lengthγ, thenq(k − j) ≡ 0 mod bγ . Since(q, b) = 1, we
getk ≡ j mod bγ . AsP dividesbγ , we havek ≡ j mod P .

Since(xqt+i)t≥0 has (minimal) periodP andbγ−1 6≡ 0 mod P , thenT 6≡ T + bγ−1 mod P and
there existsj ∈ [[0, P − 1]] such thatg1 := q(T + j) + i ∈ X andg2 := q(T + j + bγ−1) + i 6∈ X (or
equivalentlyg1 6∈ X andg2 ∈ X). Sinceg2 = g1 + qbγ−1, thenrepb(g1) andrepb(g2) have the same
suffix V = v1 · · · vγ−1 of lengthγ − 1. But sinceg1 6≡ g2 mod P , repb(g1) andrepb(g2) do not have
the same suffix of lengthγ. We can assume that there exist some prefixesp, p′ ∈ A∗

b and two distinct
symbolsσ, τ ∈ Ab such that

repb(g1) = pσV ∈ 0∗ repb(X) and repb(g2) = p′τV 6∈ 0∗ repb(X).

We are now ready to show that the minimal automaton of0∗ repb(X ∩ (qN+ i)) has at leastγ +1 states
reached by words of length at leastη (this last requirement is always fulfilled by adding leadingzeroes if
necessary). LetL = 0∗ repb(X) andL′ = 0∗ repb(qN+i) having respectivelyML andML′ as minimal
automaton. We proceed as in the proof of Lemma 2.1. On the set of states of the minimal automaton
ML∩L′ of L ∩ L′, for all k ≥ 0, we define the relation

Ek(r, r
′) ⇔ (∀x ∈ A∗

b)
[

|x| ≥ k ⇒ (δL∩L′(r, x) ∈ F ⇔ δL∩L′(r′, x) ∈ F )
]
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whereF is the set of final states ofML∩L′ . Let k ∈ [[0, γ − 1]]. Consider the statesr andr′ reached
when reading respectivelypσv1 · · · vγ−k−1 andp′τv1 · · · vγ−k−1. They do not satisfyEk(r, r

′) but we
can observe that they satisfyEk+1(r, r

′). Indeed, take anyx ∈ A∗
b of lengthk + 1. Sincevalb(pσV ) ≡

valb(p
′τV ) mod q then1, for all wordsW ∈ A∗

b , valb(pσW ) ≡ valb(p
′τW ) mod q. So, in particular,

Xk := pσv1 · · · vγ−k−1x andYk := p′τv1 · · · vγ−k−1x

have the same value moduloq and the same suffix of lengthγ. This means2 that either they both belong
to L ∩ L′, or they both do not belong toL ∩ L′. Following the same lines as in the proof of Lemma 2.1
we conclude that the minimal automaton ofL ∩ L′ has at leastγ + 1 states.

For any DFAM havingQ as set of states andδ as transition function, we set

Tη(M) = {fw : Q → Q, q 7→ δ(q, w) | w ∈ A∗
b , |w| ≥ η}

as the set of actions onQ derived by words of length at leastη. Consider the product automatonP =
ML ×ML′ recognizingL ∩ L′. We clearly have#Tη(P) ≤ #Tη(ML).#Tη(ML′). Since there is a
canonical morphism of automata fromP ontoML∩L′ , we get#Tη(ML∩L′) ≤ #Tη(P).

Using Proposition 2.1 and Theorem 3.1, we get#Tη(ML′) = q.s. With the above discussion about
the number of states ofML∩L′ , we have#Tη(ML∩L′) ≥ γ + 1. Putting all of this together,

γ + 1 ≤ #Tη(ML∩L′) ≤ #Tη(P) ≤ #Tη(ML).q.s.

Therefore,#Tη(ML) ≥ γ+1
q·s . SinceTη(ML) is isomorphic to a subset of the syntactic monoid ofL,

this monoid has at leastγ+1
q·s classes, each containing a word of length at leastη. Since for all wordsw

of length at leastη, we can use Lemma 4.1 to getw ↔0∗ repb(X) (0
s−11)mw, integers corresponding to

elements of the different equivalence classes can be chosenarbitrarily large. ⊓⊔

5. Application to a decision procedure

LetX ⊆ N be ab-recognizable set of integers such that0∗ repb(X) is accepted by some DFAA. A usual
technique for deciding whether or notX is ultimately periodic is to prove that wheneverX is ultimately
periodic, then its period and its preperiod must be bounded by some quantities depending only on the size
of the DFAA. Therefore, one has a finite number of admissible periods andpreperiods to test, leading
to a decision procedure. For details, see [3]. In particular, the following result [3, Prop. 44] stated in full
generality for any abstract numeration system (i.e., the language of numeration is a regular language)
shows that we have only to obtain an upper bound on the admissible periods.

Proposition 5.1. Let S = (L,Σ, <) be an abstract numeration system. IfX ⊆ N is an ultimately
periodic set of periodpX such thatrepS(X) is accepted by a DFA withd states, then the preperiod ofX
is bounded by an effectively computable constantC depending only ond andpX .

1Subtractingvalb(V ) on both sides, we getvalb(pσ0|V |) ≡ valb(p
′τ0|V |) mod q. Since(q, b) = 1, we can multiply or divide

a convenient number of times byb and getvalb(pσ0|W |) ≡ valb(p
′τ0|W |) mod q. Hence, one addsvalb(W ) to both sides.

2If valb(Xk) andvalb(Yk) are both congruent to a value not equal toi moduloq, thenXk andYk do not belong toL′. As
a second case, we may assume thatXk, Yk ∈ L′, i.e.,valb(Xk) andvalb(Yk) are respectively of the formq(T + j) + i and
q(T + j′)+ i for somej, j′. As discussed in the second paragraph of this proof, sinceXk andYk have the same suffix of length
γ, thenj ≡ j′ mod P which means thatq(T + j) + i ∈ X ⇔ q(T + j′) + i ∈ X, orXk ∈ L ⇔ Yk ∈ L.
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The following result is a consequence of Proposition 4.1.

Theorem 5.1. Let b ≥ 2. If X ⊆ N is an ultimately periodic set of periodpX = dbnq given as in (3),
then the syntactic complexity of0∗ repb(X) is greater than or equal tomax{q.s, γ+1

q.s
} whereγ is defined

as in (7).

Proof:
Let I be the preperiod ofX. Even if Proposition 4.1 is about (purely) periodic sets of integers, if we
consider instead an ultimately periodic set, since we can choose words belonging to different equivalence
classes in such a way that their numerical value is greater thanI, then the lower bound on the number of
classes is still valid for the ultimately periodic case. ⊓⊔

Assume thatb ≥ 2. Therefore, giving a DFAA accepting0∗ repb(X) and so the corresponding
syntactic monoid, ifX is ultimately periodic, then we get an upper bound on its period. Indeed, ifm
written dbnq as in (3) tends to infinity, then at least one of the three quantities d, n or q tends to infinity
and thanks to Remark 4.2, the corresponding functionmax{q.s, γ+1

q.s
} tends to infinity. As soon as a

bound on the possible period is obtained, one can use Proposition 5.1 to get a bound on the possible
preperiod. It suffices then to test a finite number of admissible pairs preperiod/period and compare those
with the given setX.
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