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1.

This paper is dedicated to Tero Harju’s 60th birthday. As tadlsexplain, it can be related to a decision

Abstract. We compute the cardinality of the syntactic monoid of thegleaged* rep,(mN) made
of baseb expansions of the multiples of the integer We also give lower bounds for the syntactic
complexity of any (ultimately) periodic set of integers tigh in base). We apply our results to a
well studied problem: decide whether or ndt-eecognizable set of integers is ultimately periodic.

Introduction

problem studied by Tero a long time ago [13, 12]. Happy bathdiero!

Syntactic complexity has received some recent and renemterkst. See for instance [7] for some
background, and we quote:nspite of suggestions that syntactic semigroups desenle tstudied

further, relatively little has been done on the syntactimpbexity of a regular language

In this paper, which is an extended version of the conferpaper [18], we first compute the syntac-
tic complexity of the seinN written in baseé, i.e., the cardinality},, ,,, of the syntactic monoid of the
language)* rep, (mN) made of basé expansions of the multiples of the integer A similar problem
was solved for the state complexity of the languégeep, (mN), i.e., the number of states of its minimal

automaton. As usudin,n) denotes the greatest common divisonoandn.

Theorem 1.1. (B. Alexeev [1])
Letb,m > 2 be integers. LetfV, M be such thatY < m < ¥+ and(m,1) < (m,b) < ---
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(m,bM) = (m,bM*+1) = (m,bM*2) = ..., The minimal automaton d@f* rep,(mN) has exactly

inf{N,M—-1}

m
m + Z (m bt) states.
) t:O )

For the binary system, the first few values/af ,,, are given in Table 1. Let > 2. An explicit

m‘2345678910 1 12 13 14 15 16 17 18 19 20
M27m‘3 6 5 20 13 21 7 54 41 110 20 156 43 60 9 136 109 342 62

m ‘21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
M27m‘126 221 253 27 500 313 486 65 812 121 155 11 330 273 420 164

Table 1. The first values of the syntactic complexity in thedacase.

formula for M, ,,, is obtained as a consequence of Theorems 3.1, 3.2 and 3.Befdoltowing three
cases: the constant and the basé are coprime orm is a power ofb or, m = b"q with (¢,b) = 1,

g > 2 andn > 1. Extending the results of [18], we provide lower bounds Far $yntactic complexity of
any ultimately periodic set of integers written in basée., any finite union of arithmetic progressions.
In particular, we include the general case where the periasl of the kinddb™q with (¢,b) = 1 and the
set of prime factors ofl is a subset of the one oéf In the framework of numeration systems, syntactic
complexity has an advantage in comparison to left or rigldtiguts, we have the opportunity to work
simultaneously on prefixes and suffixes of bagsgpansions, that is on most and least significant digits.

Motivation for this work comes from the following decisiomgblem. LetS be an abstract numer-
ation system built on a regular language. See [4, Chap. 3)dokground. It is well-known that any
ultimately periodic set i$-recognizable, i.e., it has a regular language of repratiens within the sys-
tem S. An instance of the decision problem is given by an abstraotaration systen$ and a DFA
accepting somé&-recognizable seX’ C N. The question is therefore to decide whetbeis ultimately
periodic or not. This problem was settled positively foremr base systems by Honkala in [14]. See
also [2] and in particular [5] for a first order logic approa@ecently this decision problem was settled
positively in [3] for a large class of numeration systemseolasn linear recurrence sequences. Consider-
ing this decision problem for any abstract numeration sggtens out to be equivalent to the so-called
w-HDOL ultimate periodicity decision problem, see again18]. For instance, the pure morphic case,
i.e., thew-DOL ultimate periodicity decision problem was solved i8[1Relying on combinatorics on
words techniques, the general case has very recently egcaipositive answer [9, 10, 16].

Since syntactic complexity provides an alternative meafurthe complexity of a regular language,
one could try to develop new decision procedures based asytitactic complexity instead of the state
complexity of the corresponding languages. A step in thegctibn is to first consider integer base
numeration systems. As a consequence of our results, wenprasch a procedure in Section 5, using a
similar approach as in [14].

In the next section, we recall basic definitions, fix notatior discuss the case nfdefinite lan-
guages. Leb > 2. Any integerm can be uniquely written as = db"q with (¢,b) = 1, such thats > 0
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andg > 1 are chosen maximal. In Section 3, when= db™q with d = 1, we present exact formulae
for the syntactic complexity of2N and a lower bound on the number of infinite classes of the siiata
monoid of a periodic set of periogk. In Section 4, we provide such a lower bound in the genera,cas
i.e.,d > 1. We end the paper with a procedure for the decision problesuoried above.

2. Basics

Fori < j, we denote by, j] the interval of integergi,i + 1,...,5 — 1,j}. A deterministic finite
automaton(or DFA) over the alphabet is a5-tuple A = (Q, qo, F, A, §) whereQ is the set of stategy

is the initial stateF is the set of final states ad: @ x A* — @ is the (extended) transition function.
We denote byu| the length of the word: € A* and by+# P the cardinality ofP.

2.1. Integer base numeration systems

Letb > 2 be an integer. We denote by, the canonical alphabet of digif®,b — 1]. For any word
u=uy- -ug € A5, we define themumerical valueof « as

¢
valy(u) = Z u; b
1=0

Note thatvaly (uv) = valy(u) bl*l 4-val,(v) for all u,v € Aj. For any integer. > 0, we denote the usual
baseb expansion of: by rep,(n). We assume that such a greedy expansion does not stard Wi
conventionyep,(0) is the empty word. A setX of integers is said to bierecognizablef the language
rep,(X) C A} is aregular language accepted by some DFA.

A setX C Nis periodicof periodpifforall n € N,n € X < n+p € X. The period is always
understood to be the minimal period &f. In particular, if X C N is periodic of periodp, then for all
1,7 €N,

iZjmodp=3Ire0,p—1]:(i+reX,j+rgX)or(i+r ¢ X,j+r e X). @

A set X C Nisultimately periodicof periodp andindex! > 0if,foralln > I,ne X &n+pe X
and exactly one of the two elemenfs— 1,1 + p — 1 is in X. Again, index and period are always
understood to be minimal. It is easy to see that any ultimatetiodic set i$-recognizable for all bases
b> 2.

2.2. Syntactic complexity andn-definite languages

Let L be a language over the finite alphabetThe contextof a wordu € A* with respect ta. is given
by the set of pairs
Cr(u) ={(x,y) € A* x A" | zuy € L}.

If L is clearly understood, we will simply writé(u). Define theMyhill congruence[17] of L by
u <, vifandonlyif, forall z,y € A*, zuy € L < xvy € L. In other wordsy <+, v if and only if
Cr(u) = Cr(v). This congruence is also known as Byatactic congruencef L. The monoidA* /<,
made of the equivalence classes of the relation, is thesyntactic monoiaf L. It is well-known that
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L is aregular language if and onlyif* /«» 1 is finite. Thesyntactic complexitgf L is the cardinality of
its syntactic monoid. IfX C N is ab-recognizable set of integers, by extension we definesyinéactic
complexityof X (w.r.t. b) as the syntactic complexity of the langua@yerep, (X).

Proposition 2.1. Let L be a language oved. Two wordsu,v € A* are such that, «; v if and
only if they perform the same transformation on the set diestaf the minimal automatonm; =
(Qr,q0,1., Fr,A,d0r) of L, i.e., forallr € Qr, 6r(r,u) = ér(r,v). In particular, ifu,v are such that
dr(qo,1,w) # 01(qo,r.,v), thenu ¢, v.

Definition 2.1. Let @, = {q1,...,q,} be the set of states of the minimal automatori.ofThetrans-
formation automatorof L has(Qr)" as set of statedy, ..., q,) as initial state and for allv € A*,
(ri,...,rn) € (Qp)", its transition functionr : (Qr)" x A* — (Qr)™is given byr((ry,...,ry),w) =
(0p(r1,w), ..., 05 (rn,w)). We will only consider the accessible part of this automafbianks to the
above propositiony <>, v if and only if 7((q1,...,qn),u) = 7((q1, - -, qn), V).

Definition 2.2. A languagel. C A* is weaklyn-definite if for any z, y € A* satisfying|z| > n, |[y| > n
and having the same suffix of length x € L if and only ify € L [19, 6]. In other words/ can be
written asG U A*F whereF' (resp.G) is finite and contains only words of length(resp. less than).
Letn > 1. Alanguage isi-definiteif it is weakly n-definite and not weaklyn — 1)-definite. One also
finds the terminologuffix testablén the literature, see [20].

Itis well-known that if a languagé is n-definite, then its minimal automaton has at least1 states
[19]. In particular, its syntactic monoid also has at least 1 elements. We adapt this result to get extra
information about such a monoid in the case of sets of integer

Lemma 2.1. Let X be a set of integers. £ = 0* rep, (X)) is n-definite, then there exist arbitrarily large

integersty, . .., t,+1 such that the: + 1 wordsrep, (¢1), . . ., rep, (t,+1) belong to different equivalence
classes ot~ y,.

Proof:

Note that there exist wordssi, . . ., si of lengthn such that a word of length at leastbelongs tal if

and only if it belongs t4; {s1, ..., s, }. Define an accessible DFA = (Q, ¢, F, Ay, §) where

Qn = {qu | [w| = n} andQ = Qn U{qu | [w| <n}

and for allu € Aj such thatu| < n anda € Ay, we haved(qy, a) = qua- NOW if |u| = n, thenu = cx
for somec € Ay, |z| = n — 1 and we havé(q,, a) = q... Notice thatA restricted to the states @, is
a strongly connected component isomorphic to the de Bruaply of ordem over A;. The set of final
states ofA is easily defined in such a way that the language acceptedlibyl.. In particular, a state in
Q. is final if and only if it is of the formy,, for i € [1, k].

Consider the minimal automaton éfdenoted byM = (Qr, o1, F1., Ap, 61,) and the canonical
morphism [11] of automat® : Q — @, from A to M, such that®(§(r,w)) = o.(P(r),w) for all
r € Qandw € A;. LetR := ®(Q,). In other words R is the set of states 0§1;, reached by words of
length at leash. Using the same arguments as in [19], let us show#h&t> n + 1. For allr,r’ € R
and: > 0, define

Ei(r,r") & (Vo € A})[|z| > i = (6p(r,2) € FL & 61", x) € F)].
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This equivalence relatiof’; over R induces a partitiorP; of R into # P; equivalence classes. Itis clear
that E;(r,r’) implies E; 1 (r, ') and thus# P, > # P, ;. SinceL is n-definite, there exist a wort =

vy -+ vp1 Of lengthn —1 and two symbole, 7 € Ay suchthatV € LandrV ¢ L. LetT > nandi €
[0,n — 1]. Take the two states = ®(5(q., 107 ovy - - v, ;1)) andr’ = ®(6(ge, 107701 - v _1))

in R. By considering the word,,_; - - - v, of lengthi, the states and+’ do not satisfyE;(r, ') but
for all wordsu of length at least + 1, we have

8(qe, 1070wy - vp—i—1u) = g5 = 8(qe, 107701 -+ v, 1u)

whereS is the suffix of lengtt of vy - - - v,,—;_ju and thusE; 1 (r,7"). We have just shown thd; is a
refinement ofy; and#Py > #P, > --- > #P, 1 > #P, > 1. Consequently#R > #Py > n+1.

The minimal automaton\;, of L contains at least + 1 distinct states of the kin®(q,, ), - . .,
®(qu,.,) € R for some words.y, ..., u,41 € A; of lengthn. Let] > 0. Take a large enoudh such
that, for alli € [1,n + 1], valy(107w;) > I and observe that

®(5(ge, 107 w;)) = ®(qu,) = 1.(qo.2, 107 u;) € R.

The words10%w;, i = 1,...,n + 1, perform pairwise distinct transformations on the set afest of
the minimal automatouM ;, and the syntactic monoid df contains at least + 1 classes (see Proposi-
tion 2.1). 0

3. Firstresults on the syntactic complexity

Letm,z > 2 be integers such théin, ) = 1. We denote byrd,,, (z) the order ofz in the multiplicative
group U(Z/mZ) made of the invertible elements #/mZ. That isord,,(z) is the smallest positive
integerj such thatr/ = 1 mod m. In particular,ord,,(z) is the period of the sequen¢e”™ mod m),,>o.

We first consider the case where the base and the period afieneopinterestingly, the syntactic
complexity depends only on the period and not on the strectfithe periodic set.

Theorem 3.1. Letm, b > 2 be integers such théin,b) = 1. If X C N is periodic of (minimal) period
m, then the syntactic complexity of rep,(X) is given bym. ord,,(b). In particular, this result holds
for X = mN. Moreover, for each class @b, (x), there exists an arbitrarily large integersuch
thatrep, (k) belongs to this class.

Proof:
Let X C N be a periodic set of periogh. Letu,v € A;. Let us first show that we have

valy(u) = valy(v) mod m,

U 30+ rep, (X) U & C(u) = C(v) & { )

lul = |v| mod ord,,(b).

Let o be a multiple obrd,, (b) such thab® > m. Since(b’ mod m);> is a purely periodic sequence of
periodord,, (b), it follows thatval,(u0%) = valy(u) mod m. Assume thatal,(u) # valy(v) mod m.
Using (1) there exists € [0,m — 1] such thatval,(u) + r € X andvaly(v) + r ¢ X (the other
case is treated similarly). S@, 0% !™Pe(")l rep, (1)) belongs toc(u) and not toC(v). Now assume
that valy(u) = valy(v) mod m and |u| # |v| mod ord,,(b). In that case, we obtain thatl,(1u) #
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valy(1v) mod m and we can proceed as in the first situation, there exists somf, m — 1] such that
(1,02 IrePs (Ml yep, () belongs taC () and not toC(v).

Now proceed to the converse and assume thatare such thaval,(u) = valy(v) mod m and
|u| = |v| mod ord,,(b). Forallz,y € A}, we have

valy(zuy) = valy(z) bW valy(uw) blY + valy (y)
= valy(z) b 4 valy (v) b + valy(y) = valy(zvy) mod m

and we have again used the fact that the sequ@fceod m);>¢ is purely periodic of periodrd,, (b).

To conclude the proof, by considering words of the kixid |*Pe(")I+7 rep, (1), for r € [0,m — 1]
andj € [1,ord,(b)], it follows from (2) that we haven. ord,,(b) non-empty classes af o« e, (x)-
Moreover each class contains representations of arbytiarge integers. For ali” > 0 and for all
u € Ay, using (2) we have

U 0% repy (X) (1 OOTd’”(b)fl)Tm U.

O

Remark 3.1. Note that the characterization of equation (2) implies tiaat periodic sets of minimal
periodm coprime withb have isomorphic syntactic monoids.

Example 3.1. Consider the seX = 3N in base 2. The minimal automaton @frep,(X) is depicted
in Figure 1. Table 2 gives the corresponding multiplicatiable of the syntactic monoid of rep,(X)
where each class is given by one of its representatives.

Figure 1. The minimal automaton 6f rep, (3N).

Now consider the case where the period is a power of the base.

Theorem 3.2. Letb > 2 andm = b"™ with n > 1. Then the syntactic complexity of rep,(mN) is
given by2n + 1.

Proof:

The words, 0, ...,0",1,10,...,10"! have pairwise different contexts w.r.t. the languagecp, (mN).
Fori =0,...,n, (10" ¢) belongs tac(0+*), for all £ > 0, but does not belong t©(07) for j < i nor
C(10%), for0 < k < n—1. Inthe same way, far= 1,...,n, (¢, 0%) belongs ta(10"7), for0 < j < i,
but not toC(107) for j < n — i. So the syntactic monoid &f rep,(mN) has at leastn + 1 elements.
Now consider some word € A;L. Write u = v0’ wherew is either empty or ends with a non-zero digit.
If i > n, thenu <o« rep, () 0™ If v # € andi < n, thenu <g« ep, (mry) 10", If v = € andi < n, the
caseu = 0" was already considered. O
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0 1 01 10 101

€
€ € 0 1 01 10 101
0 0 € 01 1 101 10
1 1 10 € 101 0 01

01 01 101 0 10 € 1
10 10 1 101 € 01
101 | 101 01 10 0 1 €

Table 2. The multiplication table of the syntactic monoidbfep,(3N).

Proposition 3.1. Letb > 2. If X C N is a periodic set of (minimal) perioth = b" with n > 1,
then the syntactic complexity af = 0* rep,(X) is greater than or equal to + 1. Moreover there
exist arbitrarily large integers, . .., t,,+1 such that the: 4+ 1 wordsrep,(t1), . . ., rep(tn+1) belong to
different equivalence classes ©f;..

Proof:
Let X C N be a periodic set of periobtl*, n > 1. By minimality of the period there exidt € Aj,
o,7 € Ay such thato # 7, |V| = n — 1, and for allu € A}, we haveval,(uoV) € X and, for
all w € A}, valy(urV) ¢ X. (If that was not the case, the fact that a wardbelongs toL would
only depend on its suffix of length — 1, so in particular, we would haveal,(w) € X if and only if
valy(w) +b" "1 € X for all wordsw. This contradicts the fact that is the period ofX.) In other words,
L is an-definite language. One can conclude using Lemma 2.1.

O

Remark 3.2. The bound in Proposition 3.1 is tight. One can for instanaesicier the sef + 8N written
in base 2. The minimal automaton 0f rep,(5 + 8N) is depicted in Figure 2. The corresponding

0 1 1
@@3@
0
0

Figure 2. The minimal automaton 6f rep, (5 + 8N).

transformation automaton (see Definition 2.1) is given iguFé 3 displaying one strongly connected
component with four elements. The syntactic monoid hastlxmir infinite equivalence classes.

For the sake of completeness, we state the following reSek.[18, Theorem 4].
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Figure 3. The transformation automatorfofrep, (5 + 8N).

Theorem 3.3. Letb > 2 andm = b"q wheren > 1 and(q,b) = 1 andg > 2. Then the syntactic
complexity of0* rep, (mN) is given by(n + 1).¢. ordy(b) + n.
4. Lower bound in the general case
Letb > 2. Notice that any integet: can be uniquely written as

m=db"q with (¢,b) =1 (3)
such that, > 0 andgq > 1 are chosen maximal. Hencepif* - - - p* denotes the prime decomposition
of b with o; > 0, for all i € [1, k], thend = p%* - - -pi’“ with §; > 0, for all i € [1, k] and there exists
such thab, < «,. For convenience, we set= ord, (b) in all what follows. Let

n:=min{j € N|Vi € [1,k], na; + 9 < ja;}.

In other wordsy, is the smalles§ such thatdb™|b’. Note thaty > n.

Remark 4.1. Sincedb™|v*, for all k > », a word has its numerical value modult® completely deter-
mined by its suffix of lengthy. In particular, if two words:, v € A; of length at least) have same suffix
of lengthn and are such thatl,(u) = valy(v) mod ¢, thenvaly(u) = valy(v) mod m.

Lemma4.1l. Letb > 2 andm = db™q be given as in (3). LeX C N be a periodic set of (minimal)
periodm. For any words:, v € A; of length at least, we have

(Ju] = |v] mod s) A (valy(u) = valy(v) mod m) = U g« rep, (x) V- (4)
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Proof:

Letu,v € A; be two words of length at leagt Using the fact thab® = b5 mod ¢, for all k > 0
andb® = b5 mod db™, for all k > 7, we have that® = v*+5 mod m, for all k > 7. Notice
that if u,v are such thatu| = |v| mod s andvaly(u) = valy(v) mod m, then, for allz,y € A},
valy(zuy) = valy(rvy) mod m which means that <o« ep, (x) v- O

Lemma4.2. Letb > 2 andm = db"q given as in (3). LefX C N be a periodic set of (minimal) period
m. For any wordss, v € A}, we have

((Jul # |[v] mod s) V (valy(u) # valy(v) mod q)) = u #+ rep, (x) - (%)

The reader may notice that the main difference between @3ris that congruences of numerical
values are considered modutoandq respectively.

Proof:

As a first case, suppose thatl,(u) # valy(v) mod ¢. Takea € N such thab® > m. Since(b,q) = 1,

we get thatval,(u)b® # valy(v)b® mod ¢q. Hencevaly(u) b* # valy(v) b* mod m and, using (1),
there existsr € [0, m — 1] such thatval,(u)b® + r € X andval,(v)b® + r ¢ X (the other case

is treated similarly). We can conclude that 0%~ Ps(")l rep, (1)) belongs toc(u) and not toC(v).

As a second case, suppose thal,(u) = valy(v) mod ¢ but that|u| # |v| mod s. This implies that
blul 2 plvl mod q. Thereforevaly(1u) # val,(1v) mod ¢ and we proceed as in the first case. There
existsr € [0, m — 1] such that1, 0%~ ImPe(")l rep, (1)) belongs tac(u) and not tac(v). O

Lemma 4.3. For all wordsw € A, i € [0,q—1], ¢ € [0,s—1] andl > 0, there exists a word having
w as suffix and such thatl,(u) = i mod ¢, |u| = ¢ mod s andval,(u) > I.

Proof:
Let L > |w| be a multiple ofs. We set: = val,(w) mod q. Using the periodicity oft* mod q)x>o, we
havebt*s =1 mod ¢, for all k > 0, and

itq—2—1
valy[(05711)iFa== pllvwly] = Z bl 4 2 = imod q.
k=0
To conclude the proof, one has to add a prefix of the Kir{@*—'1)*. O

Definition 4.1. Take a periodic seX C N of periodm = db™q given as in (3). Consider the character-
istic word (z);>0 € {0,1}* of X wherez, = 1 if and only if ¢ € X. This infinite word is periodic of
periodm. Thegq infinite words(zqt)¢>0, (Zgt41)e>0, -- -5 (Tq+q—1)e>0 are periodic and each of their
periods dividesib™. Asm is the minimal period ofX (for details, see [14]), there exist a hon-empty set
J C [0,q — 1] such that, for alj € J, (z4.4;):>0 has exactly period; satisfying
Bj, Bj,

Pj = p"t - p* where rrerﬁalx,)]i]] Bjr = Tr&fﬁﬂ(nar + 4;). (6)

We set
v; =min{g € N | Vr € [1,k], g, > Bjr}. 7)
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In other words;y; is the smallesy such thatP;|b9. Now choose € J such that the corresponding
is maximal (if severat’s fulfill this condition, to avoid ambiguity, we take the shest suchi) and we
will denote P and~ the corresponding®;, and~;. Clearly,~ is a function ofd, n andgq. In particular,
b1 % 0 mod P.

Remark 4.2. Note that ifn — +o00 ord — 400, theny — +oc.

Example 4.1. Letb = 75, i.e.,p1 = 3, p2o = 5, a1 = 1 anday = 2. Consider two infinite words
over{0, 1}, v having al at multiples of9, w at multiples of25. We definez by interleaving these two
words. This wordr has perio®.9.25, i.e.,d = 3, n = 1 andg = 2. Henced; = 1, o = 0 and we get
naq + 91 = nag + 02 = 2. Observe thatza,)i>0 = v (resp.(zai+1)¢>0 = w) has periodP, = 32 (resp.
Py = 5%) which satisfies condition (6). We gét= {0, 1}, 70 = 2 andv; = 1. So we choosé = 0 and
setP = 32 andy = 2.

Proposition 4.1. Let b > 2 andm = db™q be given as in (3). IfX C N is a periodic set of (minimal)
periodm, then the syntactic complexity 6f rep,(X) is greater than or equal ftf = max{q.s, %}_
Moreover there exist arbitrarily large integeis. . .,t 5, such thatrep, (¢1), . . . ,rep,(tas) belong to dif-
ferent equivalence classes®fy. e, (x)-

Proof:

Thanks to Lemma 4.3, for alle [0,q — 1], ¢ € [0,s — 1] and] > 0, we can construct a word € A;
such thatval,(v) = i mod ¢, |u| = ¢ mod s andval,(u) > I. Thus, by (5), any two such words are in
different classes fot+¢- .p, (x)- HENCe we have at leagts different classes and each of them contains
representations of arbitrary large elements.

Consideri € [0, g — 1], P and~ given in Definition 4.1 such thdt,;):>0 has exactly period.
TakeT > 0 such thati rep,(¢T + i)| > ~. Note that if; # k mod P, thenrep,(¢(T + j) + i) and
repy(q(T + k) + 4) have different suffixes of length. Indeed, assume thatp,(q¢(T + j) + i) and
repy(¢(T + k) + i) have the same suffix of length theng(k — j) = 0 mod b”. Since(q,b) = 1, we
getk = j mod b". As P dividesb?, we havek = j mod P.

Since (z4t+4)t>0 has (minimal) period” andb”~! # 0 mod P, thenT # T + "~ mod P and
there existg € [0, P — 1] such thay; := ¢(T +j) +i € X andgs := q(T +j + b 1) +i & X (or
equivalentlyg; ¢ X andgs € X). Sincegs = g1 + ¢b? 1, thenrep,(g1) andrep,(g2) have the same
suffix V- = vy ---vy_1 Of lengthy — 1. But sinceg; # g» mod P, rep,(g1) andrep,(g2) do not have
the same suffix of length. We can assume that there exist some prefixgs € A; and two distinct
symbolso, 7 € Ay such that

rep,(g1) = poV € 0% rep,(X) and repy(g2) = p'7V & 0* rep, (X).

We are now ready to show that the minimal automato®*atp,(X N (¢N + 7)) has at leasy + 1 states
reached by words of length at leasfthis last requirement is always fulfilled by adding leadiegoes if
necessary). Lek = 0* rep,(X) andL’ = 0* rep, (¢N+:) having respectively\ ;, and M, as minimal
automaton. We proceed as in the proof of Lemma 2.1. On thef states of the minimal automaton
M~ of LN L/, for all k > 0, we define the relation

Ei(r,7") & (Vx € AZ)U.%" > k= (0pnp(r,z) € F < dpap(r o) € F)]
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where F is the set of final states o¥1;~,/. Letk € [0,7 — 1]. Consider the statesandr’ reached
when reading respectivelyov; - - - v,_,_1 andp’rv; - - - v4__1. They do not satisfyFy(r, ") but we
can observe that they satishy,.;(r,7'). Indeed, take any € A} of lengthk + 1. Sincevaly(poV') =

valy(p'TV) mod q thert, for all wordsW € A}, valy(poW) = val,(p'7W) mod ¢. So, in particular,

/
Xj :=povy -+ Vy_p—1x andYy := p'Tug - Uy

have the same value modujand the same suffix of length This mean&that either they both belong
to L N L/, or they both do not belong tb N L’. Following the same lines as in the proof of Lemma 2.1
we conclude that the minimal automaton/of L’ has at least + 1 states.

For any DFAM having(Q as set of states ardas transition function, we set

Ty(M) ={fuw: Q@ —= Q,q=d(q,w) | w e Ag, [w| > n}

as the set of actions af derived by words of length at leagt Consider the product automatéh =
M, x My recognizingL N L'. We clearly have# 7, (P) < #T,(Mp).#T,(My,). Since there is a
canonical morphism of automata frafonto M ;z/, we get# 7, (Mrnr) < #T,(P).

Using Proposition 2.1 and Theorem 3.1, we #¢f,(M /) = ¢.s. With the above discussion about
the number of states o¥1 ./, we have#7,(M_nr/) > v + 1. Putting all of this together,

Y4+ 1< #T(Mrar) < #Tp(P) < #T,(My).q.s.

Therefore #7,(Mr) > 'Yq—JrSl SinceT, (M) is isomorphic to a subset of the syntactic monoid.of
this monoid has at Ieagct;f—s1 classes, each containing a word of length at I@astince for all wordsw

of length at least, we can use Lemma 4.1 t0 get<g- ep, (x) (0°=11)™w, integers corresponding to
elements of the different equivalence classes can be claobirarily large. O

5. Application to a decision procedure

Let X C N be ab-recognizable set of integers such thatep, (X) is accepted by some DFA. A usual
technique for deciding whether or nét is ultimately periodic is to prove that whenevEris ultimately
periodic, then its period and its preperiod must be boungesbme quantities depending only on the size
of the DFA A. Therefore, one has a finite number of admissible periodspegpkriods to test, leading
to a decision procedure. For details, see [3]. In partictier following result [3, Prop. 44] stated in full
generality for any abstract numeration system (i.e., thguage of numeration is a regular language)
shows that we have only to obtain an upper bound on the adigigseriods.

Proposition 5.1. Let S = (L, X, <) be an abstract numeration system. XIf C N is an ultimately
periodic set of perioghx such thatepg(X) is accepted by a DFA with states, then the preperiod &f
is bounded by an effectively computable const@rdepending only o andpx .

Subtractingval, (V) on both sides, we getl, (pa0'V!) = val, (p'70!V) mod q. Since(q, b) = 1, we can multiply or divide
a convenient number of times byand getval, (pa0'"'!) = val, (p'70!"!) mod ¢. Hence, one addsal, (W) to both sides.

2If val,(Xx) andval,(Y3) are both congruent to a value not equal tmodulog, then X, andYj, do not belong tal’. As
a second case, we may assume KatY, € L', i.e.,valy(X}) andval, (V%) are respectively of the form(T + j) + 7 and
q(T +3') +1i for somej, /. As discussed in the second paragraph of this proof, sincandY}, have the same suffix of length
v, thenj = 5' mod P which meansthad(T +j) +i€ X ©q(T+j)+i€ X,or X € L& Yy, € L.



12 A. Lacroix, N. Rampersad, M. Rigo, E. Vandomme / Syntactioplaxity of Ultimately Periodic Sets of Integers

The following result is a consequence of Proposition 4.1.

Theorem 5.1. Letb > 2. If X C N is an ultimately periodic set of periggy = db™q given as in (3),
then the syntactic complexity 6f rep, (X ) is greater than or equal toax{q.s, 7;_;1 } where is defined
asin (7).

Proof:

Let I be the preperiod of. Even if Proposition 4.1 is about (purely) periodic setsriégers, if we
consider instead an ultimately periodic set, since we cansdwords belonging to different equivalence
classes in such a way that their numerical value is greaderitithen the lower bound on the number of
classes is still valid for the ultimately periodic case. O

Assume thab > 2. Therefore, giving a DFAA accepting0* rep,(X) and so the corresponding
syntactic monoid, ifX is ultimately periodic, then we get an upper bound on itsqukriindeed, ifm
written db"q as in (3) tends to infinity, then at least one of the three quesitl, n or ¢ tends to infinity
and thanks to Remark 4.2, the corresponding functier{q.s, %} tends to infinity. As soon as a
bound on the possible period is obtained, one can use PtigpoSil to get a bound on the possible
preperiod. It suffices then to test a finite number of admlisghirs preperiod/period and compare those

with the given sefX.
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