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Introduction

L’intérét que porte 'homme & la science des raisonnements remonte & I’antiquité grecque.
On trouve en effet dans les travaux d’ARISTOTE les premiers balbutiements de ce qu’on qualifie
aujourd’hui la logique classique. Le point de vue alors abordé était celui du philosophe, et le
degré de vérité que pouvaient prendre les propositions ne dépassait que rarement la simple
dichotomie vrai—faux.

Il faut attendre le milieu du dix-neuviéme siécle pour que le mathématicien G. BOOLE
donne des bases mathématiques solides a 1’étude du calcul des propositions. Ce fut le point
de départ de la logique algébrique, dont le principe premier consiste a greffer a ’ensemble des
propositions d’une logique une structure d’algébre, appelée algébre de LINDEBAUM—TARSKI.
Le mathématicien peut alors déployer la panoplie de 'algébre universelle pour s’attaquer a
I’étude des propriétés de son systéme formel.

Consécutivement au développement de la logique propositionnelle classique initiée par G.
BOOLE, les mathématiciens commencérent & s’interroger a propos de la possibilité de dépasser
le cadre classique ne permettant qu'une approche grossiére du raisonnement humain.

Ce fut la naissance des logiques modales, par lesquelles les logiciens tentérent de modéliser
différents types de raffinements des propositions, comme la possibilité, la connaissance, la
probabilité ou ’obligation. L’introduction de la modalité dans la logique classique se traduit
par la définition d’un opérateur sur I'algébre de BOOLE des formules.

Parallélement, d’autres mathématiciens, peu satisfaits des résultats offerts par les logiques
modales, développérent des systémes formels dans lesquels les propositions peuvent prendre
plus de deux valeurs de vérités. Ainsi, J. LUKASIEWICZ introduisit en 1920 un systéme trivalué
(cf. [31] et [2] pour une traduction en anglais) qu’il étendit tout naturellement & des systémes
n-valués et infini-valués (cf. [32| traduit en anglais dans [2]).

C’est dans ce contexte que naquirent les MV-algébres. En effet, elles furent pour la premiére
fois étudiées par C.C. CHANG en 1958 (cf. [4] et [5]) car elles apparaissaient comme les
algébres de LINDENBAUM de la logique infini-valuée de LLUKASIEWICZ. L’étude de la variété
de ces algebres (dont les algébres de BOOLE forment une sous-variété) permit notamment a
C.C. CHANG d’établir la complétude du systéme infini-valué de LUKASIEWICZ (cf [5]). Mais la
classe de ces algébres regorge de richesses insoupgonnées qui attirérent I’attention de nombreux
algébristes depuis leur découverte.

Un des outils puissants de ’algébre universelle est la théorie des dualités. Son principe
de base consiste & associer une structure topologique X a une algébre A telle qu’on peut
reconstruire A & partir de X. Les exemples historiques de dualité — la dualité de STONE pour
les algebres de BOOLE (cf. [30]), la dualité de PRIESTLEY pour les treillis distributifs (cf. [27]
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et |28]), la dualité de PONTRIAGYN pour les groupes abéliens (cf. [25] et [26]) — illustrent
parfaitement la richesse de cette théorie.

Récemment encore, P. NIEDERKORN développa (cf. [23]|) une dualité pour les variétés de
MV-algébres engendrées par une MV-chaine finie, dualité qui fut étendue dans [21] aux variétés
de MV-algébres finiment engendrées par P. NIEDERKORN, P. MATHONET et B. TEHEUX.

Dans ce mémoire, nous nous proposons d’appliquer cet outil & deux problémes classiques
de I’algébre universelle.

Le premier de ces problémes est 1’étude du treillis des sous-algébres. Depuis toujours,
les mathématiciens s’intéressent a déterminer les propriétés communes du treillis des sous-
algébres des algébres de leur variété de prédilection. Par exemple, GRATZER, KOH et MAKKAI
obtinrent dans [13] une caractérisation du treillis des sous-algébres d’une algébre de BOOLE
et SACHS étudia dans [29] les éléments maximaux dans ces treillis (une synthése de toutes ces
propriétés peut étre trouvée dans [1]).

Cependant, la théorie des dualités ne fut que rarement appliquée pour résoudre des pro-
blémes liés aux treillis des sous-algébres (contrairement au treillis des quotients). Ainsi, dans
la plupart des cas, la notion de sous-algébre ne semble pas se dualiser « confortablement »
dans la catégorie duale. Des exceptions existent, comme c’est le cas pour les R-sous-treillis
d’un treillis distributif borné (cf. [33]), ou pour les sous-algebres des algébres de HEYTING (cf
[15]).

Dans le troisiéme chapitre de ce travail, nous essayons donc de convaincre le lecteur que le
cas de la dualité pour les variétés HSP(L,,) est une autre exception qui prouve qu’'une dualité
peut se montrer généreuse en résultats sur I’étude du treillis des sous-algébres. Ainsi, entre
autres conséquences, nous obtenons le caractére dualement atomique de ces treillis, nous en
décrivons les éléments maximaux, et en étudions la modularité et la distributivité.

Le deuxiéme probléme auquel nous nous sommes attaqués, et qui constitue le quatriéme
chapitre, est centré sur la construction d’une dualité pour une théorie des MV-algébres a
opérateurs. La théorie des algébres de BOOLE & opérateurs, introduite par B. JONSSON et A.
TARSKI dans [16] et [17], et qui connut un second souffle en 1963 quand KRIPCKE introduisit
les modéles qui portent son nom, peut étre vue comme une contrepartie algébrique de la
logique modale. C’est pour faciliter leur étude que G. HANSOUL développa dans [14] une
dualité catégorique pour la classe de ces algébres, étendant par 1a les résultats de [16]. L’idée
de cette dualité est de construire le dual d’une algébre de BOOLE a opérateur (2B,[1) en
considérant le dual x(%B) de B sous la dualité de STONE et en traduisant opérateur OJ en
une relation binaire sur x(8).

Pour établir une dualité pour les MV-algébres a opérateurs, le premier obstacle qu’il a
fallu surmonter était de déterminer une axiomatisation des opérateurs qui & la fois étend
I’axiomatique booléenne et qui se révéle aussi étre suffisamment riche que pour permettre
la dualisation. Notons d’emblée que les résultats de MCNAUGHTON (cf. [22]) concernant les
fonctions termes sur [0,1] ont été d’une importance capitale a cet effet.

Ainsi, dans le quatriéme chapitre, nous définissons la classe des MV-algébres & opérateurs
et nous développons, en mimant la technique classique, une dualité pour la classe des MV-
algébres munies d’un opérateur unaire et qui sont construites sur une MV-algébre d’une variété

finiment engendrée. Cette dualité étend la dualité booléenne et I'axiomatisation de la classe
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duale ne fait intervenir qu’une condition de structure supplémentaire par rapport au cas
classique. Nous avons espoir que dans un futur proche, cette dualité puisse nous mener &
I’étude d’une logique modale multi-valuée.

Pour faciliter la lecture de cet ouvrage au lecteur peu familier avec la théorie des MV-
algébres et des dualités, nous avons consacré le premier chapitre a de brefs prolégomeénes.
Nous avons réservé le deuxiéme chapitre a des rappels concernant les définitions et propriétés
des différents types de modularité sur les treillis.

Les chapitre 3 et 4, qui forment le noyau de ce travail, peuvent étre lus indépendemment
I'un de l'autre. Le lecteur désorienté trouvera a la fin de 'ouvrage un index et un index des
notations qui, nous ’espérons, lui permettront de retrouver son chemin dans le dédale du

vocabulaire mathématique.
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CHAPITRE 1

Prolégoménes

Dans ce chapitre, nous voulons rappeler au lecteur les définitions et les propriétés qui sont
nécessaires & la compréhension du travail exposé dans la suite de cet ouvrage. Nous supposons
que le lecteur est déja familier avec la théorie de l’algébre universelle (et avec ses exemples
les plus connus: treillis, algébres de BOOLE, etc.) et de la topologie générale, qu’il connait
le vocabulaire élémentaire de la théorie des catégories et que la théorie des dualités entre
algébres et structures topologiques ne lui est pas tout a fait étrangére. Le ton étant donc
essentiellement au rappel, nous renvoyons le lecteur désorienté aux ouvrages [3] et [11]| pour
obtenir plus d’informations & propos de ’algébre universelle, a l'article [10] en ce qui concerne
les structures topologiques, au livre [20] pour la théorie des catégories et enfin au travail [9|
de DAVEY et WERNER pour la théorie des dualités naturelles.

1. MV-algébres

1.1. Définitions et exemples. Nous avons consacré le noyau de ce mémoire a I’'étude
de certaines propriétés des MV-algébres. Ce n’est donc que justice que de leur consacrer la
premiére partie de ces prolégomeénes.

Les MV-algébres furent introduites en 1958 par C.C. CHANG (cf. [4] et [5]) pour donner un
aspect algébrique aux logiques multi-valuées de LUCKASIEWICZ. Les algébres de LINDEBAUM
de ces logiques sont en effet des MV-algébres et l'application des techniques de I’algébre
universelle & ces derniéres a permis d’aboutir (entre autre chose) & une preuve algébrique du
théoréme de complétude de la logique infini-valuée de LUCKASIEWICZ (cf. [5]). Depuis lors,
la variété des MV-algébres, qui apparait comme une extension de la variété des algébres de
BOOLE, fut étudiée par de nombreux algébristes dont les motivations furent aussi diverses
qu’éloignées des considérations logiques qui lui avaient donné naissance. Le lecteur intéressé
trouvera dans [6] un petit panorama de la théorie des MV-algebres.

Bien que depuis 1958 la classe des MV-algébres ait re¢u plusieurs axiomatisations diffé-
rentes (on les connaissait alors sous le vocable d’algébres de WAJESBERG, de BCK-algébres
commutatives bornées, leur variété pouvant également étre considérée comme une sous-variété
de la variété des BL-algébres), on s’accorde aujourd’hui pour définir une MV-algébre comme
étant une algebre (A4;®, ®,—,0,1) (nous noterons Lyry le langage des MV-algébres) de type
(2,2,1,0,0) telle que (A; ®,0) est un monoide abélien et satisfaisant aux équations suivantes:

(MV1) -z =z, (MV2) r®1l=uz,
(MV3) -0=1, (MVy) Oy =-(-z ),
(MV5) (oY) dy=(yo©x)d .

Souvent, nous utiliserons ’expression x — y comme abréviation de y @ —x. Nous désignerons
par MYV la variété des MV-algébres.
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Notons que si (4;®, ®,—,0,1) est une MV-algebre, il est possible de greffer sur A une
structure de treillis distributif borné (inférieurement par 0 et supérieurement par 1. Cf. [4] ou

[6] pour les preuves.) L’ordre < qui lui est associé est alors défini par
rlysr—y=1,
et les opérations V et A de ce treillis sont données par

zVy = (yox) Pz,
ANy = (y&-z)0ou.

Ces opérations jouissent sur toute MV-algébre des propriétés suivantes:

TOYVz)=(@oyV(zoz),

2@ (A2 = (@EY) A2 e2).
Par MV-chaine (ou MV-algébre totalement ordonnée ), on entend naturellement une MV-
algébre dont 'ordre associé est total.

Par ailleurs, un élément x de la MV-algébre A (nous commettrons souvent 1’abus consacré
par l'usage qui consiste & désigner une algébre par son univers) est dit idempotent si x Gx = x.
Nous noterons B(A) l'ensemble des éléments idempotents de A. Il s’agit d’une sous-algebre
de A et c’est méme la plus grande sous-algébre de A & étre une algébre de BOOLE (I'opération
V coincide alors avec @ et A avec ®). C’est en ce sens que la variété des algébres de BOOLE
apparait comme une sous-variété de MV. Il suffit en effet d’ajouter I’équation = &z = =
a 'axiomatisation de MYV pour obtenir une base équationnelle de la variété des algébres de
BOOLE.

L’exemple le plus fondamental de MV-algebre est I'algébre ([0,1]; &, ® ,—,0,1) définie sur
'intervalle réel [0,1] par

xr®y = min(z+y,l),
r = 11—z
Un des résultats principaux de C.C. CHANG (cf. [5]) est d’avoir obtenu que la variété des MV-
algébres est engendrée par I’algébre [0,1]. Dans ce cas, il est trivial de vérifier que 'ordre associé
a la MV-algebre [0,1] coincide avec I'ordre usuel sur les réels. D’autres exemples importants
sont constitués par les sous-algébres L, = {0,%, .. ,”T_l,l} de [0,1] (ou n € Np). En effet, la
classification des sous-variétés de MV obtenue par KOMORI (cf. [18] et [19]) montre que les

sous-variétés finiment engendrées coincide avec les variétés engendrées par un nombre fini de
MV-chaines L,, (n € Np).

=n

1.2. Congruence et filtre implicatif. Similairement au cas des algébres de BOOLE,
toute congruence sur une MV-algébre est caractérisée par la classe de 1. Ainsi, on dit qu'un
sous-ensemble F' de la MV-algébre A est un filtre implicatif (ou tout simplement filtre) si F
contient 1 et si chaque fois que F' contient les éléments = et x — y alors F' contient également
1. Bien-siir, on dit qu’un filtre est propre si il ne contient pas 0, qu’il est non trivial s’il différe
de {1} et qu’il est mazimal s'il est maximal parmi les filtres propres. On constate aisément
que l'ensemble F(A) des filtres de la MV-algébre A est un treillis borné. On définit également
la fonction distance

d: A* = A: (z,y) — (20 -y) & (y © —x).
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Avec ces définitions, on peut montrer que si F' est un filtre sur A alors la relation binaire 6 p
définie par
(x,y) € O & ~d(z,y) € F

est une congruence sur A telle que 197 = F. Inversement, si € Con(A), alors 1¢ est un filtre
tel que 6,0 = 6. De plus, ces correspondances biunivoques sont isotones, de sorte que le treillis
Con(A) des congruences d'une MV-algébre A est isomorphe au treillis F(A) de ses filtres. Par
ailleurs, cet isomorphisme donne un sens & des notations du type A/F (qui est par définition
le quotient de A par 0p) lorsque F est un filtre de A.

Il est aussi intéressant de définir la notion de filtre premier d’'une MV-algébre A: il s’agit
d’un filtre propre de A qui contient —x & y ou —y @ x pour tous z et y dans A. On constate
alors que, par définition de ’ordre sur une MV-algébre A, le quotient de A par un de ses filtres
F' est une MV-chaine si et seulement si F' est un filtre premier.

Enfin, notons que le théoréme d’extension de STONE pour les algébres de BOOLE posséde
son pendant pour les MV-algébres. En effet, si A est une MV-algébre non triviale, si x est un
élément de A et si F est un filtre propre de A qui ne contient pas x, alors il existe un filtre

premier de A qui contient F' mais pas x.

1.3. Précisions a propos des variétés finiment engendrées.

1.3.1. Les sous-variétés finiment engendrées. Comme nous l’avons déja énoncé plus haut,
les sous-variétés finiment engendrées de MV sont les variétés HSP(L,, ,...,L, ) ot r € Ny et
{ni1,...,n,} € Np. Par ailleurs, on constate facilement que I'algébre L,, est plongeable dans
L,, (m et n dans Np) si et seulement si m appartient a I’ensemble des diviseurs de n, que nous
noterons div(n) (dans ce cas, le plongement est d’ailleurs unique). Ainsi, il vient

HSP(L,,,, ... Ly, ) C HSP(L

ppcm{m,.‘.,nr})‘

Enfin, on peut montrer que l'algébre L,, (n € Np) est semi-primale, ce qui implique, par

le théoréme de JONSSON, que
HSP(L,,) = ISP(L,),
propriété fondamentale pour la construction d’une dualité naturelle sur HSP(L,, ).

1.3.2. Termes et fonctions linéaires par morceauz. Pour les développements du quatriéme
chapitre de ce mémoire, nous allons avoir besoin d’une description des fonctions termes (& une
variable) du langage Ly des MV-algébres sur [0,1]. Cette description est un cas particulier
d’un résultat dit &8 MCNAUGHTON (cf. [22]). Ce résultat affirme, dans le cas (restreint) qui
nous occupe, que l'ensemble de ces fonctions termes coincide avec ’ensemble des fonctions
f:10,1] — [0,1] telles que

e l'application f est continue relativement & la topologie euclidienne;
e il existe des polyndmes du premier degré pi(z), ... ,pr(z) a coefficients entiers assurant
que pour tout a dans [0,1], il existe un ¢ dans {1,...,k} tel que f(a) = pi(a).
Autrement dit, les Lyryv-termes sur [0,1] ne sont autres que les fonctions continues et linéaires

(& coefficients entiers) par morceaux (que l'on appelle encore fonctions de MCNAUGHTON).
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Par exemple, si % appartient a L, (n € Np), nous pouvons définir la fonction

0 six<%,
01— 01z ne—(i—-1) sitl<p<i
1 siz>4L

qui est une fonction de MCNAUGHTON, donc l'interprétation d'un Lyry-terme 7; sur [0,1].
Dans la suite, nous réserverons la notation 7; pour désigner ce terme. Notons d’emblée que
son interprétation sur L, est une fonction croissante qui vérifie
0 siz<i
Ti—n (l’) — . ?7
1 six> .
n
Ces termes nous seront bien utiles car il sont des « témoins » de la position respective des

points de L, entre eux.

2. Dualité pour la variété HSP(L,)

L’outil essentiel pour ’étude des deux problémes posés dans ce mémoire est une dualité
développée par P. NIEDERKORN dans [23]| pour la classe HSP(L,) (n désignera un entier
naturel non nul fixé pour le reste de ce chapitre). Notons, bien que cela porte peu a conséquence
pour nos applications, que cette dualité est un exemple d'une dualité naturelle, qui est une
technique générale permettant d’obtenir des dualités entre des quasi-variétés d’algébres et des
classes de structures topologiques. Nous suggérons au lecteur intéressé par ce sujet de consulter
I'ouvrage [9].

La catégorie dont nous allons obtenir un dual est la catégorie MV, dont les objets sont
les membres de HSP(L,,) et dont les morphismes sont les homomorphismes de MV-algébres.

Pour définir la classe duale, désignons par L, la structure topologique
Ln = (Bn; {Em | m € div(n)},7),
ou
(X1) la topologie T est discréte;
(X2) div(n) désigne I'ensemble des diviseurs (positifs) de n;
(X3) pour tout m dans div(n), il faut voir L,, comme une relation unaire sur L,,.

On définit alors la catégorie &, dont les objets sont les membres de IS .P(L;,) (c’est-a-dire les
structures topologiques isomorphes & un sous-espace fermé d’une puissance de L,,) et dont les
morphismes sont les applications continues respectant la structure relationnelle des membres
de IS.P(L,).

En fait, les objets de X, sont exactement les structures topologiques
X
X = (X;{rm | m € div(n)},7)
ou
e la topologie 7 est booléenne (c’est -a-dire compacte, séparée et possédant une base
d’ouverts-fermés);

X
e 7, est un sous-espace fermé de X pour tout m dans div(n);

X X

X X »
eonar, =Xetr,Nry = pour tous diviseurs m et q de n.

" bged(m,q)
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Cela étant, les Xj,-morphismes de la X),-structure X dans la X,-structure Y sont les applica-

tions continues f de X dans Y telles que pour tout m € div(n),
X Y
x €rm = f(x) € rm.

Le foncteur permettant de passer de la catégorie MV, a la catégorie X, est le foncteur

D,, défini par

A S ./\/an = Dn(A) - MV’H(A?Ln)

ot M { J € MVu(A.B) = Dy(f) € X,(Dn(B),Dn(4)).

ot u € ro @ si et seulement si u(A) C L, et ou D, (f)(u) =uo f.
Quant au foncteur E, transformant les objets et les morphismes de X, en objets et mor-
phismes de MV, il est défini par

F M = { ¥ € Xu(X.Y) = En(t) € MVu(En(¥).En(X),

ot E,(¢)(a) = o ¢.
Ces foncteurs ainsi définis, on peut montrer (cf. [23]) que les catégorie MV, et A, sont

dualement équivalentes par les foncteurs D,, et E,, et que I'application
ea:A—E,Dyp(A):a—eqla) :ueDy(A) — u(a)
(resp. ex = X — DyEp(X) tu—ex(u) : o € Ep(X) — a(u))
est un MV,,-isomorphisme (resp. un X,-isomorphisme).

Notons que si A est un objet de MV,, on peut obtenir une sous-base de topologie de
Dn(A) (vu comme sous-espace fermé de Lg) constituée d’ouverts-fermés en recourant aux
ensembles ) )

2 : =] = {u € Du(4) | u() = -},
ol z est un élément de A et ¢ un élément de {0,...,n}. Par ailleurs, on peut montrer (cf.
[23]) que l'espace topologique sous-jacent a la structure D, (A) est homéomorphe au dual de
I’ensemble B(A) des idempotents de A sous la dualité de STONE pour les algébres de BOOLE.
De plus, si on envisage la dualité de STONE sous l'angle des caractéres, c’est-a-dire si 'espace
dual d’une algébre de BOOLE B est défini comme I'ensemble x(28) des homomorphismes de
cette algebre dans l'algébre de BOOLE triviale (c’est le point de vue des dualités naturelles),
une base de cet espace est donnée par les ensembles [z : 0] ot z € B. Cela étant, les termes 7;

précédemment définis permettent de jongler entre les deux sous-bases
{lz:i]|zcAettek,} et {[a:0]]|ac B4}
En effet, il vient

o i] _ { [Tit1(z) : 0] N [=7i(z) : 0] = [Tig1(x) ® —7i(z) : 0] sii<m

n [=7i() : O] sii=n

si z est un élément de A (ce qui implique que 7;(z) est un idempotent) et ¢ un naturel plus
petit que n.
Pour terminer ces considérations topologiques, rappelons que si X est un espace de BOOLE,

on dit que R est une relation de BOOLE sur X si R est une relation d’équivalence sur X telle
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que pour tout couple de point (z,y) € (X x X)\ R on peut trouver un ouvert-fermé R-
saturé séparant = et y. En fait, ces conditions sont exactement celles qu’il faut imposer a
une équivalence R sur X pour que le quotient topologique X /R soit également un espace de
BOOLE. Dans la suite, nous noterons B(X ) 'ensemble des équivalences de BOOLE sur I’espace
de BOOLE X.

Une des richesses de cette dualité réside en ce qu’elle transforme les plongements en
morphismes injectifs et inversement. En conséquence, elle fait correspondre les produits aux
sommes et les sommes aux produits. Or, on constate sans difficulté que la somme d’un nombre
fini de X,-structures n’est autre que leur union disjointe. Cette caractéristique nous permet
d’obtenir trés facilement les duaux des objets finis de MV, et X,,.

Ainsi, si X est un objet fini de X,,, son dual E,(X) est un produit de | X| sous-algébres de
L, le facteur correspondant & un x dans X étant L, si et seulement si

m, = pged({m' € div(n) | z € ri,}).

On obtient donc en particulier (de maniére indirecte) que toute MV ,-algébre finie est un
produit fini de sous-algéebre de L,,.

Par ailleurs, si A est une MV, -algébre finie, alors son dual D, (A) est une X, -structure
discréte possédant un nombre d’éléments égal au nombre de facteurs dans la décomposition
de A (en) produit de sous-algébres de L,,. L’élément x correspondant au facteur L,, appartient

Dn(A

ar 7 siet seulement si m divise m’. Nous aurons largement ’occasion d’illustrer cet aspect

de la dualité lorsque nous étudierons le treillis des sous-algebres pour les membres de HSP(L,, ).

3. Représentation booléenne des éléments de HSP(L,,)

La dualité que nous venons de développer permet également d’obtenir une représentation
de tout élément A de MV, comme un produit booléen sur 'espace D(A) des quotients simples
de A.

Avant de préciser ce résultat, rappelons que si X est un espace de BOOLE, une algébre A
est produit booléen de la famille d’algébres (de méme type que A) (Az)zex si

e l'algébre A est un produit sous-direct des A, (x € X);

e pour tous a et b dans A, le sous-espace [a = b] = {z € X | a(z) = b(x)} est un
ouvert-fermé de X

e pour tous a et b dans X et tout ouvert-fermé w de X, I'élément al,, Ub| x\, appartient
a A (i.e. a sa représentation sous directe dans [[,.x A,).

On qualifie d’archimédienne toute MV-algébre A isomorphe a un produit booléen de sous-
algébres de [0,1]. En fait, on peut obtenir (cf. [8]) que dans le cas d’'une MV-algébre archimé-
dienne, cette représentation est unique (& isomorphisme preés).

Cela étant, si A est une MV-algébre de MV,,, la dualité que nous venons de développer
entre MV,, et X, nous fournit une représentation booléenne (donc unique) comme produit
booléen sur (I'espace topologique sous-jacent a) D,,(A) des quotients simples de A. Plus pré-
cisément, 'application

eqa:A— H u(4) : a— (u(a))uep(a)
u€D(4)

est une représentation booléenne (cf. [23| pour plus de détails).
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4. Une catégorie équivalente a X,

Dans cette section, nous allons développer une équivalence catégorique entre la catégo-
rie X, et une catégorie dont les objets sont des objets topologiquement moins riches, mais
structurellement plus simples que ceux de X),. Il est en effet parfois plus facile d’exprimer les
propriétés des structures quotients dans cette nouvelle catégorie que dans A,.

Ainsi, si X est une X,-structure, les sous-espaces r%(n possédent 'avantage d’étre fermés
et vérifient entre eux des relations simples mais néanmoins contraignantes. Pour éviter de
s’encombrer de ces relations, il est naturel de recourir aux sous-espaces s% définis par

S0 =T \ U r%(n,
m/€div(m)\{m}
pour tous diviseur m de n.

Au vu de cette définition, il est clair que {s% | m € div(n)} forme une partition de X.
Malheureusement, ces ensembles ne jouissent plus de propriétés topologiques élégantes. A la
lumiére de ces remarques, nous sommes amenés & la définition suivante.

Définition 4.1. La catégorie X, est la catégorie dont les objets sont les structures topo-
logiques X = (X;{sw | m € div(n)},7) on

e la topologie 7 est booléenne,
e {sm | m € div(n)} est une partition de X,

o e X 2
e pour tous diviseur m de n, le sous-espace | sty est un fermé de X;

m/ediv(m)
et dont les morphismes sont les applications continues ¥ : X — Y vérifiant
23 ~

X
k) S U s
m/ediv(m)
Ainsi définie, il apparait clairement que la catégorie X, est isomorphe a la catégorie X,.

Proposition 4.2. Soient F,, : X,, — X et K, : X — X, les foncteurs définis par
X . X X .
X = (Xi{rm | mediv(n)},7) — (X;{rm \ Un'edivim) 7y | m € div(n)},7)

Fn : m'#m

peX(XY) ¢
et par
| { X = (X; {siw | m € divm)b7) = (X {Uneaiv(m) 55 | m € div(n)},7)
K, : N m/ediv(m) “m
b e XLXY) .
Alors Fy, et K, définissent une équivalence entre les catégories X, et X),.
On déduit donc de cette proposition que les catégories MV, et X! sont dualement équiva-

lentes. La proposition suivante décrit les foncteurs qui permettent de naviguer entre ces deux

catégories. Bien entendu, nous noterons L, la structure F,,(Ly).
Proposition 4.3. Soient D), : MV,, — X et E|, : X! — MV, les foncteurs définis par
D’ { A (MVn(A L) {{u € MVn(A.L,) | u(4) = Ly} | m € div(n)},7)

n -

"1 € MVu(A,B) = D,(f) € Xu(DL,(B),Dy,(A)) : u > uo f
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et par

" 6 € XUXY) = EL(6) € MVW(EL(X)EL(X)) s am a0 g,

Alors catégories MV, et X, sont dualement équivalentes par les foncteurs D), et EJ,.

E { X = X(X.Ln)

Les catégories X, et X sont fort similaires. De plus, les mécanismes mis en jeu dans la
dualité entre MV, et X,, sont également proches de ceux de la dualité entre MV,, et X.
Ainsi, dans la suite de ce travail, nous procéderons avec opportunisme: nous nous tournerons
vers la dualité qui permet d’exprimer le plus facilement nos résultats. Nous emploierons donc
tantot le foncteur D,, (ou E,), tantot le foncteur D], (ou E/,), mais, pour ne pas alourdir nos
notations, nous privilégierons systématiquement la notation D,, et E,, ainsi que &,, le contexte

permettant de déterminer quelle version de la dualité nous employons.

5. Algébres de BOOLE a opérateurs

Pour s’assurer que le lecteur percoive bien les similitudes entre les opérateurs sur les
algebres de BOOLE et les opérateurs sur les MV-algébres (que nous allons définir dans le
chapitre 4) et pour fixer les notations, nous allons trés succinctement esquisser les prémisses
de la théorie des algébres de BOOLE a opérateurs et de leur dualité.

Un opérateur k-aire (k € Ny) sur Palgebre de BOOLE B est une application f : B B
telle que

o fest conormal: sil < ketsiby,...,bj_1,b111,...,br sont des éléments de B, il vient
f(bla “e. 7bl—1517bl+17 ce. ,bk) = ]-,
e f respecte A sur chacun de ses arguments: si [ < k,

f(b,...\bi—1,a ANbbyy1, ... b)) = f(br, ... .bi—1,a,b141, ... ,bg) A f(b1y ... bi—1,b,b141, - - - ,bK)
pour tous by,...,bj—1,bj+1, - .. ,bg,a,b dans B.
Cela étant, une algebre (3B, VvV, A,0,1,(fi)icr) est une algébre de BOOLE & opérateurs si
e (B,V,A,0,1) est une algébre de BOOLE;
e f; est un opérateur k;-aire pour tout ¢ dans I.

Les opérateurs unaires sont bien souvent notés [ et sont appelés opérateurs modauz. Les
algébres de BOOLE munies d’un opérateur modal sont appelées ALGEBRE MODALE.

5.1. Dualité pour les opérateurs modaux. Rappelons briévement la machinerie de
la dualité topologique construite pour les algébres de BOOLE munies d’un opérateur modal. Si
B est une algébre de BOOLE nous noterons x(28B) son dual sous la dualité de STONE exprimée
avec le point de vue des dualités naturelles. Ainsi x(28B) est ’ensemble des homomorphismes
des % dans 'algébre de BOOLE triviale, muni de la topologie naturelle. De plus, si X est un
espace de BOOLE, nous noterons 7(X) l'algébre de BOOLE formée des applications continues
de X dans {0,1}.

Cela étant, si (,00) est une algébre modale, on définit sur x(28) la relation RX(®) par

(u) e Re Ve (u(z) =1=v(z) =1).
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La relation ainsi obtenue est & graphe fermé et vérifie R™1([b : 0]) = [b : 0] et est
donc telle que 'image inverse par R d’un ouvert-fermé reste un ouvert-fermé. Ce sont en fait
exactement les conditions qu’il faut imposer & une relation binaire R sur un espace de BOOLE
X pour pouvoir définir a l’aide de R un opérateur modal sur n(X).

C’est pourquoi nous qualifierons de booléenne une relation binaire sur un espace de BOOLE
X vérifiant

e R~ !(w) est un ouvert-fermé pour tout ouvert-fermé w de X;
e le graphe de R est un fermé de X?2.

La catégorie des espaces de BOOLE modaux est alors définie comme la catégorie dont
les objets sont les espaces de BOOLE modaux (i.e. des espaces de BOOLE munis d’une rela-
tion booléenne) et dont les morphismes entre les espaces modaux (X,Rx) et (Y,Ry) sont les

applications continues ¢ : X — Y vérifiant
¢ oR X = Ry o) 1p

Alors, on obtient que la catégorie MB des algébres modales (dont les morphismes sont
les homomorphismes d’algébres de BOOLE qui respectent [J) est dualement équivalente a la
catégorie ME des espaces modaux par les foncteurs x’ et 7’ définis par

R e (B0 (((B),RX®)
o ME e ME { [ € MB((B.0n).(€05)) — () € ME(©).X(B)) : urs wo f

et
e s | R = ((X).0x)
viME = ME: { b € ME(X,Ry (Y. Ry)) v 1f () € MB({ (Y)a (X)) s a > a0,
ou Ly est défini par
(Oxa)(u) =0« u e R (a"1(0)).
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CHAPITRE 2

Treillis distributifs, modulaires et semimodulaires

Nous allons ici rappeler les définitions des treillis distributifs, modulaires et (dualement)
semimodulaires ainsi que les liens que ces définitions entretiennent entre elles. Certains des
résultats présentés nous seront en effet utiles dans le chapitre suivant. Nous renvoyons le
lecteur intéressé par des informations complémentaires a [12], d’ou nos résultats sont tirés.

Rappelons d’abord que si a et b sont deux éléments de I’ensemble ordonné (L; <), on note

a<b

en abréviation de

(a<b) & (VeeLl ((a<c<b)= (c=aouc=0)),

(on dira que a précéde b ou que b couvre a.)

1. Définitions et propriétés
Définitions 1.1. Soit L = (L, V ,A) un treillis. On dit que L
e est semimodulaire s’il satisfait le propriété de couverture
a<b=(aVe<bVcouaVec=>bVec)
pour tous a,b,c dans L;
o est dualement semimodulaire s’il satisfait
a<b=(aNc=aAbouaAc<aAb),
pour tous a,b,c dans L;
e est modulaire s’il satisfait
a>b= (aA(cVb)=(aNc)VD),
pour tous a,b,c dans L;
e est distributif s’il satisfait ’équation
zA(yVz)=(xAy)V(xAz).

Nous aurons 'occasion d’illustrer abondamment ces différentes définitions dans le cha-
pitre suivant. Notons d’emblée qu’un treillis distributif est modulaire et que les deux treillis
représentés ci-dessous et appelés respectivement pentagone (noté N3) et diamant (noté Ms)
sont des exemples de treillis non distributifs. Ce sont en fait les prototypes de treillis non
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distributifs, car le théoréme suivant caractérise les treillis non distributifs comme les treillis

ne possédant ni N5 ni M3 comme sous-treillis.
Vv

u u

Proposition 1.2. Soit L un treillis.
(1) Le treillis L est modulaire si et seulement s’il ne contient pas de sous-treillis isomorphe
au pentagone.
(2) Le treillis L est distributif si et seulement s’il ne contient pas de sous-treillis isomorphe

au pentagone ou au diamant.

Preuve. (1) Tout sous-treillis d'un treillis modulaire est modulaire. Donc, comme N5 n’est
pas modulaire, il ne peut étre plongeable dans un treillis modulaire.

Inversement, commengons par montrer que le treillis libre engendré par 3 éléments a,b,c

tels que b < a est le treillis représenté par
aVe

aN(Ve)

bV (aAc)

bAc

En effet, puisque b < a, les seuls suprema et infema qu’il est possible de construire & partir
de deux éléments parmi a, b et ¢ sont les éléments a Ve, bV e, a A c et b A c. Alors, on montre
que les 7 éléments

a,b,c,avVe, bVe,aNe, bAc
sont tous distincts dans 'algébre libre. Pour cela, par définition de l’algébre libre, il suffit
de prouver que pour toute paire d’éléments distincts choisie parmi ces éléments, on peut
construire un treillis H contenant trois éléments a, b et ¢ vérifiant b < a dans lequel la paire

correspondante est formée d’éléments distincts. Par exemple, les treillis

c a
a et c
b b

conviennent pour montrer que a # a V c et a V ¢ # bV ¢ respectivement.
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Maintenant, nous construisons tous les suprema et infema possibles entre un élément de
{a,b,c} et un des 7 éléments de {a,b,c,aVec,bV c,aAe,bAc}. On constate que seuls les éléments
bV (aAc)etaA (bVec)n'ont pas encore été pris en compte. Il nous reste alors & montrer que
les 9 éléments

a,b,c,avVe, bVe,aNe,bAe,bV(anc),aN(bVc)
forment un treillis. Ceci ce fait trés aisément en utilisant les lois d’absorbtion et la position
relative de a et b.

Cela étant, si L est un treillis non modulaire et si a, b et ¢ sont trois éléments de L tels que
a>betaN(cVb)#aA(cVb), alors le sous-treillis de L généré par ces trois éléments est une
image homomorphe du treillis libre que nous venons de construire. Cependant, on constate
facilement que si cet homomorphisme identifie deux éléments parmi les cinq éléments ¢, a A ¢,
bVe,aN(bVe), bV (aAc), alors il identifie également a A (bVe) a bV (aAc), ce qui est absurde
par construction. On en déduit donc que le treillis engendré par a, b et ¢ dans L contient un
sous-treillis isomorphe au pentagone.

Comme dans le premier cas, la condition est évidemment nécessaire. Montrons qu’elle est
suffisante. Supposons qu’il existe des éléments x, y et z de L tels que zA(yVz) # (zAy)V(xAz).
Nous pourrions pour cela, comme dans la preuve du point (1), faire appel au treillis modulaire
libre engendré par 3 éléments. Cette technique revient en fait & considérer les éléments u, a,
b, ¢ et v définis par

u=(xAy)VyAz)V(eAz), v=(aVy AyVz)A(zV2),
a=(zAv)Vu, b= (yAv)Vu,
z=(zAv)Vu

et & constater qu’ils forment un treillis isomorphe au diamant. &

Nous connaissons déja deux maniéres de définir la modularité. La proposition suivante en
donne une troisiéme, sous forme d’une équation, ce qui permet de conclure que la classe des
treillis modulaire est une variété.

Proposition 1.3. Soit L un treillis. Les conditions suivantes sont équivalentes:

(1) L est modulaire;
(2) L ne contient pas de sous-treillis isomorphe au pentagone;
(3) léquation

eA(yVz)=xzA((yAN(zV=2)Vz)

est satisfaite dans L.

Preuve. Nous avons déja démontré I’équivalence de (1) et (2). Montrons que la condition
(1) implique la condition (3). En effet, en utilisant la modularité de L, il vient

(yN(zVz)Vz=(yVz)A(xVz)
puisque z V z > z. Dés lors,

sA((yN(xVz)Vz)=xA(yVz)A(zVz)=xA(yV=2).
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Montrons maintenant que la condition (3) a pour conséquence la condition (2). Pour cela,
il nous suffit de montrer que I’équation de (2) n’est pas satisfaite dans N5. En effet, dans Nj

il vient a A (¢V b) = a alors que a A ((cA (aV b)) Vb) =b, ce qui conclut la démonstration. <

Cloturons cette section en élucidant les liens que les différents types de treillis introduits
entretiennent entre eux. Ce travail nécessite un résultat préliminaire, mieux connu dans la

littérature sous le nom de théoréme d’isomorphie (pour les treillis modulaires).

Lemme 1.4. Si L est un treillis modulaire et si a et b sont deuzr éléments de L, alors
Uapplication
op:la,aVb — [aAbD] iz — xAD

est un isomorphisme. Son inverse est donné par l’application

Ve : [aNbb] — [a,aVb]:y—yVa.
aVb

Preuve. Notons d’emblée que les applications ¢ et 1, sont isotones. Ainsi, si on montre
que 1), 0 ¢y, est Papplication identité sur [a,a V b], alors on pourra conclure a l'injectivité de ¢y
(et a la surjectivité de 1p,). De plus, on considérant la propriété duale, on pourra également
conclure au fait que ¢ o ¥, vaut également 'identité sur [a A b,b], d’ou la surjectivité de ¢y
(et I'injectivité de 1),). Or en appliquant la propriété de modularité, il vient successivement

Ya(9p(®)) = Ya(x Ab)=aV (xAb)=z A (bVa)==x
pour tout = dans [a,a V b]. O

Proposition 1.5. Soit L un treillis. Les proposition suivantes sont satisfaites
(1) Si L est distributif, alors il est modulaire.
(2) Si L est modulaire, alors il est semimodulaire et dualement semimodulaire.

(3) Si L est fini, semimodulaire et dualement semimodulaire, alors il est modulaire.

Preuve. La proposition (1) est triviale. Démontrons le deuxiéme proposition. Considérons
trois éléments a, b et ¢ d’un treillis modulaire L tels que a < b. Si a V¢ = bV ¢, on conclut.
Sinon, on ne peut avoir b < (a V ¢). Dés lors, il vient bA (aV ¢) = a et en appliquant le lemme
précédent a b et a V ¢, on obtient un isomorphisme entre les intervalles [a,b] et [a V ¢,b V ¢].
Comme a V ¢ # bV ¢ et que b couvre a, on déduit de I'existence de cet isomorphie que bV ¢
couvre a V c.

Quand a la troisiéme propriété, il s’agit d’un cas particulier du théoréme 2 que nous allons
démontrer dans la prochaine section. &
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2. Longueur et treillis semimodulaires

Nous allons démontrer dans cette section une des propriétés les plus intéressantes des
treillis semimodulaires: dans un treillis semimodulaire de longueur finie, toutes les chaines
maximales ont la méme longueur. En corollaire de ce théoréme, nous montrerons que pour un
treillis de longueur finie, il est équivalent d’étre modulaire ou simultanément semimodulaire
et dualement semimodulaire.

Rappelons qu’on appelle longueur d’une chaine finie C' l'entier |C'| — 1. Par extension, on
dit qu'un ensemble ordonné (L; <) est de longueur n (ot n € N) §’il existe dans L une chaine
de longueur n et si toutes les chaines de L sont de longueur plus petite que n. On dira ainsi
qu'un ensemble ordonné (L; <) est de longueur finie s’il est de longueur n pour un certain

naturel n. Notons que dans ce cas, cet ensemble est nécessairement borné

Théoréme 2.1. (The Jordan-Holder Chain Condition) Si L est un treillis de lon-

gueur finie semimodulaire, alors les chaines mazimales de L ont méme longueur.

Preuve. La démonstration se fait par récurrence sur la longueur de L. Si la longueur de L
vaut 0 ou 1, la propriété est triviale. Supposons maintenant que la propriété soit vraie pour tous
les treillis semimodulaires de longueur < n. Désignons alors par L un treillis semimodulaire
de longueur n et par C = {ag,...,ap} (0l ag =0 < a1 < ... < ap—1 < a, = 1) une chaine
maximale de longueur n. Soit C" = {bg,...,by} (o0 by =0 < by < ... <byp_1 <by =1) une
autre chaine maximale de L. Si a; = b; alors, dans [a1), qui est un sous-treillis semimodulaire
de L (puisque la relation de couverture est conservée dans [a1)), la chaine C'\{ag} est maximale
et a une longueur n— 1. Dés lors, la chaine C"\ {b1 }, qui est également une chaine maximale de
[a1), doit avoir la longueur n — 1 par hypothése de récurrence. Dans ce cas, on a donc m = n.

Si au contraire a; # by, alors on considére une chaine maximale C” du treillis [a1 V by).
Soit k la longueur de C”. Comme L est semimodulaire et que ag = by = 0, il vient a1 < a; V by
et by < a1 V by. Dés lors, C” U {a1} est une chaine maximale de longueur k + 1 de [a1) et
C'\ {ao} est une chaine de longueur n — 1 de [a1). On déduit par hypothése de récurrence que
k+1 = n— 1. En appliquant le méme raisonnement & C” U {b;} et a C"\ {bp}, on obtient
aussi que k+ 1 =m — 1. Ainsi, m = n. &

On peut également caractériser la semimodularité et la modularité en utilisant les fonctions

hauteurs sur L.

Définition 2.2. Soit L un treillis de longueur finie. On définit une fonction hauteur h sur
L: sia € L on définit h(a) comme la longueur de la plus longue chaine maximale de (a].

Selon la proposition 2.1, si L est un treillis semimodulaire de longueur finie, h(a) est égal
a la longueur de n’importe quelle chaine maximale de (a].

Proposition 2.3. Soit L un treillis de longueur finie. Les propositions suivantes sont
équivalentes:

(1) L est semimodulaire;

(2) sia, b etcsont des éléments de L tels que a # b, aAb < a et aNb < b, alorsa < aVb
etb<aVb;
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(3) si a < b sont des éléments de L et si C est une chaine mazimale de [a,b], alors

{zxVe|xeC} est une chaine mazximale de [aV ¢,bV c|

(4) h(a) + h(b) > h(a Ab) + h(a V' b).

Preuve. Tout d’abord, il est trivial que les conditions (1) et (3) sont équivalentes.

Montrons maintenant que (1) est une conséquence de (2). Soient a et b deux éléments de
L tels que b couvre a. Sic < aousiaVce>b,alorsil est clair queaVe < bVcouaVe=>bVe.
Si au contraire ¢ € a et a V ¢ 2 b, alors b n’est pas un élément de [a,a V ¢]. Considérons alors
ap=a<a << ap-1 < a, = aV cune chaine maximale de l'intervalle [a,a V ¢|. On
obtient ainsi que les éléments distincts b et a; couvrent a alors que b A a; = a. Dés lors, on
déduit de I’hypothése (2) que bV aj couvre aj. On procédant par induction, on montre que
bV a; couvre a; pour tout ¢ < n. En particulier bV a, =bV (aV ) =bV ¢ couvre a, =aV c,
ce qui suffit.

Prouvons ensuite que (3) implique (4). Puisque (3) est équivalent a la semimodularité, nous
allons pouvoir appliquer le théoréme 2.1. Soient a et b deux éléments de L et C' une chaine
maximale de [a Ab,b]. Par le théoréme 2.1, on sait que la longueur de C vaut h(b) —h(a Ab).
Par ailleurs, selon (3), I'ensemble D = {a V x | z € C} est une chaine maximale de [a,a V b].
Or, par définition de D, la longueur de D est au plus égale & celle de C'. Comme la longueur
de D vaut h(a V b) — h(a), il vient h(b) — h(a A b) < h(a V b) — h(a).

Pour démontrer que (4) admet (2) comme conséquence, on montre par récurrence sur h(x)
que (2) est vrai dans les intervalles du type (z] pour tout x dans L. Si h(z) = 0, ¢’est-a-dire
si x = 0, la propriété est triviale. Supposons maintenant que la propriété est satisfaite dans
tous les intervalles (y] tels que h(y) < h(x), c’est-a-dire pour tous les y < x, et démontrons la
pour (z]. Soient a et b deux éléments de (z] tels que a # b, a Ab < a et a Ab < b. Puisque
a < x, on sait par hypothése de récurrence que la proposition (2) est satisfaite dans le treillis
(a] et donc, puisque (2) implique (1), que (a] est semimodulaire. Ainsi, puisque a couvre a A b,
on obtient en appliquant le théoréme 2.1, que h(a) — h(a A b) = 1. Dés lors, selon I'hypotheése
(4), il vient

h(aVb) < h(a) 4+ h(b) —h(a Ab) = h(b) + 1,

ce qui suffit pour conclure que b < aVb. On procéde de méme pour montrer que a < aVb <

Corollaire 2.4. Si L est un treillis de longueur finie, alors les conditions suivantes sont
équivalentes:
(1) le treillis L est modulaire;
(2) le treillis L est semimodulaire et dualement semimodulaire;
(3) pour tous a et b dans L, il vient h(a) + h(b) = h(a Ab) + h(a V b).

Preuve. On sait déja que la premiére condition implique la deuxiéme. Montrons que la
troisiéme est une conséquence de la deuxiéme. Comme L est semimodulaire, on obtient par le

théoréme 2.3 que si a et b sont deux éléments de L on a

h(a) + h(b) > h(a Ab) + h(a V b).
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Par ailleurs, comme L est dualement semimodulaire, c’est-a-dire que le dual de L est semimo-

dulaire, en appliquant cette méme proposition au dual de L, on obtient
h(a) + h(b) < h(a Ab) + h(a V b),

(on note que dans le dual de L, la hauteur d’un élément z est égal a la longueur de L moins
la hauteur de x dans L).

Enfin, supposons que la condition (3) soit satisfaite et montrons que ’on peut obtenir (1).
En effet, si L n’est pas modulaire, il contient un pentagone {u,a,b,c,v}. On a donc

h(i) = h(a V ¢) = h(a) + h(c) — h(a A ¢) = h(a) + h(c) — h(0)

et
h(i) = h(bV ¢) = h(b) + h(c) — h(b A c) = h(b) + h(c) — h(0),
donc h(a) = h(b), ce qui est clairement absurde. &



1. STRUCTURES QUOTIENTS DANS X, 17

CHAPITRE 3

Treillis des quotients dans X,

Posséder une dualité topologique pour une classe d’algébres est souvent un avantage non
négligeable pour I’étude de cette classe. Les grands exemples historiques de dualités topolo-
giques (la dualité de STONE pour les algébres de BOOLE (cf. [30]), la dualité de PRIEST-
LEY pour les treillis distributifs bornés (cf. [27] et [28]), la dualité de PONTRYAGIN pour les
groupes abéliens (cf. [25] et [26])) ont permis des avancées considérables dans la connaissance
des classes d’algébres étudiées: étude des objets libres, du treillis des quotients, des coproduits,
des classes d’isomorphie etc.

Cependant, ces dualités ne constituent pas la panacée aux problémes de 'algébriste. 11 y
a évidemment des questions qui sont aussi difficiles & étudier d’un point de vue topologique
qu’algébrique.

L’étude du treillis des sous-algébres fait partie de cette classe de problémes qu’une dualité
topologique ne permet pas systématiquement de simplifier. Ainsi, I’histoire a démontré que
seules quelques dualités parmi celles développées ont permis de dualiser heureusement 1’étude
des propriétés du treillis des sous-algébres. Ce fut le cas par exemple pour les algébres de HEY-
TING ou pour les R-sous-treillis d’un treillis distributif borné (cf. [15] et [33] respectivement).

Comme nous allons essayer de nous en convaincre, le cas de la dualité pour la classe
HSP(L,,) (n désigne un naturel non nul pour le reste du chapitre) est un nouvel exemple
de dualité permettant I’étude du treillis des sous-algébres. En effet, nous parviendrons, grace
a la dualité, & prouver que le treillis des sous-algébres d’une MV, -algébre est dualement
atomique, nous déterminerons les conditions sous-lesquelles une MV, -algébre finie posséde
un treillis de sous-algébres dans lequel tout élément est intersection d’éléments maximaux et
nous étudierons avec succés la semi-modularité, la modularité et la distributivité de ces treillis.

1. Structures quotients dans X,

1.1. Quotients dans X,,. Dans cette section, nous allons définir I’ensemble des quotients
d’une structure de X,, = IS.P(L,) et y greffer une structure de treillis. C’est ainsi que, tout
au long de ce chapitre, nous réserverons les notations X et Y pour désigner des structures de
X

A cause de la nature relationnelle de L,,, nous ne pouvons pas, étant donné un morphisme
surjectif m : X — Y, reconstruire la structure Y uniquement sur base de la connaissance
du noyau de m et de X. En effet, la condition de continuité imposée aux morphismes de
X, assure que l'espace Y sous-jacent & Y est isomorphe a X/ker(w) (par définition de la
topologie quotient). Malheureusement — contrairement au cas des algébres ou des structures
topologiques purement fonctionnelles — le fait que le morphisme 7 transporte les relations ry)?i

dans 7, (m parcourant les diviseurs de 1) n’est pas une condition assez forte pour en déduire
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la structure sur Y. Ainsi, il est possible de définir plusieurs structures sur Y faisant de 7 un
X,,-morphisme.

Ces réflexions nous ameénent a la définition suivante.

Définition 1.1. Une structure quotient (ou simplement un quotient) d’une structure X
de X, est la donnée d’une équivalence de BOOLE R sur X et d’un ensemble I'X/E = {r, |
m € div(n)} de sous ensembles de X/R tels que

e la structure (X/R; TX/E; ), ot 7 désigne la topologie quotient, est un élément de
X
e l'application de passage au quotient m : X — (X/R; I'X/E; ) est X,,-morphisme.
Ce quotient sera noté (X/R,IX/E) (ou souvent (X/R.T) lorsqu’aucune confusion ne sera

possible) et nous réserverons la notion Quot(X) pour désigner ’ensemble des quotients de X.

Nous avons donc remédié & la « faiblesse » de la notion de AXj,-morphisme en définis-
sant les quotients par la donnée d’un quotient topologique et d’une structure sur ce quotient
topologique.

Dans la suite, nous assimilerons souvent le quotient (X/R,I") avec la structure de X, définie
par I' sur X/R (c’est-a-dire (X/R; I', 7)), le contexte permettant d’éliminer toute confusion.

EXEMPLE 1.2. Illustrons dés & présent cette définition par un exemple bati sur une struc-

X X

ture X finie. Fixons n = 6 et considérons la structure X = {z,y} otz € 55, et y € 54 .
Pour représenter les quotients de cette structure, nous adoptons les conventions suivantes :

e nous représentons tout quotient (X,I") de X construit sur {x,y} par un couple d’en-
tiers (mg,my) ot € s%’m ety € s%’m;

o les structures quotients (X/R.,I') de X ot R = {X} sont quant a elles représentées
par un entier (myx) défini par X € S%%R’m.

Cela étant, 'ensemble Quot(X) contient dix éléments:

Quot(X) = {(2,6),(2,3),(2,2),(2,1),(1,6),(1,3),(1,2),(1,1),(2),(1) }.
Nous exploiterons & nouveau cette structure X pour illustrer nos futurs développements.

A la lecture de I’exemple précédent, bien qu'un peu simpliste, nous pouvons déja nous
demander s’il est possible d’obtenir une formule permettant d’exprimer le cardinal de Quot(X)
a partir de grandeurs liées & X lorsque cette structure est finie. Cette question de combinatoire
est plus compliquée qu’il n’y parait. En effet, il est vrai qu’on trouve dans la littérature une
formule permettant de compter le nombre de relations d’équivalence sur un ensemble fini. Il est
également aisé, étant donné une équivalence R sur ’espace sous-jacent a la structure finie X,
de compter le nombre de quotients de X construits sur X/R. Malheureusement, le travail de
combiner les deux informations dans une formule exploitable est d’une toute autre nature, et

ne nous parait pas trivial. La question de I'obtention de cette formule reste d’ailleurs ouverte.
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1.2. Treillis sur Quot(X). Sans structure, ’ensemble Quot(X) est un peu pauvre. Nous
allons donc lui greffer la structure de treillis dont ’ordre sous-jacent est défini de la maniére

suivante.

Définition 1.3. Etant donné deux quotients (X/R,T') et (X/S,A) de X,,, nous écrirons
(X/RI) < (X/SA) si

e RS
e la factorisation 7g de mg a travers X/R est un X,-morphisme de (X/R.I') dans
(X/S,A).

Il est immédiat de vérifier que < est une relation d’ordre partiel sur Quot(X). La proposi-

tion suivante affirme qu’elle définit en fait une structure de treillis et en décrit les opérations.

Proposition 1.4. La relation < définit sur Quot(X) une structure de treillis. De plus, si
(X/R,I) et (X/S,A) sont deuzr quotients de X alors
e (X/RT)AN(X/S,A)=(X/(RAS),A), ou
A= FRIEENY RS (SN | m e div(n)},
TRt (resp. Tg') désignant la factorisation de mp (resp. ws) a travers X/(R A S);
e (X/RT)V (X/S,A)y=(X/(RVS),Y) ouz € riX I BVS)X) g ot seulement si m est

divisible par
pecd({l € div(n) | Tplg p(@) N0 20 ou 7ty g(2) N5 £ 0,

ol TRryS,R (resp. Tryvs,s) désigne la factorisation de mrys a travers X/R (resp. a
travers X/S).

Preuve. Montrons tout d’abord que (X/(R A S),A) est bien un quotient de X. Les appli-
cations T et Tg étant continues, il est manifeste que A est constitué de sous-espaces fermés.
Par ailleurs, la condition (X3) est ici trivialement satisfaite. On vérifie alors directement que
notre construction nous assure que Tgr et Tg sont des morphismes.

D’autre part, si (X/7,%) désigne un quotient de X qui est plus petit a la fois que (X/R,I")
et que (X/S,A), alors T est nécessairement plus petit que R A S. Il reste a vérifier que A
deéfinit la plus grande structure sur X/(R A S) qui fasse de 7 et g des morphismes, ce qui
est évident.

Passons a la preuve de l'existence et de la description du supremum. On déduit de la
définition de (X/(RV 5),T) que

(1) Tﬁr)f/(RvS)m - U U Loy .my)s

1<r<|div(n)|  (m1,...,m)Ediv(n)"
pged(ma,...,my)€div(m)

ol I(yy,.....m,) est défini par

U %RV&R(T()?R’F)) N...NFrvs, RIS N T Rys, s(rEX 58N N L N Fgys, s(ri/ 520,

m mg mi+1 me
1<i<r

En effet, si m est un multiple de

peed({l € div(n) | Tpbg p(@) Ny 0 20 ou 7plg o(2) N5 £ 0y),
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si
{ma,...;mi} = {l € div(n) | Trbg pla) e £ 0}
et si
i = S,A
{mi1s.ome} = {L € div(n) | Fpys 5(x) N r XIS 2y,

alors z est un élément de

Trvs, RM/ 1) O N Trys, RS0 O Frys, s(read 52 O+ N Tpys, (! S2).
Inversement, si (mq,...,m,) est un r-uplet de diviseurs de n vérifiant
pged(my, ... ,m,) € div(m)
et si  est un élément de
Frvs, Rro/ 1) 0 N R pyvs, R(re ) N Frus s(r S8 N -+ N T gys, s(rid 527,
alors

{ma,...;m:} C{l e div(n) | Tpbg pla) N0 20 ou 7plg o(2) N5 2 g}
Dés lors,

peed({l € div(n) | Fplg pl@) N0 20 ou Tplg o(2) N5 2 0))

est un diviseur du pged(my,...,m,) qui divise m.
De l'égalité (1), on déduit que les sous-espaces i BT e X/(RV S) sont fermés. En
X/BD) ot ¢ <X/ SA) sont des sous-espaces fermés d’espaces compacts, et sont donc
(X/RT) (X/S,

eux-mémes des compacts. Il s’ensuit que Trys, r(Tm ) et TRVS, s(rm

effet, les ry,
>) sont des fermeés
en tant que sous-espaces compacts (puisqu’images continues de compacts) d’un espace séparé.

Par ailleurs, la structure (X/(RV 5),YT) proposée vérifie la condition (X3) de I'axiomati-
sation des structures de X,,. En effet, si x est un élément de X/(RV 5) et si on désigne par

m, ’entier

. ~ , ~ S.A
pged({l € div(n) | Tpbg pl@) N0 20 ou 7plg o(2) N5 £ 0y,
il vient successivement

z € pIRVS)) (X/(RVS)T)

& my € div(m) et my € div(m')
& m, € div(pged(m,m’))

(X/(RVS),T)

& TE "pged(m,m’)

Il reste a vérifier que (X/(RV S),Y) est le supremum des structures (X/R,I") et (X/S,A), ce
qui est évident. &

Dans la suite, nous désignerons par Quot(X) le treillis des quotients de X dont les opéra-
tions V et A sont définies dans la propositon 1.4.
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ExXEMPLE 1.5. Appliquons la proposition 1.4 en représentant le treillis des quotients de la

structure définie dans I'exemple 1.2. On obtient alors le treillis Quot(X') qui se représente par

(1)

(2,6)

1.3. Liens entre Quot(D,(A)) et Sub(A). Dans ce qui suit, nous noterons Sub(A4) le
treillis des sous-algébres de l'algébre A de A. Pour rappel, I'infmum de deux sous-algébres de
A est leur intersection et leur supremum est la sous-algébre de A engendrée par I'union de
leurs éléments.

L’intérét de I'étude du treillis des quotients d’une structure de X, apparait lorsqu’on
constate qu’il partage ses propriétés avec le treillis des sous-algébres de son algébre duale.

Proposition 1.6. Si A est une algébre de A, alors le treillis Sub(A) est anti-isomorphe
au treillis Quot(Dy(A)).

Preuve. Cela résulte du fait que les foncteurs D,, et E,, font correspondre les morphismes
surjectifs aux plongements et inversement.

Cela étant, définissons 'application ¢ par

¢ : Sub(4) — Quot(D,(4)) : B — (Dn(4)/ ker(Dn(ip, 4)),I'p),

siip A : B — A est le plongement canonique et si

Tp = {Dn(ina) (2®) [m e div(n)},

ot Dy, (ip, 4) est la factorisation de Dy, (ip, 4) & travers D,,(A)/ ker(ip, a).

Cette application ¢ est clairement bijective. Montrons qu’elle est antitone. Si B est une

sous-algebre de A et si C est une sous-algeébre de B alors le diagramme suivant est commutatif:

Dn(4) Dn(B) D (C)
71'ker(igyé)
Tker(ig A) i = im@rw
(Dn(A)/ ker(Dn(ip, 4)).I'n) (Dn(4)/ker(Dn(ic, 4)).T'c)

ce qui prouve que ¢(B) < ¢(C).

Inversement, si o est un AX,-morphisme surjectif entre (X/R,I") et (X/S,A), alors E,(«)
est (a 1somorphlsme prés) un plongement de ¢~1((X/S,A)) dans ¢~ ({(X/R,I')), ce qui montre
que ¢~ ! est antitone. &
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Ainsi, la proposition précédente nous donne un outil adapté dans ’étude du treillis Sub(A)
des sous-algébres des éléments A de A. En effet, I’étude de ce treillis est équivalente a celle de
Quot(D,(A)). Or, la description des « relations » entre les éléments de ce treillis est parfois plus
aisée que celles entre les sous-algébres de A. Nous pouvons donc déterminer plus facilement les
propriétés de structure du treillis Quot(D,,(A)). Ces propriétés se transportent alors au treillis
Sub(A) par dualité.

Les propriétés particuliéres des éléments de Sub(A) sont quant & elles beaucoup moins
accessibles par cette technique. En effet, il nous faudrait pour cela obtenir une description plus
précise du dual des éléments de X, ce qui n’est pas toujours trivial. Nous aurons plusieurs

fois 'occasion d’illustrer cette dichotomie dans la suite.

ExXEMPLE 1.7. L’algébre duale de la structure X définie dans 'exemple 1.2 est A = Lo x L.
Son treillis de sous-algébres se représente par le treillis anti-isomorphe & celui représenté dans

I’exemple 1.5.

2. A la recherche d’éléments maximaux dans Sub(A)

Le premier probléme auquel nous pouvons nous attaquer avec succés consiste a déterminer
s'il est possible de trouver au dessus de chaque élément de Sub(A) un élément maximal.
Dualement, cela revient & déterminer si le treillis Quot(D,,(A)) est atomique.

Pour répondre a cette question, nous allons d’abord obtenir le description des éléments
minimaux dans Quot(X).

2.1. Quotient minimum de X pour une équivalence de BOOLE donnée. Etant
donnée une équivalence de BOOLE R définie sur I’espace sous-jacent & X, nous allons montrer
que l'ensemble des quotients de X qui sont construits sur X/R est un sous-treillis de Quot(X)
qui admet un minimum.

Proposition 2.1. Si R est une équivalence de BOOLE sur X, alors l’ensemble des quo-
tients de X qui sont construits sur X/R est un sous treillis de Quot(X) dont le minimum est

la structure <X/R,F§,|(i/f> définie par

X X
T = U U #eOm) 0N relm,) [ m e divin).
1<r<|div(n)| {m1,...,m,}Cdiv(n)
pged(ma,...,my)Ediv(m)

Preuve. Le fait que I’ensemble des quotients de X qui sont construits sur X/R soit un

sous-treillis de Quot(X) est trivial.

Cela étant, si la structure (X/ R,I‘ij{f ) est effectivement un quotient de X, il ne fait aucun
doute qu’elle soit le minimum des quotients de X dont I'espace sous-jacent est X/R.

Or, il est clair que Fi/l(i/f est constitué de fermés de X/R. Par ailleurs la condition (X3) de

laxiomatisation des éléments de X, est satisfaite: si m et m’ sont des diviseurs de n, alors

(/R - (/RIGT (X/RIGE)
rpgcd(m,m’) =Tm N T
Inversement, si mq,...,m, et my41,...,ms sont des diviseurs de n tels que pged(myq,...,m;) =
m et pged(my41,...,ms) =m’ alors pged(my, ... ,ms) = pged(m,m’), ce qui prouve que
C/RIG (XYRIWT (/RO
T'm n L] = ' pged(m,m’) * <>
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Dans la plupart des cas, si aucune confusion n’est possible, nous n’hésiterons pas & noter
par (X/R,I'win) la structure <X/R,F§,|(i/f>

Dualement, la proposition précédente s’interpréte comme ceci: pour toute sous-algébre de
BOOLE € de l'ensemble des idempotents B(A) de A, 'ensemble des sous-algébres de A qui
posséde € comme ensemble d’idempotents est un sous-treillis de Sub(A) (ce qui est évident)
qui admet un mazimum (idem) dont on a obtenu la description du dual.

Une question moins triviale consiste & déterminer pour quelles structures X ’ensemble
constitué des structures (X/R,I'win) ou R parcourt 'ensemble des équivalences de BOOLE sur

X est un sous-treillis de Quot(X).

2.2. Description des éléments minimaux dans Quot(X). Nous allons maintenant
donner une description des ¢éléments minimaux du treillis Quot(X).

2.2.1. Structures construits sur un quotient propre de X . La proposition 2.1 nous suggére
de bons candidats comme éléments minimaux : les quotients (X/R,I'min) o R est une équiva-
lence minimale du treillis des équivalences de BOOLE sur X. Cependant, ces structures ne sont
pas nécessairement minimales. Nous pourrions en effet imaginer construire un quotient de X
sur le méme espace sous-jacent & X et qui soit strictement compris entre X et (X/R,I'min)-
Ce cas est régi par le proposition suivante.

Proposition 2.2. 5% R est une equivalence de BOOLE sur X, alors
(1) la plus grande structure (X,V ) construite sur le méme espace topologique que X et
qui fait de w: (X,V ) — (X/R,Imin) un X,-morphisme est définie par

X
= rfﬂ V)

si pged({l € div(n) | 2t N rl)~( # 0}) € div(m);
(2) si en plus R est une équivalence de BOOLE minimale, alors le quotient (X/R,I'min)
X
est minimal dans Quot(X) si et seulement si les ensembles ry, sont R-saturés (i.e.

X
rm est une union de R-classes d’équivalence pour tout m € div(n)).

Preuve. La premiére partie de I’énoncé découle du fait que

Tﬁr)L(,VR) — 7-(}—21 (ran/R»FMin>)

pour tout diviseur m de n. La seconde est une conséquence de la premiére: la condition de

X
saturation des relations r,, est équivalente a 1’égalité des structures X et (X,Vpg). &

Si on se rappelle que les équivalences de BOOLE minimales sur ’espace de BOOLE X sont
les relations binaires R pour lesquelles il existe deux éléments x # y de X tels que

R={{z} [z e X\ {ry}}U{{zy}},

la proposition 2.2 nous donne alors la forme des quotients minimaux de X qui ont pour espace
sous-jacent un quotient propre de X. On en déduit en effet que ces quotients sont obtenus en
reliant deux points de X qui se situent dans un méme s,,, la structure sur le quotient étant

alors définie naturellement.
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2.2.2. Structures construites sur X . Nous allons maintenant envisager le cas des quotients

minimaux de X construits sur le méme espace sous-jacent que X.

Proposition 2.3. La structure (X,I') est minimale dans Quot(X) si et seulement si il

existe un diviseur m de n, un diviseur premier p de m et un élément x de sp, tels que

ST _ ’I“ZK st % ¢ div(k),
g TZ,K U{z} s %) €div(k),

pour tout k € div(n).

Preuve. La preuve découle simplement du fait que {x} est un fermé de X pour tout z € X

puisque l'espace X est séparé. &

Ainsi, pour construire de telles structures, on « transporte » un élément x de s, dans
X . . . o .
sfn, ) ott m’ est un élément maximal dans le treillis des diviseurs de m.

On obtient l'atomicité du treillis Quot(X) en conséquence des propositions 2.2 et 2.3.

Proposition 2.4. Si X est une structure de X, alors le treillis Quot(X) est atomique.

Preuve. Si (X,I') est un quotient propre de X, alors la proposition 2.3 nous assure l’exis-
tence d’un atome entre X et (X,I').

Si R est une équivalence de BOOLE non triviale sur X et si (X/R,I") est un quotient de X,
alors il existe dans le treillis des équivalences de BOOLE sur X une relation minimale R’ sous
R. Si les relations Tf?i sont R’-saturées pour tout m € div(n), alors (X/R/.I'min) est un atome
de Quot(X) plus petit que (X/R,I'). Si aucune des équivalences minimales sous R ne satisfait
a cette condition de saturation, alors la proposition 2.3 nous fournit quand-méme l’existence
d’un atome sous (X/R,I"). O

On peut se demander si toutes les configurations d’atomes sont envisageables. C’est-a-dire
s’il est possible de trouver des structures X dont le treillis des quotients posséde & la fois
des atomes construits sur X et des atomes construits sur des quotients propres de X; des

structures possédant un type d’atomes mais pas ’autre, etc.

EXEMPLE 2.5. Nous allons exhiber, pour chacune des configurations précitées, un exemple

de structure X satisfaisant a cette configuration.

o Structures X possédant des atomes construits sur des quotients propres mais pas

d’atome construit sur X . On constate que le treillis de 'exemple 1.5 en est un modéle.

e Structures X possédant des atomes construits sur X mais pas d’atome construit sur
des quotients propres X . La structure Y = {z,y}, ou

Y
5 = {muy}v
en est un exemple. En fait, les modéles de cette configuration d’atomes sont exacte-
X
ment les structures X qui vérifient s = X (c’est-a-dire les espaces de BOOLE).

o Structures X possédant des atomes construits sur X et des atomes construits sur des
quotients propres X . La structure Z = {z,y}, ou

Z
3; = {x,y},
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en est un exemple.

Une autre question qui se pose a ce stade de notre réflexion est de déterminer la classe des
structures de X,, dans les quotients desquels tout élément est supremum d’atomes. Il s’agit
évidemment d’une classe propre de X,,, comme le prouve 'exemple 1.5 (I’élément (2) n’est pas
supremum d’atomes).

Pour répondre a cette question, nous allons partir a la recherche d’un systéme de V-
générateurs qui contient les atomes.

2.3. Systéme de V-générateurs dans le cas fini. Par systéme de V-générateurs de
Quot(X), nous entendons un sous-ensemble G de Quot(X) tel que
e tout élément de Quot(X) s’écrit comme un supremum d’un nombre fini d’éléments
de G,
e l'ensemble G est minimal parmi les ensembles possédant cette propriété.

Nous allons, sous 'hypothése que X soit fini, construire un systéme de V-générateurs de
Quot(X) qui contient les atomes de ce treillis.

X
Définition 2.6. Soient X un membre fini de X, et = un élément de sp,. Si p est un
diviseur premier de m (nous noterons P(m) 'ensemble des diviseurs premiers de m) et si [ est

un naturel non nul tel que p' € div(m), alors on définit le quotient

<Xar(m,m/pl)>

de X par
X . -
(Tl 55, 51k7é]7,
sz\:u{x} si k=1,

pour tout k € div(n).

Si on joint & 'ensemble des structures de la définition précédente les structures (X/R.I'min)
ot R parcourt l'ensemble B, (X) des équivalences de BOOLE minimales sur X, on obtient

alors un systéme de V-générateurs.

Proposition 2.7. L’ensemble

G = {(X/RTmin) | R € Buin(X)}U [ U {(X.Lzmspty) | P € P(m) & p' € div(m)}

mediv(n) Gs
m

est un systeme de \V-générateurs de Quot(X) qui en contient les atomes.

Preuve. 1l est clair que G contient les atomes de Quot(X ). Montrons que G est une partie
V-génératrice. En effet, si (X/S,A) est un quotient de X, alors I’équivalence de BOOLE S est
le supremum d’une partie ® de Bpin (X).

Construisons alors la structure (X,A’), on A’ est défini par

T<X’A/> _ ng(rg/S’M)'

m
Il s’agit d’un quotient de X qui est supremum d’une partie G’ de G. Au total, il vient

(x/8.8) =\/ G v \/ (X/R.Twin).
Red®
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Il reste & montrer que G est minimal parmi les parties V-génératrices de Quot(X). Il est clair
que si R est une équivalence de BOOLE minimale sur X, alors G \ {(X/R,I'min)} ne peut
générer Quot(X) puisque le sous-treillis V-engendré par G \ {(X/R,I'min)} ne contient pas la
structure (X/R,I'min)-

Par un raisonnement similaire, on déduit qu’on ne peut pas débarrasser G d’une structure
du type (X,I'(; m/pt)) (00 m € div(n), s € sﬁ, p € P(m) et p' € div(m)) tout en conservant
une partie V-génératrice. &

On obtient trés facilement par simple comptage le cardinal de la partie génératrice dont
il est question dans la proposition précédente.

Corollaire 2.8. Si X est une structure finie de X, alors Quot(X) admet un systéeme de
V-générateurs qui posséde
! . X
Chi+ Y. Y. HleNo|p edivim)}||sm|
mediv(n) peP(m)

éléments. [ |

Ainsi, une X,-structure finie X admet un treillis des quotients V-généré par ses atomes si
et seulement si la partie G dont il est question dans la proposition 2.7 coincide avec I’ensemble
des atomes de Quot(X). La proposition suivante sert de critére pour caractériser 1’ensemble

de ces structures.

Proposition 2.9. Une X, -structure finie X admet un treillis des quotients V-généré par
ses atomes si et seulement s’ il existe un diviseur m de n dont la décomposition en nombres

premiers ne fait apparaitre que des facteurs distincts et qui vérifie

b

Sm = X.

Preuve. Montrons que la condition est nécessaire. En effet, supposons qu’il existe deux
naturels distincts m et m’ et deux éléments z et y tels que z € s% ety € si,. Alors la structure
(X/R,I'vin) o

R={{u} [uve X \{zy}}U{{zy}}
est un élément de G qui n’est pas un atome selon la proposition 2.2.
Supposons maintenant qu’il existe un naturel m, un diviseur premier p de m tels que p?

X
divise m et s, = X. Alors, si z est un élément de X, la structure

(XL mp2))
fait partie de G sans étre un atome de Quot(X).
Cela étant, on prouve directement que la condition est suffisante. &

Le raisonnement précédent peut s’étendre (partiellement) aux structures non finies. En
effet, dans ce cas, toute partie V-génératrice minimale de Quot(X) qui contient les atomes
doit nécessairement contenir G. Si cette partie coincide avec ’ensemble des atomes, il en est
de méme pour G (cf. la démonstration de la proposition 2.7). Or, la démonstration de la
nécessité de la proposition 2.9 reste valide dans le cas non fini. On peut donc affirmer que
les X,-structures (non finies) qui admettent un treillis des quotients généré par les atomes se



2. A LA RECHERCHE D’ELEMENTS MAXIMAUX DANS Sub(A) 27

trouvent parmi les puissances booléennes des algébres t.,,, ot m est un diviseur de n dont la
décomposition en nombres premiers ne fait intervenir que des facteurs distincts. Malheureu-
sement, la suffisance de cette condition fait intervenir des problémes de nature topologique
(qui ne sont pas une conséquence du caractére booléen de X, mais bien de la structure qui
est greffée dessus). Ces problémes topologiques disparaissent naturellement lorsque m = 1. La
structure se réduit alors en effet & un espace de BOOLE.

Dualement, la proposition 2.9 prend la forme suivante.

Proposition 2.10. Supposons que A soit une algébre finie de A. Toute sous-algébre de
A est intersection de sous-algébres maximales de A si et seulement si A est isomorphe & une
puissance finie de l’algébre L, ou m est un diviseur de m dont la décomposition en nombre

premiers ne fait apparaitre que des facteurs distincts. |

EXEMPLE 2.11. Ainsi, on peut trouver dans 'algébre Ly x Lg, dont le dual est la struc-
ture définie dans I'exemple 1.2, une sous-algébre qui n’est pas intersection de sous-algébres
maximales (c’est la cas de I’algébre duale de (2,1) par exemple).

D’autre part, toute sous-algébre de L5 est intersection d’éléments maximaux. Son treillis

de sous-algébre est isomorphe au treillis des diviseurs de 15.

2.4. Eléments maximaux dans Sub(A). Les considérations de la section précédente se
dualise en I'¢tude des éléments maximaux dans Sub(A).

Ainsi, a I’aide de la proposition 1.6, on obtient le dual de la proposition 2.4.

Proposition 2.12. Si A est une algébre de A alors il existe au dessus de toute sous-algébre
B de A une algebre C mazimale dans Sub(A). [ |

Les développements qui suivent illustrent parfaitement la dichotomie dont nous faisions
écho dans la remarque précédant la section 2. En effet, nous avons pu obtenir le caractére
dualement atomique de Sub(A) (propriété de structure de Sub(A)) grace a I’étude du treillis
Quot(D,,(4)). Cependant, bien que nous ayons une méthode de construction effective des
éléments minimaux de ce dernier, nous ne pourrons pas obtenir une telle construction pour les
éléments maximaux de Sub(A). Tout au plus pouvons nous proposer les descriptions suivantes

des éléments maximaux. Une de celles-ci demande une définition préliminaire.

Définition 2.13. Soient R une équivalence de BOOLE sur I’ espace de BOOLE X et
(A, )zex une famille d’algebres (de méme type). Un R-produit booléen des A, (z € X) est une
algebre A (de méme type que les A,) telle que

e l'algébre A est produit sous-direct (par un plongement p) des (Ay)zex;

e pour tous a et b dans p(A), le sous-espace [p(a) = p(b)] = {z € X | p(a)(z) = p(b)(z)}
est un fermé de X;

e pour tous a et b dans p(A) et tout ouvert-fermé R-saturé de X, I’élément p(a)|,, U
p(b)|x\ appartient a p(A).

Ainsi, on ne modifie que légérement la troisiéme condition de la définition de produit boo-
léen (souvent appelée patchwork property pour des raisons évidentes) pour obtenir le définition
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d’un R-produit booléen. Cette condition n’est en effet alors imposée qu’aux ouverts-fermés

R-saturés.

Proposition 2.14. Soit B une sous-algébre de la MV, -algébre A et i le plongement
canonique de B dans A. Alors, Uapplication

ealp: B~ [ w4
est une représentation de B comme ker(D,,(i))-produit booléen des quotients simples de A si
; Dy (A) . ;
et seulement si les sous-espaces sont ker(Dy,(7))-saturés.
En particulier, la sous-algébre B est mazimale dans Sub(A) et vérifie B(B) # B(A) si et

seulement si les conditions suivantes sont satisfaites:
o l'algebre B(B) est une sous-algebre mazimale de B(A);
e ['application
ealp:B— [ w4
u€Dn(4)
est une représentation de B comme ker(D,,(2))-produit booléen des quotients simples

de A.

Preuve. Montrons que la condition est nécessaire. Le fait que B soit produit sous-direct
par e4 des u(A) (u € D,(A)) nous enseigne que u(A) = u(B) quel que soit u dans D, (4).
Dong, si (u,v) € ker(Dy, (7)), il vient u(B) = v(B), c’est-a-dire u(A4) = v(4), ce qui suffit pour

Dy (4) . ,
conclure que les rp," sont ker(D,,(7))-saturés.

(4)

Inversement, si les sous-espaces r,%" = sont ker(D;)-saturés, alors il est clair que e4|p est
un plongement.
Par ailleurs, si u est un élément de D(A), on déduit la surjectivité de p, oea|p du fait que
uker(Pn())(B) = u(A) puisque la classe de u est dans les mémes sous-espaces ron@ que u.
Bien sir, les égalisateurs [e4(b) = ea(c)] sont des ouverts-fermés de Dy, (A) pour tous b et

c dans B puisque B est une sous-algébre de A et que e4 est une représentation booléenne de

A.

On vérifie pour conclure que la patchwork property est satisfaite pour les ouverts-fermés
ker(D(i))-saturés de D, (A) et pour tous e4(b) et ea(c) dans e4(B). On sait déja que o =
ea(b)]lw Uea(c)|p,(a)\w appartient a e4(A). Pour prouver qu’il s’agit également d’un élément
de e4(B), il nous suffit de vérifier que a(u) = a(v) pour tout (u,v) € ker(D,,(i)). Or, puisque

w est ker Dy, (4)-saturé, il vient
B ) u®) siuew
alu) = a(v) = { u(e) siu€ Dn(4)\w,

ce qui conclut donc la démonstration de la premiére partie.

La deuxiéme partie est une conséquence directe de la premiére et de la proposition 2.2
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La proposition suivante tente de décrire les sous-algébres maximales de A qui possédent

les mémes idempotents que A.

Proposition 2.15. La sous-algébre B de A est mazimale dans Sub(A) et posséde les
mémes idempotents que A si et seulement s’il existe un u dans D, (A) tel que lapplication
ealp:B— [[ B,
u€DR(A)
ou
o B, =v(A) pour tout v € D,,(A) tel que v # u;
e B, est une sous-algébre mazimale de u(A);

est une représentation booléenne de B.
Preuve. Simple conséquence de la proposition 2.3. &

3. Eléments maximaux dans Quot(X)

Décrire les éléments maximaux du treillis Quot(X') lorsque X est une A),-structure est une
tache plus facile que d’en décrire les atomes.
Nous allons pour cela adopter la notation suivante: nous désignerons par pged(X) U'entier

peed(X) = pged({l € div(n) | 11 £ 0})

pour toute X,,-structure X. Si Y est un sous-espace fermé de X, on notera Y la restriction de
la structure de X sur Y (le contexte permettant toujours de déterminer pour tout Y fermé
dans X quelle est la structure considérée sur X et dont va hériter Y).

Proposition 3.1. Un structure quotient (X/R,I") de X est mazimale dans Quot(X) si et
seulement si elle satisfait ['une des conditions suivantes:
(1) on a
e R={X},
o pged(X) # 1,

e il existe un diviseur premier p de pged(X) tel que

S0 = (x);

(2) il existe un ouvert-fermé w de X tel que R = {X,X \ w} et tel que
s = X/R.

Preuve. On prouve aisément que les structures proposées sont maximales. Montrons dés
lors que tout quotient maximal (X/R,I") de X est d’une des deux formes proposées. En effet,
si R = {X}, puisque (X/R.,I') n’est pas mazimum, il vient X € sé,X/R’D ol p est un diviseur
premier de n. Du fait que (X/R,I") est un quotient de X, on déduit que p doit étre un diviseur
de pged(X).

Si au contraire, R est une équivalence propre, alors elle forme un atome du treillis des
équivalence de BOOLE sur X. Sinon, il existerait un élément S de B(X) \ {{X}} plus grand

que R. La structure (X/S,A) définie par
3§X/S’A> =X/S
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serait alors un quotient plus grand que (X/R,I') mais non mazimum, ce qui contredirait
la maximalité de ce dernier quotient. Ainsi, il existe un ouvert-fermé w de X tel que R =

{X,X \ w} et la conclusion s’ensuit aisément. &

L’exemple 1.5 nous indique que les deux types d’éléments maximaux peuvent coexister
dans le treillis des quotients d’une X,-structure. Mieux, puisque le treillis des équivalences de
BOOLE sur un espace de BOOLE est dualement atomique, il existera toujours dans Quot(X)
des éléments maximaux satisfaisant a la deuxiéme condition de la proposition 3.1. On obtient

donc ainsi une démonstration topologique d’une propriété algébrique bien connue.

Proposition 3.2. Si X est une structure de X, alors le treillis Quot(X) est dualement

atomique.

Preuve. Soit (X/R,I") un quotient propre de X. Si R = X, cela implique que pged(X) # 1,
et on peut construire au dessus de (X/R,I") un élément maximal vérifiant la deuxiéme condition
de la proposition 3.1.

Sinon, R est une équivalence de BOOLE propre sur X, et on déduit du caractére duale-
ment atomique de B(X) que 'on peut construire au dessus de (X/R,I") un élément maximal
satisfaisant & la deuxiéme condition de la propositon 3.1. &

4. Semimodularité de Sub(A)

Nous allons exploiter notre dualité pour étudier la semimodularité du treillis Sub(A). Ainsi,
selon la propriété 1.6, le treillis Sub(A) est semimodulaire si et seulement si Quot(D,,(A)) est
dualement semimodulaire.

Nous partons donc a la recherche des structures X qui possédent a un treillis des quotients
dualement semimodulaire.

Le premier lemme permet de limiter la « taille » de ces structures (et est lié a la semi-
modularité du treillis des sous-algébres pour les algébres de BOOLE) et le second impose des

contraintes sur leur « forme ».
Lemme 4.1. Si |X| > 4 alors Quot(X) n'est pas dualement semimodulaire.

Preuve. Supposons que x, y, z et t soient quatre éléments distincts de X . Définissons les
équivalences de BOOLE R et S par

R=A{u|uve X \{zyzt}} U{{zy}{zt}}
et
S={ulueX\{z,yzt}}U{{zyzt}}
On construit alors les quotients (X/R,I') et (X/R,A) de X en définissant I" et A par

PSS IBY) — Y U (@), mr(2)} Y m € div(n),
et
XIS Z () U {ms(z)} ¥ m € div(n).

Ainsi, la structure (X/S,A) couvre (X/R.T"). On définit enfin la relation 7" sur X par

T={u|ue X\ {zyzt1 U {zh{nt})
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et la structure quotient (X/7,Y) par

X/

= np(ri) U {nr(@),7r(y)} ¥ m € div(n).

Il est alors facile de montrer que (X/S,A) A(X/T,Y) = (X/T,Y) et que dés lors
(X/R) NX/T, Y)Y £A(X/S,A) ANNX/T,T)

ce qui prouve que Quot(X) n’est pas dualement semimodulaire.

¢

X X
Lemme 4.2. Si on peut trouver dans X deur éléments x et y tels que x € sp, el y € s,
avec pged(my,my) # 1, alors Quot(X) n'est pas dualement semimodulaire.

Preuve. Considérons la structure (X/R,I'win) ot R est 'équivalence de BOOLE définie sur
X par
R={{u} |ve X \{zy}} U{{zy}}.
Pour construire une structure (X/R,A) couvrant (X/R,I'min), considérons un facteur premier

p de m = pged(my,my) et définissons A par

(X/R,A) T;X/R’FMi"> si % ¢ diV(k}),
Tk = (X/R,Tiin) . m .
Ty U{mr(z)} si i} € div(k).
Cela étant, on considére également la structure (X,Y) définie par
ble e
LX) _ r,i ) if o ¢ div(k),
* n U ey} it ™ e div(k).

Ainsi, la structure (X/R,I'win) A (X,T) est la structure définie sur X par

X . .
HX/ROMANXY) _ ) T if m ¢ div(k),
g rk’X U{z,y} if m e div(k).
Quant a la structure (X/R,A) A (X,T), elle est égale & (X,Y). On constate donc que ces deux
structures différent et ne se couvrent pas I'une 'autre. &

Il se trouve que les contraintes imposées par les deux lemmes précédents sont les conditions
nécessaires et suffisantes & imposer & X pour que son treillis des quotients soit dualement semi-

modulaire.

Proposition 4.3. Le treillis Quot(X) est dualement semimodulaire si et seulement si une

des conditions suivantes est satisfaites:
(1) |Quot(X)| = 1;

X X
(2) Quot(X) ={zy} et x € spm,, Y € sm, avec pged(my,my) = 1;

X X X .
(3) Quot(X) = {z,y,2} et © € sm,, Y € Sm,, 2 € Sm, avec Mmy,my et m, deur a deux

premiers entre eux.
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Preuve. Il nous suffit de montrer la suffisance de chaque condition.

Si | X| = 1, alors Quot(X) est isomorphe au treillis des diviseurs d’un entier m € div(n)
et est donc dualement semimodulaire.

Si X ={z,y} avecx € s%z ety e sgy ou pged{mgz,my} = 1, alors Quot(X) est isomorphe
au treillis div(m,) x div(m,) U {T'} ot T' est défini comme une borne supérieure. Or, il est
direct de vérifier que ce treillis est dualement semimodulaire (en se rappelant que le produit
de deux treillis semimodulaires est semimodulaire).

Enfin, si Quot(X) = {z,y,z} et = € s%z, y € sgy, z € sgz avec mg,my et m, deux a
deux premiers entre eux, alors on prouve en procédant au cas par cas par une énumération

fastidieuse que Quot(X) est dualement semimodulaire. &

Nous pouvons donc caractériser les algébres A dont le treillis des sous-algébres est semi-

modulaire.

Proposition 4.4. Si A est une algébre de A alors le treillis Sub(A) est semimodulaire si
et seulement si A est isomorphe a l'une des algébres suivantes:

o L. oum est un diviseur n;
o L. x L, oum et m' sont des diviseurs de n premiers entre eut;

o L, XL XL, oum,m et m” sont des diviseurs de n deur & deuzr premiers entre

eur. [ |

EXEMPLES 4.5. La structure de I’exemple 1.5 ne satisfait pas & I’'une des conditions de la
propriété 4.3 et ne donne pas lieu & un treillis des quotients dualement semimodulaire. Ainsi,
I'élément (1) couvre (2), mais (1,1) A (2) = (2,2) et (1,1) A (1) = (1,1).

Par contre, la structure Y = {z,y,z}, ou

xESiC, y€s§ etzesgx,

posséde un treillis des quotients semimodulaire. Pour en représenter son diagramme de HAASE,

nous adoptons les conventions suivantes (elles étendent les conventions de 'exemple 1.2):

e nous représentons tout quotient (Y.I') de Y construit sur {x,y,z} par un triplet d’en-
tiers (mg,my,m;) o0 T € s, ', Y € Sm, €t 2 € 5y
e les structures quotients (Y/R,I') de Y ou R est une équivalence minimale sont repré-

sentées par un triplet d’entiers en convenant que deux entiers soulignés définissent
. P Y/R,T
une classe (la valeur commune de ces entiers définit alors le sous-ensemble 57<n/ )

dans lequel se trouve cette classe);

e les structures quotients (Y/R,I') de Y ou R = {Y'} sont quant a elles représentées

par un entier (my ) défini par Y € SQLZR’N-
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Avec ces conventions, on obtient le diagramme suivant:

(1)

(l?l?l) (l:Ll)

A ce stade de nos développements, on peut se demander si le caractére fini que possédent
les algébres de A qui donnent lieu & un treillis de sous-algébres semimodulaire est propre
aux variétés finiment engendrées de MV-algébres, ou si les variétés non finiment engendrées
possédent aussi cette particularité. Autrement dit, est-il possible de trouver dans certaines
sous-variétés de MV une algébre non finie dont le treillis des sous-algébre est semimodulaire?

La réponse est positive pour toutes les sous-variétés non finiment engendrées. En effet,
dans I'exemple suivant, nous allons montrer que ’algébre C de CHANG, qui est une algébre
infinie qui se trouve dans toute sous-variété non finiment engendrée de MYV, admet un treillis
de sous-algébres semimodulaire.

EXEMPLE 4.6. Rappelons que la MV-algébre C = (C, &, ®,—,(0,0),(1,1)) de CHANG est
définie sur
C={(0.) lac ZF}U{(LD) [beZ ),

par
0,z + ) sii+7=0,
(i,2) © (jy) = (1, min(0,x +7y)) sii+j=1,
(1,0) ifi+j=2
et par

o) — (0, —x) if (i =1),
(i) {(1,—37) if (i = 0).

On se convainc facilement que tout élément de Sub(C) est isomorphe & C et que Sub(C) est
anti-isomorphe au treillis div(Np) des naturels non nuls ordonnés par division.
En effet, 'application

¢ : Sub(C) — div(Np) : B — inf{z | (0,2) € B & z # 0},

est un anti-isomorphisme. Pour le prouver, on procéde de maniére classique.

Montrons d’abord que toute sous-algébre B de C est engendrée par (0,¢(B)). De fait, si
x est un élément de B\ ((0,¢(B))), on peut supposer, quitte a considérer —z, qu'il existe un
b > ¢(B) tel que x = (0,b). Il existe alors des naturels g et r tels que

b=q.¢(B)+r



5. MODULARITE DE Sub(A) 34

avec 0 < 1 < ¢(B) (sinon x € ((0,¢(B)))). Ainsi, I’élément

(1, =) & (0,¢-9(B)) = (1,¢.0(B) —b) = (1, — 1)
appartient & B, et il en est donc de méme pour (0,r). Cela est absurde vu la définition de
o(B).
La bijectivité de ¢ étant acquise, il nous reste a prouver que ¢ et ¢~ sont antitones, ce
qui est évident.
On en déduit donc que Sub(C) est semimodulaire.

5. Modularité de Sub(A)

5.1. Semimodularité duale de Sub(A). Nous allons maintenant déterminer quelles
sont les algébres A de A dont le treillis des sous-algébres est dualement semimodulaire. 11 est
donc équivalent de chercher les structures X de X, qui possédent un treillis des quotients
semimodulaire.

Cette propriété est plus universelle que la précédente.

Proposition 5.1. Si X est un membre de X,, alors Quot(X) est semimodulaire. De
maniére équivalente, le treillis Sub(A) des sous-algébres d’un membre A de A est dualement
semimodulaire.

Preuve. Supposons d’abord que (X/R,T') et (X/R,I") soient deux quotients de X tels
(X/R,T) (X/R,I")

qu’on obtient IV en « transportant » un élément x de sy, dans swm’ 7 / ol p est un
p
diviseur premier de m:
X/R,T : .
ogrry _ [ Y if 2 ¢ div(k),
k r U )y i e div(k).

Ainsi, (X/R,I") couvre (X/R.T).

Cela étant, si (X/S,A) appartient & Quot(X ), on définit les structures (X/R,I") vV (X/S,A)
et (X/RI)V (X/S,A) sur X/(RV S).

De plus, si z ¢ %}_%\1/ s, r(y), il vient alors

(X/RT)V(X/S,A) (X/RI)V(X/S.A)

Y € Sm, & Y E Sy

Mais, si y est I'élément de X /(R V S) vérifiant Trys r(x) = y, alors

y € sIX/RIVIX/S.A)

et

(X/RI)V(X/S,A)

ycsb (X/RI')V(X/S.8)

P

ou Y€ sm
En conséquence,
(X/RT)V(X/S,A) = (X/RT')V (X/S,A)
ou
(X/RT) V(X/S,A) < (X/RT") Vv (X/S,A).
Considérons alors les deux quotients (X/R,I') < (X/R'I”) pour lesquels il existe un
diviseur m de n et deux éléments x,y € sg BE) tels que

R = {1 2 ¢ np! (@) Ung ()} U {ng (@) Uny' ()},
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I'ensemble I étant défini pour assurer que (X/R,I') couvre (X/R,T').

Si (X/S,A) est un troisiéme quotient de X, nous montrons d’abord que les équivalences
de BOOLE R’V S et RV S sont égales ou que I'une couvre l'autre (i.e. nous prouvons que le
treillis des équivalences de BOOLE est semimodulaire). En effet, si 21 est un élément de ﬂﬁl(x)
et si y1 est un élément de 75" (y), il vient

RVvS=RvVS = (x1,;1) € RVS.
Sinon
RV S ={z" |z ¢mp!(x) Ung!(y)} U (o™ Uy{™5),
et donc RVS <R VS.
Cela étant, si RV S = R’V S, alors on montre facilement que
(X/RT)V(X/S,A) = (X/R.I) v (X/S,A)
SiRVS <R VS, on a plutot
(X/RT)V(X/S,A) < (X/R'I') v(X/S,A),

ce qui boucle la preuve. O

5.2. Modularité de Sub(A). Etant donné qu’un treillis fini est modulaire si et seule-
ment s’il est a la fois semimodulaire et dualement semimodulaire (cf. la proposition 1.5), les

propositions 4.4 et 5.1 se synthétisent de la maniére suivante.

Proposition 5.2. Si A est une algébre de A, alors le treillis Sub(A) de ses sous-algébres

est modulaire si et seulement si A est isomorphe a l'une des algébres suivantes:
o L. oum est un diviseur n;
o L, X L., oum etm sont des diviseurs de n premiers entre euz;

o L. XL XL noum,m etm” sont des diviseurs de n deux a deuzx premiers entre
eur. |

6. Distributivité de Sub(A)

Nous allons rechercher les algébres A dont le treillis des sous-algébres est distributif, en se
rappelant que ’ensemble des treillis distributifs forme une sous-variété de la variété des treillis

modulaires.

Proposition 6.1. Si A est une algébre de A, alors le treillis Sub(A) de ses sous-algébres

est distributif si et seulement si A est isomorphe a l'une des algébres suivantes:
o L. oum estun diviseur n;

o L. x L, oum etm' sont des diviseurs de n premiers entre eut;

Preuve. Si A est isomorphe a L,, (resp. L,,, x L., U{T'}) ot m est un diviseur de n (resp.
ou m et m’ sont des diviseurs de n premiers entre eux), alors son treillis de sous-algebres est

isomorphe au treillis div(m) (resp. div(m) x div(m’)) et est par conséquent distributif.
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Si A est isomorphe a L, x L., x E,,,» ot m, m' et m” sont des diviseurs de n deux a deux
premiers entre eux, nous allons montrer qu’il existe dans Quot(D,,(A)) (donc dans Sub(A4)) un
sous-treillis isomorphe au diamant. En effet, supposons que D,,(4) = {z,y,z}, ou

T € s,an(é), Y € 3517@) et z€ 351’},@).

Considérons alors les relations R, S et T' définies par

R={{zy}fz}}, S={{yzb{a}} et T={{z,2}{v}},
et construisons les quotients (X/RITU)) (X/STE)) et (X/T,T'™)) de D,,(A) en posant

X/R,[(8) (X/S,15) (X/T,0(

s )= X/R, st ' =X/S et s ) = X/T.
On vérifie alors directement que le sous-treillis de Quot(D,,(A)) engendré par ces trois éléments

est isomorphe au diamant. &

Ainsi, c’est le caractére non distributif du treillis des sous-algébres d’une algébre de BOOLE
a plus de trois éléments qui restreint la distributivité du treillis des sous-algébres des MV-
algébres dans les variétés finiment engendrées.

Notons enfin que si le treillis des sous-algébres d’une MV-algébre d’une variété non finiment
engendrée est distributif, cela n’implique pas nécessairement que cette algébre est finie, a
I’'opposé du cas qui nous occupe.

7. Quelques questions ouvertes

Les travaux que nous avons exposés et qui concernent le treillis des sous-algébres dans les
variétés MV, sont loin d’étre exhaustifs & ce sujet. De nombreuses questions restent en effet
ouvertes.

Parmi elles, nous avons déja souligné le probléme de pouvoir estimer précisément le cardinal
de Quot(X) lorsque cette structure est finie. Ce probléme de combinatoire pourrait trouver
une solution dans la théorie des multi-ensembles finis, qui sont des ensembles finis & chaque
élément desquels on associe un poids (c’est-a-dire un entier naturel non nul). Les morphismes
entre multi-ensembles finis X et Y sont alors les applications f : X — Y qui sont telles que
le poids associé & f(z) est un diviseur du poids associé & x pour tout z dans X.

Un autre probléme intéressant consiste a essayer de caractériser les treillis (d’abord dans la
cas fini) qui sont isomorphes a un treillis de sous-algébres d’'une MV-algébre A de MV,,. Nous
avons par exemple essayé, sans succés pour le moment, d’obtenir un procédé de construction
dans le cas simple du treillis des sous-algébres d'une algebre du type L, x --- X L, ou
les m; (¢ € {1,...,r}) sont deux & deux premiers entre eux. En fait, c’est I'abondance et la
« densité » des idempotents dans cette algébre qui constitue ’obstacle majeur & ’obtention
d’une telle construction lorsque r est supérieur a 3.

La caractérisation des structures X qui sont telles que {(X/R,I'vin) | R € B(X)} est un
sous-treillis de Quot(X) est un autre probléme auquel on pourrait s’attaquer.

Par ailleurs, il serait intéresssant d’essayer d’étendre nos développements & des sous-
variétés non finiment engendrées de MV-algébres. On pourrait au départ s’appuyer sur d’autres
dualités—comme celle développée par P. NIEDERKORN dans sa thése (|24]) et qui concerne
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la classe des MV-algébres archimédiennes rationnelles, ou encore la dualité récemment décou-
verte par CIGNOLI, DUBUC and D. MuNDICI dans [7]| pour les MV-algébres localement finies.
Il faudrait ensuite tenter de s’affranchir de l'outil (puissant mais aliénant) des dualités pour
étendre les résultats & des classes de MV-algébres pour lesquelles aucune dualité n’est connue.
Une piste & suivre serait peut-étre de s’attaquer a la classe des MV-algébres archimédiennes,
car nous avons vu que la description des éléments maximaux dans Sub(A) faisait intervenir
cette classe de maniére naturelle.

Pour terminer, mentionnons un probléme classique associé au treillis des sous-algébres:
étudier la complémentation et la pseudo-complémentation de ces treillis (cf. [1] pour le cas
des algébres de BOOLE).

L’existence de compléments dans les treillis Quot(X) est loin d’étre une propriété uni-
verselle. Le premier résultat & ce sujet restreint la forme des compléments. Pour I’énoncer,
nous allons étendre les notations du début de la section 3 et convenir que pour tous quotients
(X/RT) et (X/R'.I") de Quot(X), on désignera par pged((X/R,I'),(X/R'I")) I'entier

pged((X/R.T),(X/RT")) = pged({l € div(n) | r ¥ G KD L gy

Lemme 7.1. Le quotient (X/R,I") admet (X/R'.I'') comme complément dans Quot(X) si
et seulement si les trois conditions suivantes sont satisfaites:

e [’équivalence R’ est un complément de R dans B(X);
o pour tout élément x de X, il vient
mr(z) € %R ") X .
T () € ni(R/,R' o (TTE Sppcm(mRva/)
e on apged((X/RT)(X/RI")) = [ |
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CHAPITRE 4

Dualité pour les MV-algébres & opérateurs

La théorie des algébres de BOOLE & opérateurs fut introduite par JONSSON et TARSKI
en 1951 (cf. [16] et [17]). Entre autres applications, ces algébres servirent de modeéle a la
logique modale. En 1983, G. HANSOUL développa dans [14] une dualité catégorique pour la
classe des algébres de BOOLE & opérateurs. Ce sont ces derniers résultats que nous essayons
de généraliser aux MV-algébres.

Nous nous proposons donc de présenter ici une définition de MV-algébre avec opérateurs
étendant naturellement la définition booléenne, ainsi qu’une dualité pour la classe des MV-

algebres de HISP(L,,) munies d’un opérateur unaire.

1. MV-algébres a opérateurs

La notion d’opérateur que nous allons introduire sur les MV-algébres étend naturellement
aux MV-algébres la définition bien connue d’un opérateur sur une algébre de BOOLE. L’axio-
matisation présentée, bien que naturelle, est le fruit de plusieurs tentatives qui se sont révellées
stériles.

Définitions 1.1. Soit k£ un naturel non nul. Un opérateur k-aire sur la MV-algébre A est
une application
f:AF > A

vérifiant les trois conditions suivantes:
(MVO1) l'application f est conormale: pour tous [ dans {1,....,k} et ai,...,aq;—1,a141,- .. ,ak
dans A*
flay,...,a;-1,1,a141, ... ar) = 1;
(MVOz2) l'axiome (K) est satisfait sur chaque argument de f: pour tout [ dans {1,...,k}
I’équation

f((ll, < a1, — Y,Q04-1, - - - ,(Ik)
- (f(ah <A —1,2,a041, - - - 7ak) - f(ala ce a1 —1,Y,A0 41, - - - ,(Ik)) =1
est satisfaite sur A pour tous ay,...,aq;—1,a;41,- . .,a; dans A;

(MVO3) l'application f respecte les Lyry-termes croissants unaires: si 7 est un terme croissant
unaire construit sur Lyy et si aq,...,a sont des éléments de A, alors

7(f(ay,...,ax)) = f(r(a1),...,7(ar))-

Lorsque k = 1, 'opérateur sera appelé opérateur modal et sera souvent noté 1.
Une MV-algébre a opérateurs est une algeébre (A, @, ® ,—,0,1,(fi)rer) ou (4, &, ® ,—,0,1)
est une MV-algébre et ou f; est un opérateur k;-aire sur A pour tout indice ¢ de I’ensemble 1.
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Une MV-algébre modale est une MV-algébre sur laquelle on a défini un unique opérateur

modal.

Dans ce qui suit, nous abuserons des raccourcis d’écriture habituels qui nous autoriseront
a désigner par (A,(fi)icr) la MV-algébre a opérateurs (A, @, ® ,—,0,1,(f;)icr). Par ailleurs,
nous noterons A la MV-algébre sous-jacente a la MV-algébre a opérateurs (A,(f;)icr) (i.e.
la réduction de (A,(f;)ier) au langage Lyrv.) Enfin, pour faciliter écriture de nos résultats,
nous allons fixer pour le reste du chapitre un ensemble d’indices I et un symbole fonctionnel
fi d’arité k; pour tout ¢ € I. Ainsi, toutes nos MV-algébres & opérateurs seront construites sur
le langage {®, ®,—,0,1} U{f; | i € I}. Nous noterons MVQO la classe formée par ces algébres.

La moindre des propriétés que I'on puisse espérer d’un opérateur sur la MV-algébre A est
que celui-ci se révele étre un opérateur d’algébre de BOOLE lorsqu’on le restreint a I’ensemble
B(A) des idempotents de A.

Lemme 1.2. L’axiome MVOz2 est équivalent a

f(ala <oA1, — Y,A141, - - - 7ak)
< flat,...,ai_1,x,ap41, ... ar) — f(ar,...,a1—1,Y,a141, - - . ,ak)
pour tout 1 <1 <k et tous ai,...,a;_1,a;11, - ..,ar dans A. De plus, il implique la monotonie

de f en chacun de ses arguments.

Preuve. La démonstration est une conséquence directe de la définition de I'ordre sur une
MV-algebre. &

Proposition 1.3. Si (A,(f;)icr) est une MV-algébre a opérateurs, alors
(B(A),(filas(ayr: )ier)

est une algébre de BOOLE a opérateurs.

Preuve. Soient ¢ un indice de I et aq,...,a;, des éléments de B(A). Comme le terme
7(x) = x ® = est un terme croissant unaire de Lypy, il vient

m(fila1, ... a,)) = fi(r(a1), ..., 7(ax,)) = filar, ... ax,),
ce qui prouve que 'application fi|%( Ak est & valeurs dans B(A).
Par ailleurs, si [ est un élément de {1,...,k;} et si b; est un idempotent de A, alors la
monotonie de f; en son [® argument implique que
filar,...,a1—1,a1 Nb,aiya, ... ag,)
< filar,...,q1—1,a1,0141, - . . ;a,) A fiar, ... ,a—1,bi,a041, - . - ag,).
Enfin, montrons qu’on a l'inégalité inverse. En effet, puisque B(A) est une algébre de

BOOLE, il vient a; — (b — (a; Aby)) = 1, donc

filar, ... ai—1,ap,0041, - - ax,) < filar, ... .a—1,00 — (g Abp),aig1, - - - 50k, ),
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puis

fi(alv ce Q1,470,071 41, - - - 7aki)

< filar,...,aq—1,b,0041, . - - ax,) — fi(ar, ... ,ai—1,a; Nbj,aggq, ...

Pour finir, en conclut en exploitant la monotonie de f; en son [¢ argument que

fi(a17 ce A —1,07,0] 41, - - - 7ak‘¢) A fi(a17 cee 7a1717bl7al+17 CIEaE 7aki)

< filat,...,a1—1,a1 N b, ai41, - -

ce qui suffit pour conclure la preuve.

40

7aki)7

&

EXEMPLES 1.4. Donnons maintenant quelques exemples simples d’opérateurs sur des MV-

algébres. Soit A une MV-algébre.
(1) 11 est clair que l'identité est un opérateur unaire sur A.

(2) L’application 1: A — A : a1 est un opérateur modal sur A.

(3) Si A est totalement ordonné et si k est un naturel non nul alors 'application

f:AF — A% (ay, ... ap) — (min(ay,...,az),...,min(ay, ... ,a))

est un opérateur unaire sur A" (qui coincide avec l'identité si k = 1). En effet, il

est trivial que f(1,...,1) = (1,...,1). Par ailleurs, si 7 est un Lyrv-terme croissant
unaire et si (ai,...,ax) est un k-uplet d’éléments de A, il vient successivement
7(f(ai,...,ax)) = (r(min(ay,...,ax)),...,7(min(a,...,ax)))
= (min(7(a1),...,7(ag)),...,min(7(ay),...,7(ar))

= f(r(a1),...,7(ax))

puisque T est croissant.

Vérifions enfin que lapplication f vérifie 'axiome (MVO2). Soient (a, ...

(b1, ...,br) deux k-uplets d’éléments de A. Par définition de f, I'inéquation
f(ar, ... ;ax) — (b1,....bx)) < f(ar,...ar) — f(b1,...,br)
est équivalente a
min(a; — by, ...,ax — b)) < min(ay,...,ax) — min(by,... bg),

c’est-a-dire a

I\ (B ® —ai) < (\ bi) @ () @)

i<k i<k i<k
ou encore a

N0 @ —ai) < N\ 0 ®~(\ @),

i<k i<k i<k

,ar) et

vu la distributivité de @ sur A. On conclut alors en notant que, puisque A, a; < a;

pour tout ¢ < k, on a
b; ® —a; Sbi@_‘/\ai
i<k
pour tout ¢ dans {1,...,k}.
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La proposition suivante permet de relier la notion d’opérateur a celle d’homomorphisme.

Proposition 1.5. Soit f un opérateur k-aire sur la MV-algébre A. Si l est un naturel de
{1,....k}, st ay,...,q1—1,a141,...,ax sont des éléments de A et si f; désigne lapplication

fl : A - A car— f(alv e Q—1,a,a0 41, - - - 7ak)a

alors f; est un homomorphisme si et seulement si les deux conditions suivantes sont satisfaites:
e f est normal: f(ai,...,q;—1,0,a;41,...,ax) = 0;

o f respecte & sur son [°-argument:

flai,... a1, ®b,aiy1,. .. ar) = flay, ... ;a-1,0,a141, - - . ,a8) © fay, ... ,a-1,b,a141, . - ak)
pour tous a et b dans A.
Preuve. La proposition est évidemment nécessaire. Montrons qu’elle est suffisante. Par

hypotheése, on sait que fi(a®b) = fi(a) ® f;(b) pour tous a et b dans A. Il nous reste a prouver

que fi(—a) = = fi(a) pour tout a dans A. Or, puisque f est un opérateur, il vient

flay,...,a;-1,a — 0,a;41, . .. ,ak)
— f((a1,...,q1-1,0,a141, . . . ,ar) — f(a1,...,a;-1,0,a141,...,a;)) =1
ou encore
flai,...,ai—1,7a,ai41, ... a;) < = f(a,...,aq—1,0,a;41, . . . ,ak),
puisque f(ai,...,a;-1,0,a;41,...,ax) = 0.

Par ailleurs, il vient successivement

=f(ay,...,a—1,a,a141, - a;) < f(at,...,aq1—1,7a,a141, - - - ,ak)
< af(ar,...,a1-1,0,a041, - - ax) — f(al,...,q—1,7a,a;41,...,a5) =1
< flar,...,q—1,7a,a041, .. .,a5) @ flal,...,a1—1,a,a141, . . .,a) =1
< flar,...,aq-1,6 ® —a,ap41, ... 05) =1,

puisque f est un opérateur qui respecte @ sur son [ argument. Comme f est conormal, on
obtient bien que f; respecte -, ce qui conclut la preuve. &

Pour terminer cette petite introduction, déterminons 'effet de I'image inverse d’un opéra-

teur sur un filtre.

Proposition 1.6. Soit f un opérateur k-aire sur la MV-algébre A. Si F' est un filtre de
Aetsile{l,... .k} alors

fﬁl(ah s ,CLlfl,F,CLH,l, s 7ak) = {JI € A ’ f(ah <A -1,2,a0 415 - - - 7ak) € F}

est un filtre de A pour tous ay,...,a;—1,a14+1,- . .,a dans A.
Preuve. Soient aq,...,a;—1,a1+1, . ..,ax des éléments de A et f; 'application
fl : A - A L f((lh <A —1,T,Q14 15 - - - 7ak)'

Si x et x — y sont deux éléments de ffl(F), c’est-a-dire si fj(x — y) et fi(x) appartiennent

a F, il vient, puisque f; satisfait a 'axiome (K),

file = y) — (filz) — fily)) =1,
donc (fi(z) — fi(y)) € F puis fi(y) € F puisque F' est un filtre. o
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2. Dualité pour les MV-algébres a opérateurs dans HSP(L,,)

Dans cette section, nous allons construire une dualité pour la catégorie dont les objets
sont les MMV-algébres (c’est-a-dire les MV-algébres modales) construites sur les MV-algébres
de la variété HSP(L,,). Pour ce faire, nous allons mimer la technique classique qui consiste a
traduire 'opérateur en une relation binaire sur la structure duale.

Par ailleurs, la dualité que nous allons développer peut naturellement s’étendre & la classe
des MV, -algébres & opérateurs, comme dans le cas des algébres de BOOLE. Si nous nous
sommes restreints & la classe des MV ,,-algébres modales, c’est pour éviter une trop grande
lourdeur dans la formalisation de cette dualité (dont les développements que nous proposons
ne sont qu’'une premiére approche).

La catégorie que nous allons dualiser est la suivante.

Définitions 2.1. La catégorie MMV, est la catégorie
e dont les objets sont les MV-algébres a opérateur unaire (4, ® , ® ,—,0,1,00) construites
sur les MV-algebres A de HSP(L,,);

e dont les morphismes sont les homomorphismes de MV-algébre f : A — B vérifiant

f(@a(a)) = Op(f(a))
pour tout a dans A.
Bien sir, comme il en est d’usage, si (4,04) et (B,0p) sont deux MMV ,-algébres,
nous réserverons la notation MMV, ((4,04),(B,0p)) pour désigner 'ensemble des MMV~
morphismes de (4,04) dans (B,0p).

Pour construire le dual d’un objet de cette catégorie, 'idée, similairement & ce qui se passe
pour les algébres de BOOLE, est d’essayer de dualiser 'opérateur [J en une relation binaire sur
le dual de la MV-algébre sous-jacente a I'objet dont il est question. Les lecteurs familiers avec
la dualité pour les algébres de BOOLE a opérateurs (dont les grands principes sont rappelés
dans les prolégomeénes) ne seront donc pas étonnés par la définition suivante:

Définition 2.2. Si (4,0) est un objet de MMYV,,, on définit sur D,,(A) la relation binaire
RB"(A) par
(uw) € R o Ve A (u(@z)=1=v(z) = 1).

Bien entendu, lorsqu’aucune confusion ne sera possible, nous préférerons noter RP»(4) la

(

relation RB" D Comme d’habitude, nous adopterons également les notations suivantes: si X

est un sous-ensemble de D,,(A), nous noterons RP»(4) (X)) Iensemble
RPA) (X)) = {veDn(A)| Fue X t.q uRP Ay},
et nous réserverons la notation (RP»(4))=1(X) pour désigner I'ensemble
(RPN =1(X) = {ueD,(4) | JveX t.q uRP Dy},
Evidemment, pour ne pas alourdir les notations, si u est un élément de D,,(A), nous préfé-
rerons les notations RP»(@A)y ou RP»(A) (1) & RP»(A) ({u}) et (RP»(A)~1(y) a (RPrA)~1({u}).

Le premier pas dans le processus de dualisation est de vérifier qu’il est possible, étant
donné un objet (A,[0) de MMV, de redéfinir sur la MV-algébre sous-jacente a cet objet (ou,
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de maniére équivalente, sur son bidual ED(A)) 'opérateur O sur base de I'unique connaissance
de relation RP»@) sur le dual D, (A) de cette algebre. C’est le but de la proposition suivante.

Proposition 2.3. Si (4,0) est une MMV,,-algébre, alors
ea@r)(w)= N\ o)
vERPn(A)y

pour tout x dans A et pour tout u dans D, (A).

Preuve. Soit u un élément de D, (A) et x un élément de A. Montrons tout d’abord que

u(dx) < /\ v(z).
vERDPn(4)y

(A)q. Procédons

Pour cela, il nous suffit de prouver que u(Cdz) < v(z) pour tout v dans RP»
par 'absurde et supposons qu’il existe un v dans RP»@)y et un % dans L,, tels que v(z) <
% < u(0z). On considére alors le terme croissant 7; de Lyy défini dans la sous-section 1.3.2
du premier chapitre.
Il vient donc
v(mi(x)) = 7i(v(z)) = 0

puisque v est un homomorphisme de MV-algébre et 7; est un terme de Lyryv. D’autre part,
u(d7i(z)) = u(r;(Ox)) = 7(u(@x)) =1

vu la croissance de 7;. Or, puisque uRP"A)y, cette derniére identité implique que v(r(z)) = 1,
ce qui est absurde.

Complétons la preuve en montrant qu’on ne peut pas avoir

u(Oz) < /\ v(x).

’UGRD'" (é)u

Sinon, il existe un £ dans L, tel que

w(@z) < 2 < v(x).
(Bz) <= veR{}(é)u (z)
On obtient donc
w(@rj(x)) =0 et v(rj(z)) =1
pour tout v dans RP»@)y,
Cela étant, comme (7 (u~1(1)) est un filtre, I'algébre A/~ (u~1(1)) est un membre de
la variété HSPP(L,,) et est par conséquent une sous-algébre d’une puissance de L,,. De plus, si 7
désigne I’application de passage au quotient 7 : 4 — A/0~H(u=1(1)), il vient 7(7;(x)) # 1 et il
existe donc un homomorphisme w’ : A/O07 (u=1(1)) — L, tel que w'(7(7s(z))) # 1. Dés lors,
Papplication w = w’ o 7 est un élément de D, (A4) tel que uRP»@w alors que w(7s(x)) # 1,
ce qui est absurde. &

Ainsi, le processus de dualisation semble bien entamé: il est possible, en connaissant la
relation RB"A sur le dual de I’algébre A, de récupérer 'opérateur [ sur A & I'aide des ensembles
D,A
R2A(u) (u € Do (4)).
Examinons maintenant les propriétés de la relation RP(4),
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Proposition 2.4. Si (A,00) est une MMV, -algébre, alors la relation RP»(4) possede les
propriétés suivantes:
o Six est un élément de A et sii appartient a {1,...,n}, on a
i

(RPH) ™[z - ~1) = [B(7(2) @ 7i4a(2)) + 0],

st on convient que ;41 = 0 lorsque i = n;

e le graphe de la relation RPA) est un fermé de D,,(A) x Dy(A);

e pour tout i dans {1,...,n} et pour tout x dans A, on a
( U roe @) 0 (RO D) ([ ()  0]) 0 X\ (RPA) 7! ([r()  0]) = 0

{mediv(n)| ¢k, }
ot on convient que [Ti+1(x) : 0] = Dy (A) st i =n (auquel cas le terme 7,41 n'est pas
correctement défini).

Preuve. Sib est un idempotent de B(A), alors, en appliquant la proposition 2.3, on obtient
que (RP@)~=1([b: 0]) = [Ob : 0]. Dés lors, comme [z : L] = [r41(z) ® —7(z) : 0] (avec notre
convention sur 7;41), il vient

_ 1
(RPH) ™[z : -1 = [0(7i(2) © 7iga(2)) < 0]

Par ailleurs, si (u,v) € RP@) on peut trouver un élément x de A et un j dans {0,...,n—1}
tels que u(Ox) = 1 et v(x) = % Alors, le couple (u,v) appartient a 'ouvert-fermé [Oz : 0] X [x :
%] qui est une partie de D(A) x D(A) \ RP@ ce qui démontre la deuxiéme propriété.

Pour démontrer le troisiéme résultat, procédons par ’absurde. Supposons qu’il existe un
x dans A, un i dans {1,...,n} et un u dans ra"(é) avec % ¢ L, tels qu'on peut trouver un v

dans RP@) () avec v(x) = L et qu’aucun w dans RP@ (y) ne vérifie w(z) < L Alors, selon

7

la proposition 2.3, il vient u(Ox) = % alors que % L, O

Remarques 2.5. Remarquons que si 1 <i <n—1,le terme 7,11 () ® —7;(x) n’est pas croissant (en
effet 7i41(x) & —7i(x) € 71 (L) & —7i(L) si o < £). Ainsi, on ne peut pas conclure (heureusement) a
Pégalité entre [(11(x) ® —7(x)) : 0] et [m1(Ox) @ —7;(Ox) : 0].

Par ailleurs, il est clair, vu la proposition 2.3 que

(RPN =17 (2) @ —7p(z) = 0] = [Oz : 0].
Enfin, il découle de nos conventions sur 7,41 que
(RPD) 41 (2) © =7 () = 0] = 0.

six# 1.

Notons aussi que si [ est un opérateur sur A et si x est un élément de A, il vient

u(z) = % & u e (RPW) ™ ([rpa(2) : 0) N X\ (RP@) 7} ([r(x) : 0]),

ol on convient que [7;41(x) : 0] = Dy, (4) si i =n.

Le temps est maintenant venu de vérifier si les trois conditions de la proposition 2.4 sont

des conditions suffisantes & imposer a une relation définie sur le dual D,,(A) d'une MMYV),,-

algébre A pour que I'application définie dans la proposition 2.3 se révéle étre un opérateur
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modal. C’est I'objet de notre prochain résultat, pour lequel nous allons poser la définition

suivante.

Définition 2.6. Une relation binaire R~ (bien souvent, nous oublierons délibérément de
rappeler la dépendance en X ) définie sur une structure X de X, est appelée relation modale
si elle satisfait aux trois conditions suivantes:

(R1) (RX)*l(w) est un ouvert-fermé pour tout ouvert-fermé w de l’espace topologique X

sous-jacent a X.

(R2) le graphe de la relation R~ est un fermé de D,,(A) x Dy, (A);
(R3) pour tout i dans {0,...,n} et pour tout o dans E,(X), on a

(B (i @) O) 1 X\ B (@) opn (J - i =0
{ml; #him}

X X
Il est clair que si R est une relation binaire sur X qui vérifie R(rn,) C rp,, alors R satisfait
a la troisiéme condition de la définition précédente. Une des questions qui restent ouvertes est

de déterminer si cette condition est nécessaire.

Remarque 2.7. Si R est une relation modale sur X, alors le sous-espace Ru est un fermé de X
pour tout v dans X. En effet, si u et v sont des éléments de X tels que v n’appartient pas & Ru, alors
le couple (u,v) n’est pas un élément de R et il existe des ouverts-fermeés w, et wy, de X tels que wy, X wy,
contient (u,v) et soit une partie de X x X \ R. On en déduit que w, contient v mais aucun élément de

Ru, ce qui conclut la preuve.

Proposition 2.8. Si X est une structure de X, et si R est une relation modale sur X,
alors Uapplication Og définie sur E,(X) par
(Ora)(uw) = A a(v)
vERu

est un opérateur modal sur E,(X).

Preuve. Tout d’abord, notons que si u est un élément de X et si i est dans {0,...,n}, il
vient

(Ona)(u) = £

{ u € R ((7i41()H(0)) N X\ R ((7i(a))71(0)) sii<n,
ue€ X\ R (ri(a))"1(0)) sii=n.

En effet, 'élément u est dans R~1((7;51(a))~1(0)) si et seulement s’il existe un v dans Ru tel
que a(v) < L. Par ailleurs, u appartient a X \ R71((7;(a))71(0)) si et seulement si a(v') # £
pour tout v’ dans Ru.

Cela étant, la continuité de I'application ra découle du fait que I'image inverse par R
d’un ouvert-fermé reste un ouvert-fermé. Par ailleurs, la troisiéme condition de la définition
2.6 nous assure que [Jga respecte les relations r, (m € div(n)). Au total, 'application Ora
est un élément de E, (X) pour tout o dans E, (X).

I1 nous reste a prouver que (i est effectivement un opérateur modal sur E,(X). Il est
d’abord évident que [zl = 1. Par ailleurs, si 7 est un terme croissant unaire sur Lyry et si «

est un élément de E,(X), il vient

T(DRQ) = DRT(OJ)
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si et seulement si

vERuU vERu
pour tout u dans X. Or, si u est un élément de X, on déduit de la croissance de 7 que

(N a@) < A m(@)().
vERu vERu
Par ailleurs, 'infemum des a(v) pour v parcourant Ru étant réalisé en un certain a(vg)
(vo € Ru), il vient également
7( N\ a() =7(a(w) = A m(@)).
vERu vERuY

Pour conclure, il nous suffit maintenant de prouver que ’application [y satisfait & ’axiome
(K) sur E,,(X), c’est-a-dire que

(Or(a — B) — (Opa — OgrB))(u) =1

pour tous « et § dans E,(X) et tout v dans X. Or, si a et § sont des éléments du dual de X,

et u est un élément de X, il vient successivement

(Or(e — ) — (Ora — Orp))(u) =1
< (Urla = p)(u)) < (Ora)(u) — (OrB)(u)
€ Noeru(B) ® 2a(v)) < (Ayepu B)) & 7(Ayery (V)
€ Noera(B(0) & ~a(v) < Ayepu(B0) & = Ay gy (v))-

Or, si uRwv, il vient A ,cp, a(v') < a(v), donc

—a(v) < - /\ a(v’)

v'€Ru
et ainsi
Bv) @ —a(v) < B)@ = [\ a(),
v'€Ru
ce qui conclut la preuve. O

Résumons notre parcours dans le processus de dualisation des objets de la catégorie
MMV, nous avons défini la notion de relation modale sur un objet de X, et nous savons que
tout opérateur modal sur une algébre A de MV, se traduit (de maniére canonique) en une
relation modale sur son dual D,,(A) et inversement (idem). Par ailleurs, nous savons que les
techniques que nous avons développées assurent que si ’on traduit un opérateur [J sur A en
une relation modale R sur D,,(A4) (selon la définition 2.6), puis que nous traduisons, suivant
la proposition 2.8, cette relation modale R en un opérateur Op, sur ED(A), alors I'opérateur
obtenu est, & isomorphisme prés, identique & 'opérateur [0 de départ. C’était en effet 'objet
de la proposition 2.3.

Pour conclure le processus la dualisation des objets de MMV, il nous suffit donc main-
tenant de prouver que la traduction successive d’une relation modale R sur la structure X
de X en un opérateur Op sur E,(X), puis de cet opérateur en une relation R, sur DE(X)
aboutit au final (& isomorphisme prés) a la relation modale R de départ. C’est 'objet de la

proposition suivante.
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Proposition 2.9. 51 X est une structure de X, si R est une relation modale sur X, si
Or est lopérateur modal (défini sur E, (X)) associé a R selon la proposition 2.8 et si R, est
la relation modale (définie sur DE(X)) associée a O, alors, a isomorphisme pres, les relations

R et Rpy, coincident.

Preuve. Premiérement, montrons que si u et v sont des éléments de X tels que uRv alors
ex(u)Ropex (v). En effet, puisque uRv, il vient, par définition de Cg,
Or(a)(u) < a(v)
pour tout a dans E,(X). On en déduit que ex(u)Ro,ex(v) par définition de R, .
Inversement, supposons que ex (u)Ro,ex (v), c’est-a-dire que
Va€En(X) (ex(w)(Ora) =1 = ex(v)(a) =1),
ou encore
VaeEy(X) (Bra)(u) =1= alv) =1),
ou enfin
VaeEy,(X) (RuCat(l)ewveal(l)
vu la définition de Op.
On en déduit que uRwv. Sinon, il existe un ouvert-fermé w de X x X tel que

(uv) Ew C X x X\ R.

De maniére équivalente, puisque X est un espace de BOOLE dont le dual (sous la dualité de
STONE) est isomorphe & ’ensemble des idempotents de E,, (X), il existe deux éléments « et (3
de E,,(X), a valeurs dans {0,1}, tels que

(u,w) € a1(0) x B7H0) C X x X\ R.
Ainsi, il vient
Ru € X\ 571(0) = 571(1)
donc B(v) =1, ce qui est absurde. &

Il est maintenant temps de s’occuper de la dualisation des morphismes de MMYV,,.

Proposition 2.10. Soient (A,0) et (B,0) deux MMV, -algébres. Si f : A — B est un
homomorphisme de MMV,,-algebre, alors Uapplication Dy, (f) est un morphisme de X,, entre
D, (B) et D,,(A) tel que

D,(f) o R = RoDy,(f).

Preuve. Soit u un élément de D, (B). Montrons d’abord que

Dy (f)(Ru) € R(Dn(f)(u)).

Pour cela, il nous suffit de montrer que si v appartient & Ru et si x est un élément de A tel que
(Dn(f)(u))(dx) = 1, alors (D, (f)(v))(z) = 1. Or, puisque 'application f respecte 'opérateur
0, on a u(f(dx)) = 1 si et seulement si u(df(x)) = 1, cette derniére identité entrainant
v(f(x)) =1 puisque uRv.

Montrons ensuite que

R(Dn(f)(w)) € Dn(f)(Ru).
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Soit v’ un élément de R(D,,(f)(u)). Par définition, on a donc
w@f(z)=1='(z) =1

pour tout x dans A.

Cela étant, I’ensemble D, (f)(Ru) est I'image par une application continue d’un espace
compact (Ru est un fermé de 'espace compact D, (B)) et est par conséquent un compact.
Comme c’est un sous-espace d’un espace séparé, il s’agit donc d’un fermé de D, (A). Ainsi,
pour montrer que v’ appartient a D, (f)(Ru), il suffit de prouver que tout voisinage de v’
rencontre Dy, (f)(Ru).

Soit donc b un idempotent de A et [b : 0] un ouvert-fermé de base de D, (A) contenant
v’. Nous allons construire un élément de [b: 0] N D,,(f)(Ru), ¢’est-a-dire un homomorphisme
v appartenant a Ru tel que v(f(b)) = 0. Pour cela, notons que 07! (u~1(1)) est un filtre qui
ne contient pas f(b) (si c’était le cas, 'image de v’ en f(b) serait égale a 1). Il existe donc
un filtre premier F' contenant (07! (»~1(1)) mais pas f(b). Dés lors, si 7 désigne la projection
de A dans A/F, on obtient 7(f(b)) # 1. On conclut alors, similairement a la preuve 2.3, a
lexistence d’un v de Ru tel que v(f(b)) = 0 (puisque f(b) est un idempotent de A). O

Le dual de cette proposition prend la forme suivante.

Proposition 2.11. Soient X et Y deux structures de &, et Ry (resp. Ry ) une relation
modale sur X (resp. sur'Y ). Siv: X —'Y est un X,-morphisme vérifiant

o Rx = Ry o,
alors En(v) est un homomorphisme de MMV, -algébre de (E,(Y),0r, ) dans (E,(X),0ry)-

Preuve. 1l nous suffit de montrer que si a appartient a E,(v), alors

. ()(Ory @) = Dpy (Ea(¥)(@)).
Cela revient & prouver que
Oy a($(w)) = Opy (0 0 6) (1)
pour tout u dans X. Or, si u est un élément de X, ’équation précédente est équivalente a
A ew)= A a@w)),
vERy (¥(u)) v'ERx (u)

par définition de Cp, et Og,. On conclut alors en utilisant le fait que ¢ (Rx(u)) = Ry (¢ (u))
pour tout u dans X. &

Nous pouvons donc maintenant définir ce qui se révélera étre la catégorie duale &8 MMYV,,.

Définitions 2.12. La catégorie MX,, est la catégorie
e dont les objets sont les X, -structures modales, c’est-a-dire les structures topologiques
(X ,R)~(> ou
e X est un objet de X,
e Rx est une relation modale sur X;
e dont les morphismes sont les applications ¢ : (X,Rx) — (Y,Ry) telles que

e Y est un X,,-morphisme,
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[ ] w 9] R)/g = RZ o w
Cela étant, si (X,Rx) et (Y,Ry) sont deux objets de MX,,, nous désignerons, suivant
I'habitude, par MX,((X,Rx),(Y,Ry)) I'ensemble des MX,-morphismes de (X,Rx) dans

Nos précédents développements se synthétisent maintenant de la fagon suivante.
Théoréme 2.13. Soit D}, : MMYV,, — MX,, le foncteur défini par

D, (A
(A4.04) = (Du(4),R2,)

" { fe MMV,({AD4),(B,0p)) — Dn(f) € MX,(D;((B,0p)),D5((4,04)))

D*

ot RBZ(A) est la relation associée a (4 de la définition 2.2.

Soit également EX : MX,, — MMV, le foncteur défini par

E* . { <X7R)~(> = <EN<X)7DR;\;>
" ¥ € MXL((X,Rx),(Y Ry)) — En(4) € MMV,(E;((X,Ry)).E;((X ,Rx)))
ot DRE, est 'opérateur associé a Rx suivant la proposition 2.8.

Alors les catégories MMV, et MX,, sont dualement équivalentes par les foncteurs Dy, et
Er.

Preuve. C’est une synthése des propositions 2.3, 2.8, 2.9, 2.10 et 2.11. &

EXEMPLES 2.14. Voici quelques illustrations directes de cette dualité.

(1) Si X est une X,-structure et si R est la relation modale définie sur X par Ru = () pour
tout u dans X, alors 'opérateur (g est 'opérateur défini sur E(X) par (Ora)(u) =1
pour tout u dans X.

(2) Si X est une X,-structure et si R est la relation modale définie sur X par Ru = u
pour tout u dans X, alors 'opérateur Ll coincide avec l'identité.

(3) Si Oy, est l'opérateur définit sur EX dans le troisiéme exemple de 1.4, alors R, est
la relation modale définie sur D, (LX) par Ru = D, (LX) pour tout u dans D,,(LF).

3. Quelques exemples

Une des questions fréquemment étudiée lorsqu’on développe une théorie de dualité pour
des opérateurs consiste a déterminer quelles sont les propriétés des opérateurs qui admettent
une traduction lors du processus de dualisation. Etudions quelques cas classiques.

3.1. Dualité pour les opérateurs additifs et normaux. Vu la proposition 1.5, un
opérateur [J additif (i.e. O(z & y) = Oz & Oy) et normal (i.e. 00 = 0) sur la MV-algébre A
est un homomorphisme de MV-algébre de A dans lui-méme. La proposition suivante ne doit
donc pas étonner le lecteur attentif.

Proposition 3.1. Si (A,00) est une MMV, -algebre telle que O est additif et normal,

alors R%” (4)

est un X, -morphisme de D,,(A) dans lui-méme.
Inversement, si (X ,R) est une MX,-structure telle que la relation R est un X,,-morphisme,

alors Og est un endomorphisme de E,(X).
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Preuve. Soit u € Dy (A). Nous allons prouver que
Dn(A
R () = {Du (D))},

ce qui suffira puisque [ est un homomorphisme de MV-algébre. Evidemment, D,,(00)(u) ap-
partient & Rgn(é) (u). Par ailleurs, si v est un élément de RB"(A) (u), alors O~ (u=1(1)) est un
filtre maximal inclus dans v~1(1), alors que v=!(1) est un filtre propre.

Inversement, si R est un X),-morphisme sur X et si o est un élément de E,, (X)), nous allons

montrer que

En effet, si u appartient & X, il vient

Ora)(w) =\ a() = a(R(u) = (Ex(R)(e)(u),

vER(u)

ce qui conclut la preuve. &

3.2. Dualisation de I’équation [z — Uz = 1. Nous allons maintenant dualiser les
opérateurs qui satisfont & ’équation Oz — OOz = 1, c’est-a-dire qui vérifient Ox < OOz
Les lecteurs familiers avec le cas correspondant pour les algébres de BOOLE ne devraient pas

étre désorientés.

Proposition 3.2. Si (A,0) est une MMV, -algébre qui satisfait o ’équation Ox —
OOz = 1, alors la relation R%”(A) est transitive.

Inversement, si (X,R) est une MX-structure telle que R est transitif, alors Opa —
Or0ra =1 pour tout a dans E,(X).

Preuve. Supposons que uRP*@)y et v RP(A)qy. Si z est un élément de A tel que u(Ox) =1,
alors w(O0z) = 1, donc v(0xz) = 1 puisque uRP»@Ay et enfin w(z) = 1 puisque vRPAqp.
Inversement, si (X,R) est une MX,-structure transitive, nous devons montrer que pour

tout o dans E,(X) et tout u dans X l'inégalité
(Ora)(u) < (OrOga)(u)

équivalente &

N a) < A (Oa)(v)
vERuU vERu
est satisfaite. On conclut donc en notant que le deuxiéme membre de cette inégalité est égal

& Nperu Nocre @(V), et en exploitant la transitivité de R. o

3.3. Dualité pour les opérateurs d’intérieurs. Un opérateur d’intérieur sur la MV-
algébre A est un opérateur [ qui satisfait aux deux équations Uz = Uz et Uz — o = 1.

De nouveau, nous constatons que ces opérateurs se dualisent de maniére classique.

Proposition 3.3. Si O est un opérateur d’intérieur sur la MMV -algébre A, alors
RP»(A) est un préordre sur D, (A).
Inversement, si (X ,R) est une MX,,-structure telle que R est un préordre, alors [’opérateur

Ogr est un opérateur d’intérieur sur E,(X)
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Preuve. Puisque 00z = Oz, on sait déja que RP7(4) est transitif. La réflexivité de RPn(4)
découle quant & elle du fait que Oz < x pour tout x dans A.

Inversement, si R est un préorde, il est transitif et (E,,(X),0p) satisfait a I’équation Oz —
OOz = 1 sur E(X). Montrons maintenant que I’équation Oz — =z = 1 (donc OOz — Oz = 1)
est également satisfaite. Comme

(Ora)(w) = /\ a(v)
vERu

et que u € Ru, il est évident que (Ora)(u) < a(u) pour tout u dans X, ce qui suffit. &

4. Quelques questions ouvertes

Le présent travail ne doit étre vu que comme une introduction & la théorie des MV-
algébres a opérateurs. Néanmoins, la dualité topologique que nous avons développée pour la
classe MMV, pourrait se révéler étre un outil puissant pour une étude plus approfondie de
ces algébres. Ainsi, les résultats des sections précédentes font place & de multiples questions
concernant la dualité développée et son champs d’application.

Il serait tout d’abord intéressant de déterminer si la condition de saturation R(r,%%) - 7‘%
ol R est une relation modale est une condition nécessaire. Si ce n’est pas le cas, les relations
modales qui vérifient cette condition définissent une classe d’opérateurs modaux dont il serait
utile d’obtenir ’axiomatisation.

Par ailleurs, nous avons montré qu’un opérateur modal sur une MV-algébre A définit un
opérateur d’algébre de BOOLE sur B(A). Inversement, il n’est pas vrai que tout opérateur
d’algebre de BOOLE sur B(A) s’étend en un opérateur sur A. En effet, cela signifierait que
toute relation booléenne définie sur ’espace topologique sous-jacent & une structure X de X,
est une relation modale sur X (propriété pour laquelle il est trés facile d’obtenir un contre-
exemple dans les structures finies). Ainsi, on pourrait essayer de déterminer la classe des
opérateurs sur B(A) qui s’étendent en un opérateur sur A.

Ensuite, nous pourrions tenter de construire les produits et les coproduits dans la catégorie
MX,, et déterminer si la dualité développée fait correspondre les produits aux coproduits et
inversement. Ce travail constitue une piste sérieuse pour 'obtention des algébres libres dans

la classe MMYV,,, résultat essentiel pour I’étude d’une logique modale multivaluée.
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