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Abstract – A finite element analysis of a permanent magnet
transverse flux linear actuator is presented. In this applica-
tion where we need as well a small model (for optimisation
purposes) as a high accuracy on the computed force, we pro-
pose to combine several models with different levels of sizeand
complexity, in order to progressively elaborate an accurate, but
nevertheless tractable, model of the system.

1. Introduction

One of the typical outcomes of the numerical modeling of
the dynamics of actuators is the estimation of the magnetic
force exerted on moving parts. In the conception and the
design of such devices, the geometry of the magnetic cores
(and consequently of the airgap) is a fundamental issue. Op-
timizing the geometry so as to match technical constraints
requires numerous numerical computations of the system,
which makes it highly desirable to dispose of a numerical
model of small size. On the other hand, the exerted force
depends on the distribution of the magnetic field around the
moving part. It has always a 3D component, of which the
relative importance depends on the geometry as well. The
aim of this paper is to design a finite element model of a
linear transverse flux actuator, which allows the computa-
tion of the force with a given accuracy while minimizing the
number of unknowns. The geometry and the main charac-
teristics of the actuator are described. A 2D model and a
simplified 3D model limited to a region around the mover
are presented. A dual approach in both scalar potential and
vector potential formulations is proposed. Two methods to
compute the magnetic force on the mover are presented.

2. Description of the motor

The permanent magnet transverse flux linear actuator under
consideration aims at fast and accurate positioning. It has
been described in previous papers [1][2]. The actuator con-
sists of two independent motors facing each other (Fig. 1).
The stators can be seen as long C-cores with toothed lower
and upper plates. A coil is wound around each vertical core.
The teeth of the two stators are shifted in space by a quarter
of a pole pitch, so that the reluctance forces in the direc-
tion of the movement, i.e. theX-axis, cancel each other out
[1][2]. The movers are made of blocks of iron and of blocks
of high energy magnets magnetized in theX direction al-
ternately. A block of non-magnetic material is sandwiched
between the movers in order to avoid flux passing from one
mover to the other. The movers are therefore mechanically

Fig. 1. Geometry of the overall transverse flux linear actuator

connected but magnetically independent, and only one mo-
tor needs to be modeled (Fig. 2). The magnet and iron
blocks forming the mover have the same dimensions as the
stator teeth in theX andZ directions. The pole pitch is
equal to four times the block length. The position of the
mover is measured with respect to a reference position for
which the first block of the mover is aligned with a stator
tooth.
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Fig. 2. Full 3D finite element model of the actuator

3. Finite element models

In this application where we need as well a small model (for
optimisation purposes) as a high accuracy on the computed
force, we propose to combine several models with different
levels of size and complexity, in order to progressively elab-



orate an accurate, but nevertheless tractable, model of the
system.

A. Airgap centered 3D model

When dealing with 3D models, it is important to use un-
knowns sparingly. As the accuracy of the computed force
depends mainly on the accuracy of the computed magnetic
field in the airgap around the mover, we can advantageously
leave the vertical core and the coil outside the model. There-
fore, we have defined an airgap-centered 3D model, which
focuses on the airgap field and devote a maximum of the
available unknowns to the description of the field around the
mover (Fig. 3). The airgap centered 3D model is connected
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Fig. 3. (a) full 3D model and (b) focused 3D model of the actuator

to a simple magnetic circuit that accounts for the vertical
core and the coil, in order to get in total a complete rigorous
model of the system.

B. 2D model

The three-dimensional effects occurring around the mover
cannot be taken into account by a two-dimensional model.
However, the 2D approximation has definite advantages if
compared to a full 3D approach: the geometry and the con-
trol of the quality of the mesh are easier and faster; and the
computation time is significantly lower. Therefore, the de-
sign of a 2D model is generally a preliminary step which
allows the designer to perform many computations to deter-
mine the overall behaviour of the system, and to investigate
the influence of the parameters, at a reduced computation
cost. The 2D model is a slice of the motor in theX − Y

plane (Fig. 4). Two regions are added, above and under the
stator teeth, to represent the part of the stator around which
the coil is wounded. The problem is solved with both scalar
potential and vector potential formulations as explained in
the following section.

4. Finite element dual formulations

In this application, dual analysis is used to determine which
refinement is necessary in the airgap to have the force on the
mover computed with a given accuracy. This question can
be answered satisfactorily in the context of a 2D analysis,
because one may assume that the smallness of the charac-
teristic mesh size needed to obtain a given accuracy will not
depend crucially on the 3D effect. The costly dual analysis
is therefore carried over with the simplified 2D model, in
order to find out how fine the mesh in the airgap must be to
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Fig. 4. 2D finite element model

reach the desired accuracy and how coarser it can be at other
places. The convergence of the force computed by the 2D
dual formulations as a function of the total number of nodes
of the mesh, is shown on Fig. 5. The values obtained with
the dual approach give a valuable control on the accuracy.
On basis of this curve, a relation can be found between the
characteristic length of the elements of the mesh and the ac-
curacy of the global quantities (force, energy). This relation
helps designing the 3D model, by giving an approximation
of the size and the distribution of the elements in the 3D
mesh in order to reach a given accuracy. To illustrate the
relative computation cost of the models, a 3D mesh of more
than 500000 nodes is necessary to obtain the same accuracy
as a 2D mesh of 20000 nodes.
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Fig. 5. Convergence of the force computed in 2D with thea and
h − φ formulations ; fluxϕ = 0.002 Wb

The problem is magnetostatic and the Maxwell equa-
tions (1-2) must be solved.

div b = 0 (1)

curlh = j (2)

A. Scalar potential formulation

The magnetic fieldh is decomposed into the sum of the gra-
dient of the scalar magnetic potentialφ, and the source field



hs which must verifycurlhs = j, so that equation (2) is
automatically fulfilled.

h = hs − gradφ (3)

The constitutive law is

b = µ0 (h + m) (4)

m =







0 in air
m(b) or m(h) in iron
hc in permanent magnets

(5)

wherehc is a constant depending on the type of permanent
magnet. Replacing (3) in (4), and then in (1), we obtain

div(µ0 (hs − gradφ + m)) = 0 (6)

of which the weak form is
∫

Ω

gradφ′ · (µ0 (hs − gradφ + m)) dΩ

−

∫

ΓL∪ΓR

φ′ b · n dΓ = 0 , ∀φ′ ∈ F 0
h (Ω) (7)

with

F 0
h (Ω) = {φ ∈ L2(Ω); gradφ ∈ L2(Ω), φ|ΓU∪ΓD

= 0}.
(8)

B. Vector potential formulation

The magnetic induction is expressed asb = curla, in order
to fulfill (1). Equation (2) expressed in terms of the vector
potentiala becomes:

curl(
1

µ0
curla − m) = j (9)

The weak form is
∫

Ω

curla′ · (
1

µ0
curla − m) dΩ

−

∫

ΓU∪ΓD

(a′ ∧ h) · n dΓ = 0 , ∀a′ ∈ F 1
h (Ω)(10)

with

F 1
h (Ω) = {a ∈ L2(Ω); curla ∈ L2(Ω), n∧a|ΓL∪ΓR

= 0}.
(11)

C. Boundary conditions

The boundary conditions for the 2D model (Fig. 4) are set
according to Table I-II.

5. Force computation

A. Direct differentiation of energy and coenergy

An accurate computation of the force profile is one of the
goals of this finite element analysis. The calculation of elec-
tromagnetic forces by direct differentiation of the magnetic
energy or coenergy is simple, easy to understand and per-
fectly rigorous; but it is generally disregarded because it

TABLE I
BOUNDARY CONDITIONS FOR THEh − φ FORMULATION

Fix I :
ΓU : φ = I

ΓD : φ = 0
ΓL ∪ ΓR : b · n = 0

Fix ϕ :
ΓU : −

∫

ΓU

µ0 (hs − gradφ + m) · n dΓ = ϕ

ΓD : φ = 0
ΓL ∪ ΓR : b · n = 0

TABLE II
BOUNDARY CONDITIONS FOR THEa FORMULATION

Fix I:
ΓU ∪ ΓD : h ∧ n = 0

ΓL : aZ = 0
ΓR :

∫

ΓR

( 1
µ0

curla − m) · n dΓ = I

Fix ϕ:
ΓU ∪ ΓD : h ∧ n = 0

ΓL : aZ = 0
ΓR : aZ = ϕ

requires to solve several times the system. However, this
drawback vanishes if one is interested in the force, not at
one particular position, but over a range of positions. The
total magnetic coenergyΦ and magnetic energyΨ of the
system are given by

Φ(h) =

∫

Ω

1

2
µ0 (h + m)

2
dΩ (12)

Ψ(b) =

∫

Ω

1

2 µ0
b · b − m · b dΩ (13)

Making use of (4), one checks easily that expressions (12)
and (13) verify the relation

Ψ(h) + Φ(b) =

∫

Ω

b · h dΩ . (14)

In soft magnetic materials,hc vanishes and we obtain the
classical expressions of energy and coenergy. In permanent
magnets, we have a situation represented in Fig. 6 for a given
working point(b, h) such thatb · h andΦ are negative. No-
tice that in that case,Φ andΨ are not equivalent.

The coenergyΦ(h) is computed when the scalar poten-
tial formulation is used, whereas the energyΨ(b) is com-
puted when the vector potential formulation is used. Since
the problem is solved for a set of successive positions of the
mover, we can easily compute the value of the component
of the force in the direction of motion at any pointxi, with
a second order approximation of the derivative of the coen-
ergy or the energy:

Fx(xi) =
Ψ(xi+1) − Ψ(xi−1)

xi+1 − xi−1

= −
Φ(xi+1) − Φ(xi−1)

xi+1 − xi−1
(15)
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Fig. 6. Energy and coenergy in the magnet

B. Eggshell method

On the other hand, if one is interested in the transient anal-
ysis of the actuator, a method that gives directly the force
at each position is needed. There are two possibilities, the
virtual work principle and the Maxwell stress tensor.

The virtual work method is fairly general but not easy
to understand nor to implement. Moreover, the generality
of this costly method is not fully exploited in this particu-
lar case where, instead of the local values at nodes of the
magnetic force, the resultant force exerted on a rigid body is
sought after. It is therefore worth finding a more dedicated
and efficient method. The technique we have adopted, i.e.
the eggshell method [8], stems from the application of the
Maxwell stress tensor. The latter is precisely valid for the
computation of the magnetic forces exerted on rigid bodies
placed in air. A direct application of the Maxwell stress ten-
sor requires however to integrate over a surface an expres-
sion of which the computation requires information coming
from outside the surface (i.e. the normal gradient of the po-
tential). This makes it necessary to find out, for each inte-
gration point in the surface, the finite element to which it
belongs. The eggshell method is a particular application of
the Maxwell stress tensor that avoids this disadvantage. It
consists in averaging the Maxwell stress tensor over a con-
tinuous class of concentric closed surfaces, which fill up an
eggshell shaped regionΩB placed around the moving body
(Fig. 7). Arkkio’s famous formula for torque computation
in electrical machines [4] results from the application of the
same principle in the airgap of an electrical machine, assum-
ing a rigid body rotation of the rotor.

The parallelepipedic eggshell shown in Fig. 7 can in that
way be considered as filled up by a class of parallelepipedic
surfaces enclosed inside each other. The normal to all those
surfaces make up a unit vector fieldn that is uniform over
each of the six walls of the eggshell. It can usually be de-
fined analytically. For rigid body translations, the eggshell

ΩB

Fig. 7. Eggshell regionΩB enclosing a layer of air and the mover
(grey volume)

method formulae are:

F =

∫

ΩB

µ0

δ
(h (h · n) −

1

2
n (h · h)) dΩB (16)

F =

∫

ΩB

1

µ0 δ
(b (b · n) −

1

2
n (b · b)) dΩB (17)

whereδ is the thickness of the eggshell.
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Fig. 8. Comparison of the forces computed with the eggshell
method and the differentiation of coenergy, in 2D and 3D (h − φ)

Fig. 8 shows a comparison between the two methods
used for force computation. They give similar results, as
well in 2D as in 3D, but the method based on the direct dif-
ferentiation of energy suffers from the loss of accuracy due
to the numerical differentiation.

In total, the eggshell method is more interesting because
it requires only the integration over a smaller volume (ΩB

instead of the complete domain) and all the needed informa-
tion is contained in that small volume. We have also found
it to be more accurate in the 3D case.

6. Results

A first set of calculations has been done with the 3D and
the 2D models, using theh − φ formulation. The 2D and
3D meshes contain 7000 and 87000 nodes respectively. The



mover displaces over one pole pitch and for each position,
the coil current takes the five values−200 A, −100 A, 0 A,
100 A and200 A.
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Fig. 9. 3D (h − φ): coenergy of the system as the coil current
ranges from−200 A to 200 A
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Fig. 10. 2D (h − φ): coenergy of the system as the coil current
ranges from−200 A to 200 A

One sees in general that the 3D effect influences sensibly
the energy and coenergy of the system (Fig. 9-10), as well
as the developed force (Fig. 11-12) but that the 2D model
captures the most important features of the behaviour of the
device. The 3D effect of the force is not a simple multipli-
cation factor but it depends on the position of the mover. It
can be estimated from Fig. 8.

The shape of the curves, the relative influence of the
coil currents, are all qualitatively well described by the 2D
model, at a much lower computational cost and with a much
better continuity. They give a justification that one can pur-
sue as far as possible the geometrical optimisation with the
2D model. It suggests indeed that the optimum configura-
tion found by the 2D analysis will not be very different from
the real optimum. The slight irregularities of the curves rep-
resenting the force profiles computed in 3D (Fig. 11) show
that the 3D mesh is too coarse, even if the number of nodes
is ten times greater than in the 2D mesh and despite the fact
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Fig. 11. 3D (h − φ): force alongX computed with the eggshell
method, as the coil current ranges from−200 A to 200 A
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Fig. 12. 2D (h − φ): force alongX computed with the eggshell
method, as the coil current ranges from−200 A to 200 A

that, due to the presence of the eggshell, there are several
layers of elements in the airgap. This accuracy problem is
obviously attributable to a lack of accuracy of the solutionit-
self, and not to the method used to compute the force, since
the results obtained by the differentiation of the coenergy
and the eggshell method confirm each other (Fig. 8). The
oscillations of the curves in Fig. 8 come from the fact that
the number of layers of elements in the eggshell increases
discontinuously with the total number of elements.

7. Conclusion

A linear transverse flux actuator has been described. A two-
dimensional and a simplified three-dimensional finite ele-
ment model of the machine have been proposed in order to
reduce the computation time, with a view to the optimisation
of the force on the mover. The dualh − φ scalar potential
anda vector potential formulations in presence of perma-
nent magnet materials have been reminded. Two methods to
compute the force have been described, and their respective
advantages have been pointed out. The finite element mod-



els have then been used to compute the force acting on the
mover, as a function of its position and the coil current. It
has been shown that the 2D analysis is unable to describe all
the 3D effects, and to accurately evaluate the amplitude of
the force and of the energy or coenergy of the system. How-
ever, it can describe the important features of the behaviour
of the device, and give an idea of the sensitivity of the global
quantities to a variation of parameters, at a much lower com-
putation cost. In addition, the 2D formulations are in some
cases easier to implement: the vector potential formulation,
for instance, does not require to build a spanning-tree for
gauging. Therefore, if it cannot substitute for a 3D analysis,
it nevertheless constitutes a valuable preliminary and com-
plementary step.
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[2] G. Deliége, H. Vande Sande, K. Hameyer, and W. Aerts, “3D
finite element computation of a linear transverse flux actua-
tor”, Proceedings of the International Conference on Power
Electronics, Machines and Drives (PEMD2002) (Bath, UK),
April 2002, pp. 315-319.

[3] H. Weh and J. Jiang, “Berechnungsgrundlagen für transver-
salflußmaschinen”,Archiv für Elektrotechnik, Vol. 71.

[4] Arkkio, “Analysis of induction motors based on the numeri-
cal solution of the magnetic field and circuit equations”,Acta
Polytechnica Scandinavica, page 56, 1987.
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