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INTRODUCTION ii

Introduction

L’intérêt que porte l’homme à la science des raisonnements remonte à l’antiquité grecque.

On trouve en effet dans les travaux d’Aristote les premiers balbutiements de ce qu’on qualifie

aujourd’hui la logique classique. Le point de vue alors abordé était celui du philosophe, et le

degré de vérité que pouvaient prendre les propositions ne dépassait que rarement la simple

dichotomie vrai–faux.

Il faut attendre le milieu du dix-neuvième siècle pour que le mathématicien G. Boole

donne des bases mathématiques solides à l’étude du calcul des propositions. Ce fut le point

de départ de la logique algébrique, dont le principe premier consiste à greffer à l’ensemble des

propositions d’une logique une structure d’algèbre, appelée algèbre de Lindebaum–Tarski.

Le mathématicien peut alors déployer la panoplie de l’algèbre universelle pour s’attaquer à

l’étude des propriétés de son système formel.

Consécutivement au développement de la logique propositionnelle classique initiée par G.

Boole, les mathématiciens commencèrent à s’interroger à propos de la possibilité de dépasser

le cadre classique ne permettant qu’une approche grossière du raisonnement humain.

Ce fut la naissance des logiques modales, par lesquelles les logiciens tentèrent de modéliser

différents types de raffinements des propositions, comme la possibilité, la connaissance, la

probabilité ou l’obligation. L’introduction de la modalité dans la logique classique se traduit

par la définition d’un opérateur sur l’algèbre de Boole des formules.

Parallèlement, d’autres mathématiciens, peu satisfaits des résultats offerts par les logiques

modales, développèrent des systèmes formels dans lesquels les propositions peuvent prendre

plus de deux valeurs de vérités. Ainsi, J. Łukasiewicz introduisit en  un système trivalué

(cf. [31] et [2] pour une traduction en anglais) qu’il étendit tout naturellement à des systèmes

n-valués et infini-valués (cf. [32] traduit en anglais dans [2]).

C’est dans ce contexte que naquirent les MV-algèbres. En effet, elles furent pour la première

fois étudiées par C.C. Chang en  (cf. [4] et [5]) car elles apparaissaient comme les

algèbres de Lindenbaum de la logique infini-valuée de Łukasiewicz. L’étude de la variété

de ces algèbres (dont les algèbres de Boole forment une sous-variété) permit notamment à

C.C. Chang d’établir la complétude du système infini-valué de Łukasiewicz (cf [5]). Mais la

classe de ces algèbres regorge de richesses insoupçonnées qui attirèrent l’attention de nombreux

algébristes depuis leur découverte.

Un des outils puissants de l’algèbre universelle est la théorie des dualités. Son principe

de base consiste à associer une structure topologique X
˜

à une algèbre A telle qu’on peut

reconstruire A à partir de X
˜

. Les exemples historiques de dualité — la dualité de Stone pour

les algèbres de Boole (cf. [30]), la dualité de Priestley pour les treillis distributifs (cf. [27]
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et [28]), la dualité de Pontriagyn pour les groupes abéliens (cf. [25] et [26]) — illustrent

parfaitement la richesse de cette théorie.

Récemment encore, P. Niederkorn développa (cf. [23]) une dualité pour les variétés de

MV-algèbres engendrées par une MV-chaîne finie, dualité qui fut étendue dans [21] aux variétés

de MV-algèbres finiment engendrées par P. Niederkorn, P. Mathonet et B. Teheux.

Dans ce mémoire, nous nous proposons d’appliquer cet outil à deux problèmes classiques

de l’algèbre universelle.

Le premier de ces problèmes est l’étude du treillis des sous-algèbres. Depuis toujours,

les mathématiciens s’intéressent à déterminer les propriétés communes du treillis des sous-

algèbres des algèbres de leur variété de prédilection. Par exemple, Grätzer, Koh et Makkai

obtinrent dans [13] une caractérisation du treillis des sous-algèbres d’une algèbre de Boole

et Sachs étudia dans [29] les éléments maximaux dans ces treillis (une synthèse de toutes ces

propriétés peut être trouvée dans [1]).

Cependant, la théorie des dualités ne fut que rarement appliquée pour résoudre des pro-

blèmes liés aux treillis des sous-algèbres (contrairement au treillis des quotients). Ainsi, dans

la plupart des cas, la notion de sous-algèbre ne semble pas se dualiser « confortablement »

dans la catégorie duale. Des exceptions existent, comme c’est le cas pour les R-sous-treillis

d’un treillis distributif borné (cf. [33]), ou pour les sous-algèbres des algèbres de Heyting (cf

[15]).

Dans le troisième chapitre de ce travail, nous essayons donc de convaincre le lecteur que le

cas de la dualité pour les variétés HSP(Łn) est une autre exception qui prouve qu’une dualité

peut se montrer généreuse en résultats sur l’étude du treillis des sous-algèbres. Ainsi, entre

autres conséquences, nous obtenons le caractère dualement atomique de ces treillis, nous en

décrivons les éléments maximaux, et en étudions la modularité et la distributivité.

Le deuxième problème auquel nous nous sommes attaqués, et qui constitue le quatrième

chapitre, est centré sur la construction d’une dualité pour une théorie des MV-algèbres à

opérateurs. La théorie des algèbres de Boole à opérateurs, introduite par B. Jónsson et A.

Tarski dans [16] et [17], et qui connut un second souffle en  quand Kripcke introduisit

les modèles qui portent son nom, peut être vue comme une contrepartie algébrique de la

logique modale. C’est pour faciliter leur étude que G. Hansoul développa dans [14] une

dualité catégorique pour la classe de ces algèbres, étendant par là les résultats de [16]. L’idée

de cette dualité est de construire le dual d’une algèbre de Boole à opérateur 〈B,¤〉 en

considérant le dual χ(B) de B sous la dualité de Stone et en traduisant l’opérateur ¤ en

une relation binaire sur χ(B).

Pour établir une dualité pour les MV-algèbres à opérateurs, le premier obstacle qu’il a

fallu surmonter était de déterminer une axiomatisation des opérateurs qui à la fois étend

l’axiomatique booléenne et qui se révèle aussi être suffisamment riche que pour permettre

la dualisation. Notons d’emblée que les résultats de McNaughton (cf. [22]) concernant les

fonctions termes sur [0,1] ont été d’une importance capitale à cet effet.

Ainsi, dans le quatrième chapitre, nous définissons la classe des MV-algèbres à opérateurs

et nous développons, en mimant la technique classique, une dualité pour la classe des MV-

algèbres munies d’un opérateur unaire et qui sont construites sur une MV-algèbre d’une variété

finiment engendrée. Cette dualité étend la dualité booléenne et l’axiomatisation de la classe
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duale ne fait intervenir qu’une condition de structure supplémentaire par rapport au cas

classique. Nous avons espoir que dans un futur proche, cette dualité puisse nous mener à

l’étude d’une logique modale multi-valuée.

Pour faciliter la lecture de cet ouvrage au lecteur peu familier avec la théorie des MV-

algèbres et des dualités, nous avons consacré le premier chapitre à de brefs prolégomènes.

Nous avons réservé le deuxième chapitre à des rappels concernant les définitions et propriétés

des différents types de modularité sur les treillis.

Les chapitre  et , qui forment le noyau de ce travail, peuvent être lus indépendemment

l’un de l’autre. Le lecteur désorienté trouvera à la fin de l’ouvrage un index et un index des

notations qui, nous l’espérons, lui permettront de retrouver son chemin dans le dédale du

vocabulaire mathématique.



1. MV-ALGÈBRES 1

CHAPITRE 1

Prolégomènes

Dans ce chapitre, nous voulons rappeler au lecteur les définitions et les propriétés qui sont

nécessaires à la compréhension du travail exposé dans la suite de cet ouvrage. Nous supposons

que le lecteur est déjà familier avec la théorie de l’algèbre universelle (et avec ses exemples

les plus connus: treillis, algèbres de Boole, etc.) et de la topologie générale, qu’il connaît

le vocabulaire élémentaire de la théorie des catégories et que la théorie des dualités entre

algèbres et structures topologiques ne lui est pas tout à fait étrangère. Le ton étant donc

essentiellement au rappel, nous renvoyons le lecteur désorienté aux ouvrages [3] et [11] pour

obtenir plus d’informations à propos de l’algèbre universelle, à l’article [10] en ce qui concerne

les structures topologiques, au livre [20] pour la théorie des catégories et enfin au travail [9]

de Davey et Werner pour la théorie des dualités naturelles.

1. MV-algèbres

1.1. Définitions et exemples. Nous avons consacré le noyau de ce mémoire à l’étude

de certaines propriétés des MV-algèbres. Ce n’est donc que justice que de leur consacrer la

première partie de ces prolégomènes.

Les MV-algèbres furent introduites en 1958 par C.C. Chang (cf. [4] et [5]) pour donner un

aspect algébrique aux logiques multi-valuées de Łuckasiewicz. Les algèbres de Lindebaum

de ces logiques sont en effet des MV-algèbres et l’application des techniques de l’algèbre

universelle à ces dernières a permis d’aboutir (entre autre chose) à une preuve algébrique du

théorème de complétude de la logique infini-valuée de Łuckasiewicz (cf. [5]). Depuis lors,

la variété des MV-algèbres, qui apparaît comme une extension de la variété des algèbres de

Boole, fut étudiée par de nombreux algébristes dont les motivations furent aussi diverses

qu’éloignées des considérations logiques qui lui avaient donné naissance. Le lecteur intéressé

trouvera dans [6] un petit panorama de la théorie des MV-algèbres.

Bien que depuis  la classe des MV-algèbres ait reçu plusieurs axiomatisations diffé-

rentes (on les connaissait alors sous le vocable d’algèbres de Wajesberg, de BCK-algèbres

commutatives bornées, leur variété pouvant également être considérée comme une sous-variété

de la variété des BL-algèbres), on s’accorde aujourd’hui pour définir une MV-algèbre comme

étant une algèbre 〈A;⊕,¯ ,¬,0,1〉 (nous noterons LMV le langage des MV-algèbres) de type

(2,2,1,0,0) telle que 〈A;⊕,0〉 est un monoïde abélien et satisfaisant aux équations suivantes:

(MV) ¬¬x = x, (MV) x⊕ 1 = x,

(MV) ¬0 = 1, (MV) x¯ y = ¬(¬x⊕ ¬y),

(MV) (x¯ ¬y) ⊕ y = (y ¯ ¬x) ⊕ x.

Souvent, nous utiliserons l’expression x→ y comme abréviation de y ⊕¬x. Nous désignerons

par MV la variété des MV-algèbres.
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Notons que si 〈A;⊕,¯ ,¬,0,1〉 est une MV-algèbre, il est possible de greffer sur A une

structure de treillis distributif borné (inférieurement par 0 et supérieurement par 1. Cf. [4] ou

[6] pour les preuves.) L’ordre ≤ qui lui est associé est alors défini par

x ≤ y ⇔ x→ y = 1,

et les opérations ∨ et ∧ de ce treillis sont données par

x ∨ y = (y ¯ x) ⊕ x,

x ∧ y = (y ⊕ ¬x) ¯ x.

Ces opérations jouissent sur toute MV-algèbre des propriétés suivantes:

x¯ (y ∨ z) = (x¯ y) ∨ (x¯ z),

x⊕ (y ∧ z) = (x⊕ y) ∧ (x⊕ z).

Par MV-chaîne (ou MV-algèbre totalement ordonnée ), on entend naturellement une MV-

algèbre dont l’ordre associé est total.

Par ailleurs, un élément x de la MV-algèbre A (nous commettrons souvent l’abus consacré

par l’usage qui consiste à désigner une algèbre par son univers) est dit idempotent si x⊕x = x.

Nous noterons B(A) l’ensemble des éléments idempotents de A. Il s’agit d’une sous-algèbre

de A et c’est même la plus grande sous-algèbre de A à être une algèbre de Boole (l’opération

∨ coïncide alors avec ⊕ et ∧ avec ¯). C’est en ce sens que la variété des algèbres de Boole

apparaît comme une sous-variété de MV. Il suffit en effet d’ajouter l’équation x ⊕ x = x

à l’axiomatisation de MV pour obtenir une base équationnelle de la variété des algèbres de

Boole.

L’exemple le plus fondamental de MV-algèbre est l’algèbre 〈[0,1];⊕,¯ ,¬,0,1〉 définie sur

l’intervalle réel [0,1] par
x⊕ y = min(x+ y,1),

¬x = 1 − x.

Un des résultats principaux de C.C. Chang (cf. [5]) est d’avoir obtenu que la variété des MV-

algèbres est engendrée par l’algèbre [0,1]. Dans ce cas, il est trivial de vérifier que l’ordre associé

à la MV-algèbre [0,1] coïncide avec l’ordre usuel sur les réels. D’autres exemples importants

sont constitués par les sous-algèbres Łn = {0, 1n , . . . ,
n−1
n ,1} de [0,1] (où n ∈ N0). En effet, la

classification des sous-variétés de MV obtenue par Komori (cf. [18] et [19]) montre que les

sous-variétés finiment engendrées coïncide avec les variétés engendrées par un nombre fini de

MV-chaînes Łn (n ∈ N0).

1.2. Congruence et filtre implicatif. Similairement au cas des algèbres de Boole,

toute congruence sur une MV-algèbre est caractérisée par la classe de 1. Ainsi, on dit qu’un

sous-ensemble F de la MV-algèbre A est un filtre implicatif (ou tout simplement filtre) si F

contient 1 et si chaque fois que F contient les éléments x et x→ y alors F contient également

y. Bien-sûr, on dit qu’un filtre est propre si il ne contient pas 0, qu’il est non trivial s’il diffère

de {1} et qu’il est maximal s’il est maximal parmi les filtres propres. On constate aisément

que l’ensemble F(A) des filtres de la MV-algèbre A est un treillis borné. On définit également

la fonction distance

d : A2 → A : (x,y) 7→ (x¯ ¬y) ⊕ (y ¯ ¬x).
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Avec ces définitions, on peut montrer que si F est un filtre sur A alors la relation binaire θF
définie par

(x,y) ∈ θF ⇔ ¬d(x,y) ∈ F

est une congruence sur A telle que 1θF = F . Inversement, si θ ∈ Con(A), alors 1θ est un filtre

tel que θ1θ = θ. De plus, ces correspondances biunivoques sont isotones, de sorte que le treillis

Con(A) des congruences d’une MV-algèbre A est isomorphe au treillis F(A) de ses filtres. Par

ailleurs, cet isomorphisme donne un sens à des notations du type A/F (qui est par définition

le quotient de A par θF ) lorsque F est un filtre de A.

Il est aussi intéressant de définir la notion de filtre premier d’une MV-algèbre A: il s’agit

d’un filtre propre de A qui contient ¬x ⊕ y ou ¬y ⊕ x pour tous x et y dans A. On constate

alors que, par définition de l’ordre sur une MV-algèbre A, le quotient de A par un de ses filtres

F est une MV-chaîne si et seulement si F est un filtre premier.

Enfin, notons que le théorème d’extension de Stone pour les algèbres de Boole possède

son pendant pour les MV-algèbres. En effet, si A est une MV-algèbre non triviale, si x est un

élément de A et si F est un filtre propre de A qui ne contient pas x, alors il existe un filtre

premier de A qui contient F mais pas x.

1.3. Précisions à propos des variétés finiment engendrées.

1.3.1. Les sous-variétés finiment engendrées. Comme nous l’avons déjà énoncé plus haut,

les sous-variétés finiment engendrées de MV sont les variétés HSP(Łn1
, . . . ,Łnr

) où r ∈ N0 et

{n1, . . . ,nr} ⊆ N0. Par ailleurs, on constate facilement que l’algèbre Łm est plongeable dans

Łn (m et n dans N0) si et seulement si m appartient à l’ensemble des diviseurs de n, que nous

noterons div(n) (dans ce cas, le plongement est d’ailleurs unique). Ainsi, il vient

HSP(Łn1
, . . . ,Łnr

) ⊆ HSP(Łppcm{n1,...,nr}).

Enfin, on peut montrer que l’algèbre Łn (n ∈ N0) est semi-primale, ce qui implique, par

le théorème de Jónsson, que

HSP(Łn) = ISP(Łn),

propriété fondamentale pour la construction d’une dualité naturelle sur HSP(Łn).

1.3.2. Termes et fonctions linéaires par morceaux. Pour les développements du quatrième

chapitre de ce mémoire, nous allons avoir besoin d’une description des fonctions termes (à une

variable) du langage LMV des MV-algèbres sur [0,1]. Cette description est un cas particulier

d’un résultat dû à McNaughton (cf. [22]). Ce résultat affirme, dans le cas (restreint) qui

nous occupe, que l’ensemble de ces fonctions termes coïncide avec l’ensemble des fonctions

f : [0,1] → [0,1] telles que

• l’application f est continue relativement à la topologie euclidienne;

• il existe des polynômes du premier degré p1(x), . . . ,pk(x) à coefficients entiers assurant

que pour tout a dans [0,1], il existe un i dans {1, . . . ,k} tel que f(a) = pi(a).

Autrement dit, les LMV-termes sur [0,1] ne sont autres que les fonctions continues et linéaires

(à coefficients entiers) par morceaux (que l’on appelle encore fonctions de McNaughton).
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Par exemple, si i
n appartient à Łn (n ∈ N0), nous pouvons définir la fonction

τ
[0,1]
i : [0,1] → [0,1] : x 7→





0 si x < i−1
n ,

n.x− (i− 1) si i−1
n ≤ x ≤ i

n ,

1 si x > i
n ,

qui est une fonction de McNaughton, donc l’interprétation d’un LMV-terme τi sur [0,1].

Dans la suite, nous réserverons la notation τi pour désigner ce terme. Notons d’emblée que

son interprétation sur Łn est une fonction croissante qui vérifie

τ
Łn
i (x) =

{
0 si x < i

n ,

1 si x ≥ i
n .

Ces termes nous seront bien utiles car il sont des « témoins » de la position respective des

points de Łn entre eux.

2. Dualité pour la variété HSP(Łn)

L’outil essentiel pour l’étude des deux problèmes posés dans ce mémoire est une dualité

développée par P. Niederkorn dans [23] pour la classe HSP(Łn) (n désignera un entier

naturel non nul fixé pour le reste de ce chapitre). Notons, bien que cela porte peu à conséquence

pour nos applications, que cette dualité est un exemple d’une dualité naturelle, qui est une

technique générale permettant d’obtenir des dualités entre des quasi-variétés d’algèbres et des

classes de structures topologiques. Nous suggérons au lecteur intéressé par ce sujet de consulter

l’ouvrage [9].

La catégorie dont nous allons obtenir un dual est la catégorie MVn dont les objets sont

les membres de HSP(Łn) et dont les morphismes sont les homomorphismes de MV-algèbres.

Pour définir la classe duale, désignons par Ł
˜n

la structure topologique

Ł
˜n

= 〈Łn; {Łm | m ∈ div(n)},τ〉,

où

(X) la topologie τ est discrète;

(X) div(n) désigne l’ensemble des diviseurs (positifs) de n;

(X) pour tout m dans div(n), il faut voir Łm comme une relation unaire sur Ł
˜n

.

On définit alors la catégorie Xn dont les objets sont les membres de IScP(Ł
˜n

) (c’est-à-dire les

structures topologiques isomorphes à un sous-espace fermé d’une puissance de Ł
˜n

) et dont les

morphismes sont les applications continues respectant la structure relationnelle des membres

de IScP(Ł
˜n

).

En fait, les objets de Xn sont exactement les structures topologiques

X
˜

= 〈X; {r
X
m̃ | m ∈ div(n)},τ〉

où

• la topologie τ est booléenne (c’est -à-dire compacte, séparée et possédant une base

d’ouverts-fermés);

• r
X
m̃ est un sous-espace fermé de X pour tout m dans div(n);

• on a r
X
ñ = X et r

X
m̃ ∩ r

X
q̃ = r

X

p̃gcd(m,q) pour tous diviseurs m et q de n.
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Cela étant, les Xn-morphismes de la Xn-structure X
˜

dans la Xn-structure Y
˜

sont les applica-

tions continues f de X dans Y telles que pour tout m ∈ div(n),

x ∈ r
X
m̃ ⇒ f(x) ∈ r

Y
m̃.

Le foncteur permettant de passer de la catégorie MVn à la catégorie Xn est le foncteur

Dn défini par

Dn : MVn → Xn :

{
A ∈ MVn 7→ Dn(A) = MVn(A,Łn)

f ∈ MVn(A,B) 7→ Dn(f) ∈ Xn(Dn(B),Dn(A)),

où u ∈ r
D(A)
m si et seulement si u(A) ⊆ Łm et où Dn(f)(u) = u ◦ f .

Quant au foncteur En transformant les objets et les morphismes de Xn en objets et mor-

phismes de MVn, il est défini par

En : MVn → Xn :

{
X
˜

∈ Xn 7→ En(X˜
) = Xn(X˜

,Ł
˜n

)

ψ ∈ Xn(X˜
,Y
˜

) 7→ En(ψ) ∈ MVn(En(Y˜
),En(X˜

)),

où En(ψ)(α) = α ◦ φ.

Ces foncteurs ainsi définis, on peut montrer (cf. [23]) que les catégorie MVn et Xn sont

dualement équivalentes par les foncteurs Dn et En et que l’application

eA : A→ EnDn(A) : a 7→ eA(a) : u ∈ Dn(A) 7→ u(a)

(resp. εX˜
= X˜ → DnEn(X˜ ) : u 7→ εX˜

(u) : α ∈ En(X˜ ) 7→ α(u))

est un MVn-isomorphisme (resp. un Xn-isomorphisme).

Notons que si A est un objet de MVn, on peut obtenir une sous-base de topologie de

Dn(A) (vu comme sous-espace fermé de Ł
˜
A
n ) constituée d’ouverts-fermés en recourant aux

ensembles

[x :
i

n
] = {u ∈ Dn(A) | u(x) =

i

n
},

où x est un élément de A et i un élément de {0, . . . ,n}. Par ailleurs, on peut montrer (cf.

[23]) que l’espace topologique sous-jacent à la structure Dn(A) est homéomorphe au dual de

l’ensemble B(A) des idempotents de A sous la dualité de Stone pour les algèbres de Boole.

De plus, si on envisage la dualité de Stone sous l’angle des caractères, c’est-à-dire si l’espace

dual d’une algèbre de Boole B est défini comme l’ensemble χ(B) des homomorphismes de

cette algèbre dans l’algèbre de Boole triviale (c’est le point de vue des dualités naturelles),

une base de cet espace est donnée par les ensembles [x : 0] où x ∈ B. Cela étant, les termes τi
précédemment définis permettent de jongler entre les deux sous-bases

{[x : i
n ] | x ∈ A et i

n ∈ Łn} et {[a : 0] | a ∈ B(A)}.

En effet, il vient

[x :
i

n
] =

{
[τi+1(x) : 0] ∩ [¬τi(x) : 0] = [τi+1(x) ⊕ ¬τi(x) : 0] si i < n

[¬τi(x) : 0] si i = n

si x est un élément de A (ce qui implique que τi(x) est un idempotent) et i un naturel plus

petit que n.

Pour terminer ces considérations topologiques, rappelons que siX est un espace de Boole,

on dit que R est une relation de Boole sur X si R est une relation d’équivalence sur X telle



3. REPRÉSENTATION BOOLÉENNE DES ÉLÉMENTS DE HSP(Łn) 6

que pour tout couple de point (x,y) ∈ (X × X) \ R on peut trouver un ouvert-fermé R-

saturé séparant x et y. En fait, ces conditions sont exactement celles qu’il faut imposer à

une équivalence R sur X pour que le quotient topologique X/R soit également un espace de

Boole. Dans la suite, nous noterons B(X) l’ensemble des équivalences de Boole sur l’espace

de Boole X.

Une des richesses de cette dualité réside en ce qu’elle transforme les plongements en

morphismes injectifs et inversement. En conséquence, elle fait correspondre les produits aux

sommes et les sommes aux produits. Or, on constate sans difficulté que la somme d’un nombre

fini de Xn-structures n’est autre que leur union disjointe. Cette caractéristique nous permet

d’obtenir très facilement les duaux des objets finis de MVn et Xn.

Ainsi, si X
˜

est un objet fini de Xn, son dual En(X˜
) est un produit de |X

˜
| sous-algèbres de

Łn, le facteur correspondant à un x dans X
˜

étant Łmx
si et seulement si

mx = pgcd({m′ ∈ div(n) | x ∈ r
X

m̃′}).

On obtient donc en particulier (de manière indirecte) que toute MVn-algèbre finie est un

produit fini de sous-algèbre de Łn.

Par ailleurs, si A est une MVn-algèbre finie, alors son dual Dn(A) est une Xn-structure

discrète possédant un nombre d’éléments égal au nombre de facteurs dans la décomposition

de A en produit de sous-algèbres de Łn. L’élément x correspondant au facteur Łm appartient

à rDn(A)
m′ si et seulement si m divise m′. Nous aurons largement l’occasion d’illustrer cet aspect

de la dualité lorsque nous étudierons le treillis des sous-algèbres pour les membres de HSP(Łn).

3. Représentation booléenne des éléments de HSP(Łn)

La dualité que nous venons de développer permet également d’obtenir une représentation

de tout élément A de MVn comme un produit booléen sur l’espace D(A) des quotients simples

de A.

Avant de préciser ce résultat, rappelons que si X est un espace de Boole, une algèbre A

est produit booléen de la famille d’algèbres (de même type que A) (Ax)x∈X si

• l’algèbre A est un produit sous-direct des Ax (x ∈ X);

• pour tous a et b dans A, le sous-espace [a = b] = {x ∈ X | a(x) = b(x)} est un

ouvert-fermé de X;

• pour tous a et b dans X et tout ouvert-fermé ω de X, l’élément a|ω∪b|X\ω appartient

à A (i.e. à sa représentation sous directe dans
∏
x∈X Ax).

On qualifie d’archimédienne toute MV-algèbre A isomorphe à un produit booléen de sous-

algèbres de [0,1]. En fait, on peut obtenir (cf. [8]) que dans le cas d’une MV-algèbre archimé-

dienne, cette représentation est unique (à isomorphisme près).

Cela étant, si A est une MV-algèbre de MVn, la dualité que nous venons de développer

entre MVn et Xn nous fournit une représentation booléenne (donc unique) comme produit

booléen sur (l’espace topologique sous-jacent à) Dn(A) des quotients simples de A. Plus pré-

cisément, l’application

eA : A ↪→
∏

u∈D(A)

u(A) : a 7→ (u(a))u∈D(A)

est une représentation booléenne (cf. [23] pour plus de détails).
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4. Une catégorie équivalente à Xn

Dans cette section, nous allons développer une équivalence catégorique entre la catégo-

rie Xn et une catégorie dont les objets sont des objets topologiquement moins riches, mais

structurellement plus simples que ceux de Xn. Il est en effet parfois plus facile d’exprimer les

propriétés des structures quotients dans cette nouvelle catégorie que dans Xn.

Ainsi, si X
˜

est une Xn-structure, les sous-espaces r
X
m̃ possèdent l’avantage d’être fermés

et vérifient entre eux des relations simples mais néanmoins contraignantes. Pour éviter de

s’encombrer de ces relations, il est naturel de recourir aux sous-espaces s
X
m̃ définis par

s
X
m̃ = r

X
m̃ \

⋃

m′∈div(m)\{m}

r
X

m̃′

pour tous diviseur m de n.

Au vu de cette définition, il est clair que {s
X
m̃ | m ∈ div(n)} forme une partition de X

˜
.

Malheureusement, ces ensembles ne jouissent plus de propriétés topologiques élégantes. A la

lumière de ces remarques, nous sommes amenés à la définition suivante.

Définition 4.1. La catégorie X ′
n est la catégorie dont les objets sont les structures topo-

logiques X∼∼ = 〈X; {sX∼∼m | m ∈ div(n)},τ〉 où

• la topologie τ est booléenne,

• {sX∼∼m | m ∈ div(n)} est une partition de X,

• pour tous diviseur m de n, le sous-espace
⋃
m′∈div(m) s

X∼∼m est un fermé de X;

et dont les morphismes sont les applications continues ψ : X∼∼ → Y∼∼ vérifiant

ψ(sX∼∼m) ⊆
⋃

m′∈div(m)

s
X

m̃′ .

Ainsi définie, il apparaît clairement que la catégorie X ′
n est isomorphe à la catégorie Xn.

Proposition 4.2. Soient Fn : Xn → X ′
n et Kn : X ′

n → Xn les foncteurs définis par

Fn :





X˜ = 〈X; {r
X
m̃ | m ∈ div(n)},τ〉 7→ 〈X; {r

X
m̃ \

⋃
m′∈div(m)
m′ 6=m

r
X

m̃′ | m ∈ div(n)},τ〉

φ ∈ Xn(X˜
,Y
˜

) 7→ φ

et par

Kn :

{
X∼∼ = 〈X; {sX∼∼m | m ∈ div(n)},τ〉 7→ 〈X; {

⋃
m′∈div(m) s

X∼∼m′ | m ∈ div(n)},τ〉

φ ∈ X ′
n(X∼∼ ,Y∼∼) 7→ φ.

Alors Fn et Kn définissent une équivalence entre les catégories Xn et X ′
n.

On déduit donc de cette proposition que les catégories MVn et X ′
n sont dualement équiva-

lentes. La proposition suivante décrit les foncteurs qui permettent de naviguer entre ces deux

catégories. Bien entendu, nous noterons Ł∼∼n la structure Fn(Ł˜n
).

Proposition 4.3. Soient D′
n : MVn → X ′

n et E′
n : X ′

n → MVn les foncteurs définis par

D′
n :

{
A 7→ 〈MVn(A,Łn); {{u ∈ MVn(A,Łn) | u(A) = Łm} | m ∈ div(n)},τ〉

f ∈ MVn(A,B) 7→ D′
n(f) ∈ Xn(D

′
n(B),Dn,(A)) : u 7→ u ◦ f
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et par

E′
n :

{
X∼∼ 7→ X ′

n(X∼∼ ,Ł∼∼n)

φ ∈ X ′
n(X∼∼ ,Y∼∼) 7→ E′

n(φ) ∈ MVn(E
′
n(Y∼∼),E′

n(X∼∼ )) : α 7→ α ◦ φ.

Alors catégories MVn et X ′
n sont dualement équivalentes par les foncteurs D′

n et E′
n.

Les catégories Xn et X ′
n sont fort similaires. De plus, les mécanismes mis en jeu dans la

dualité entre MVn et Xn sont également proches de ceux de la dualité entre MVn et X ′
n.

Ainsi, dans la suite de ce travail, nous procéderons avec opportunisme: nous nous tournerons

vers la dualité qui permet d’exprimer le plus facilement nos résultats. Nous emploierons donc

tantôt le foncteur Dn (ou En), tantôt le foncteur D′
n (ou E′

n), mais, pour ne pas alourdir nos

notations, nous privilégierons systématiquement la notation Dn et En ainsi que Xn, le contexte

permettant de déterminer quelle version de la dualité nous employons.

5. Algèbres de Boole à opérateurs

Pour s’assurer que le lecteur perçoive bien les similitudes entre les opérateurs sur les

algèbres de Boole et les opérateurs sur les MV-algèbres (que nous allons définir dans le

chapitre 4) et pour fixer les notations, nous allons très succinctement esquisser les prémisses

de la théorie des algèbres de Boole à opérateurs et de leur dualité.

Un opérateur k-aire (k ∈ N0) sur l’algèbre de Boole B est une application f : B
k → B

telle que

• f est conormal : si l ≤ k et si b1, . . . ,bl−1,bl+1, . . . ,bk sont des éléments de B, il vient

f(b1, . . . ,bl−1,1,bl+1, . . . ,bk) = 1;

• f respecte ∧ sur chacun de ses arguments: si l ≤ k,

f(b1, . . . ,bl−1,a ∧ b,bl+1, . . . ,bk) = f(b1, . . . ,bl−1,a,bl+1, . . . ,bk) ∧ f(b1, . . . ,bl−1,b,bl+1, . . . ,bk)

pour tous b1, . . . ,bl−1,bl+1, . . . ,bk,a,b dans B.

Cela étant, une algèbre 〈B, ∨ , ∧ ,0,1,(fi)i∈I〉 est une algèbre de Boole à opérateurs si

• 〈B, ∨ , ∧ ,0,1〉 est une algèbre de Boole;

• fi est un opérateur ki-aire pour tout i dans I.

Les opérateurs unaires sont bien souvent notés ¤ et sont appelés opérateurs modaux . Les

algèbres de Boole munies d’un opérateur modal sont appelées algèbre modale.

5.1. Dualité pour les opérateurs modaux. Rappelons brièvement la machinerie de

la dualité topologique construite pour les algèbres de Boole munies d’un opérateur modal. Si

B est une algèbre de Boole nous noterons χ(B) son dual sous la dualité de Stone exprimée

avec le point de vue des dualités naturelles. Ainsi χ(B) est l’ensemble des homomorphismes

des B dans l’algèbre de Boole triviale, muni de la topologie naturelle. De plus, si X est un

espace de Boole, nous noterons η(X) l’algèbre de Boole formée des applications continues

de X dans {0,1}.

Cela étant, si 〈B,¤〉 est une algèbre modale, on définit sur χ(B) la relation Rχ(B) par

(u,v) ∈ R⇔ ∀ x (u(¤x) = 1 ⇒ v(x) = 1).
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La relation ainsi obtenue est à graphe fermé et vérifie R−1([b : 0]) = [¤b : 0] et est

donc telle que l’image inverse par R d’un ouvert-fermé reste un ouvert-fermé. Ce sont en fait

exactement les conditions qu’il faut imposer à une relation binaire R sur un espace de Boole

X pour pouvoir définir à l’aide de R un opérateur modal sur η(X).

C’est pourquoi nous qualifierons de booléenne une relation binaire sur un espace de Boole

X vérifiant

• R−1(ω) est un ouvert-fermé pour tout ouvert-fermé ω de X;

• le graphe de R est un fermé de X2.

La catégorie des espaces de Boole modaux est alors définie comme la catégorie dont

les objets sont les espaces de Boole modaux (i.e. des espaces de Boole munis d’une rela-

tion booléenne) et dont les morphismes entre les espaces modaux 〈X,RX〉 et 〈Y,RY 〉 sont les

applications continues ψ : X → Y vérifiant

ψ ◦RX = RY ◦ ψ.

Alors, on obtient que la catégorie MB des algèbres modales (dont les morphismes sont

les homomorphismes d’algèbres de Boole qui respectent ¤) est dualement équivalente à la

catégorie ME des espaces modaux par les foncteurs χ′ et η′ définis par

χ′ : MB → ME :

{
〈B,¤〉 7→ 〈χ(B),Rχ(B)〉

f ∈ MB(〈B,¤B〉,〈C,¤X〉) 7→ χ′(f) ∈ ME(χ′(C),χ′(B)) : u 7→ u ◦ f

et

η′ : ME → MB :

{
〈X,R〉 7→ 〈χ(X),¤X〉

ψ ∈ ME(〈X,RY 〉,〈Y,RY 〉) 7→ η′(ψ) ∈ MB(η′(Y ),η′(X)) : α 7→ α ◦ ψ,

où ¤X est défini par

(¤Xα)(u) = 0 ⇔ u ∈ R−1(α−1(0)).
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CHAPITRE 2

Treillis distributifs, modulaires et semimodulaires

Nous allons ici rappeler les définitions des treillis distributifs, modulaires et (dualement)

semimodulaires ainsi que les liens que ces définitions entretiennent entre elles. Certains des

résultats présentés nous seront en effet utiles dans le chapitre suivant. Nous renvoyons le

lecteur intéressé par des informations complémentaires à [12], d’où nos résultats sont tirés.

Rappelons d’abord que si a et b sont deux éléments de l’ensemble ordonné 〈L;≤〉, on note

a ≺ b

en abréviation de

(a < b) & (∀ c ∈ L ((a ≤ c ≤ b) ⇒ (c = a ou c = b)),

(on dira que a précède b ou que b couvre a.)

1. Définitions et propriétés

Définitions 1.1. Soit L = 〈L, ∨ ,∧〉 un treillis. On dit que L

• est semimodulaire s’il satisfait le propriété de couverture

a ≺ b⇒ (a ∨ c ≺ b ∨ c ou a ∨ c = b ∨ c)

pour tous a,b,c dans L;

• est dualement semimodulaire s’il satisfait

a ≺ b⇒ (a ∧ c = a ∧ b ou a ∧ c ≺ a ∧ b),

pour tous a,b,c dans L;

• est modulaire s’il satisfait

a ≥ b⇒ (a ∧ (c ∨ b) = (a ∧ c) ∨ b),

pour tous a,b,c dans L;

• est distributif s’il satisfait l’équation

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

Nous aurons l’occasion d’illustrer abondamment ces différentes définitions dans le cha-

pitre suivant. Notons d’emblée qu’un treillis distributif est modulaire et que les deux treillis

représentés ci-dessous et appelés respectivement pentagone (noté N5) et diamant (noté M3)

sont des exemples de treillis non distributifs. Ce sont en fait les prototypes de treillis non
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distributifs, car le théorème suivant caractérise les treillis non distributifs comme les treillis

ne possédant ni N5 ni M3 comme sous-treillis.

e
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Proposition 1.2. Soit L un treillis.

(1) Le treillis L est modulaire si et seulement s’il ne contient pas de sous-treillis isomorphe

au pentagone.

(2) Le treillis L est distributif si et seulement s’il ne contient pas de sous-treillis isomorphe

au pentagone ou au diamant.

Preuve. (1) Tout sous-treillis d’un treillis modulaire est modulaire. Donc, comme N5 n’est

pas modulaire, il ne peut être plongeable dans un treillis modulaire.

Inversement, commençons par montrer que le treillis libre engendré par 3 éléments a,b,c

tels que b < a est le treillis représenté par

%
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En effet, puisque b < a, les seuls suprema et infema qu’il est possible de construire à partir

de deux éléments parmi a, b et c sont les éléments a∨ c, b∨ c, a∧ c et b∧ c. Alors, on montre

que les 7 éléments

a, b, c, a ∨ c, b ∨ c, a ∧ c, b ∧ c

sont tous distincts dans l’algèbre libre. Pour cela, par définition de l’algèbre libre, il suffit

de prouver que pour toute paire d’éléments distincts choisie parmi ces éléments, on peut

construire un treillis H contenant trois éléments a, b et c vérifiant b < a dans lequel la paire

correspondante est formée d’éléments distincts. Par exemple, les treillis

b

c

a

b

a

cet

r

r

r

r

r

r

conviennent pour montrer que a 6= a ∨ c et a ∨ c 6= b ∨ c respectivement.
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Maintenant, nous construisons tous les suprema et infema possibles entre un élément de

{a,b,c} et un des 7 éléments de {a,b,c,a∨ c,b∨ c,a∧ c,b∧ c}. On constate que seuls les éléments

b∨ (a∧ c) et a∧ (b∨ c) n’ont pas encore été pris en compte. Il nous reste alors à montrer que

les 9 éléments

a, b, c, a ∨ c, b ∨ c, a ∧ c, b ∧ c, b ∨ (a ∧ c), a ∧ (b ∨ c)

forment un treillis. Ceci ce fait très aisément en utilisant les lois d’absorbtion et la position

relative de a et b.

Cela étant, si L est un treillis non modulaire et si a, b et c sont trois éléments de L tels que

a ≥ b et a∧ (c∨ b) 6= a∧ (c∨ b), alors le sous-treillis de L généré par ces trois éléments est une

image homomorphe du treillis libre que nous venons de construire. Cependant, on constate

facilement que si cet homomorphisme identifie deux éléments parmi les cinq éléments c, a∧ c,

b∨ c, a∧ (b∨ c), b∨ (a∧ c), alors il identifie également a∧ (b∨ c) à b∨ (a∧ c), ce qui est absurde

par construction. On en déduit donc que le treillis engendré par a, b et c dans L contient un

sous-treillis isomorphe au pentagone.

Comme dans le premier cas, la condition est évidemment nécessaire. Montrons qu’elle est

suffisante. Supposons qu’il existe des éléments x, y et z de L tels que x∧(y∨z) 6= (x∧y)∨(x∧z).

Nous pourrions pour cela, comme dans la preuve du point (1), faire appel au treillis modulaire

libre engendré par 3 éléments. Cette technique revient en fait à considérer les éléments u, a,

b, c et v définis par

u = (x ∧ y) ∨ (y ∧ z) ∨ (x ∧ z), v = (x ∨ y) ∧ (y ∨ z) ∧ (x ∨ z),

a = (x ∧ v) ∨ u, b = (y ∧ v) ∨ u,

z = (z ∧ v) ∨ u

et à constater qu’ils forment un treillis isomorphe au diamant. ♦

Nous connaissons déjà deux manières de définir la modularité. La proposition suivante en

donne une troisième, sous forme d’une équation, ce qui permet de conclure que la classe des

treillis modulaire est une variété.

Proposition 1.3. Soit L un treillis. Les conditions suivantes sont équivalentes:

(1) L est modulaire;

(2) L ne contient pas de sous-treillis isomorphe au pentagone;

(3) l’équation

x ∧ (y ∨ z) = x ∧ ((y ∧ (x ∨ z)) ∨ z)

est satisfaite dans L.

Preuve. Nous avons déjà démontré l’équivalence de (1) et (2). Montrons que la condition

(1) implique la condition (3). En effet, en utilisant la modularité de L, il vient

(y ∧ (x ∨ z)) ∨ z = (y ∨ z) ∧ (x ∨ z)

puisque x ∨ z ≥ z. Dès lors,

x ∧ ((y ∧ (x ∨ z)) ∨ z) = x ∧ (y ∨ z) ∧ (x ∨ z) = x ∧ (y ∨ z).
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Montrons maintenant que la condition (3) a pour conséquence la condition (2). Pour cela,

il nous suffit de montrer que l’équation de (2) n’est pas satisfaite dans N5. En effet, dans N5

il vient a∧ (c∨ b) = a alors que a∧ ((c∧ (a∨ b))∨ b) = b, ce qui conclut la démonstration. ♦

Clôturons cette section en élucidant les liens que les différents types de treillis introduits

entretiennent entre eux. Ce travail nécessite un résultat préliminaire, mieux connu dans la

littérature sous le nom de théorème d’isomorphie (pour les treillis modulaires).

Lemme 1.4. Si L est un treillis modulaire et si a et b sont deux éléments de L, alors

l’application

φb : [a,a ∨ b] → [a ∧ b,b] : x 7→ x ∧ b

est un isomorphisme. Son inverse est donné par l’application

ψa : [a ∧ b,b] → [a,a ∨ b] : y 7→ y ∨ a.
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Preuve. Notons d’emblée que les applications φb et ψa sont isotones. Ainsi, si on montre

que ψa ◦φb est l’application identité sur [a,a∨ b], alors on pourra conclure à l’injectivité de φb
(et à la surjectivité de ψa). De plus, on considérant la propriété duale, on pourra également

conclure au fait que φb ◦ ψa vaut également l’identité sur [a ∧ b,b], d’où la surjectivité de φb
(et l’injectivité de ψa). Or en appliquant la propriété de modularité, il vient successivement

ψa(φb(x)) = ψa(x ∧ b) = a ∨ (x ∧ b) = x ∧ (b ∨ a) = x

pour tout x dans [a,a ∨ b]. ♦

Proposition 1.5. Soit L un treillis. Les proposition suivantes sont satisfaites

(1) Si L est distributif, alors il est modulaire.

(2) Si L est modulaire, alors il est semimodulaire et dualement semimodulaire.

(3) Si L est fini, semimodulaire et dualement semimodulaire, alors il est modulaire.

Preuve. La proposition (1) est triviale. Démontrons le deuxième proposition. Considérons

trois éléments a, b et c d’un treillis modulaire L tels que a ≺ b. Si a ∨ c = b ∨ c, on conclut.

Sinon, on ne peut avoir b ≤ (a∨ c). Dès lors, il vient b∧ (a∨ c) = a et en appliquant le lemme

précédent à b et a ∨ c, on obtient un isomorphisme entre les intervalles [a,b] et [a ∨ c,b ∨ c].

Comme a ∨ c 6= b ∨ c et que b couvre a, on déduit de l’existence de cet isomorphie que b ∨ c

couvre a ∨ c.

Quand à la troisième propriété, il s’agit d’un cas particulier du théorème 2 que nous allons

démontrer dans la prochaine section. ♦
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2. Longueur et treillis semimodulaires

Nous allons démontrer dans cette section une des propriétés les plus intéressantes des

treillis semimodulaires: dans un treillis semimodulaire de longueur finie, toutes les chaînes

maximales ont la même longueur. En corollaire de ce théorème, nous montrerons que pour un

treillis de longueur finie, il est équivalent d’être modulaire ou simultanément semimodulaire

et dualement semimodulaire.

Rappelons qu’on appelle longueur d’une chaîne finie C l’entier |C| − 1. Par extension, on

dit qu’un ensemble ordonné 〈L;≤〉 est de longueur n (où n ∈ N) s’il existe dans L une chaîne

de longueur n et si toutes les chaînes de L sont de longueur plus petite que n. On dira ainsi

qu’un ensemble ordonné 〈L;≤〉 est de longueur finie s’il est de longueur n pour un certain

naturel n. Notons que dans ce cas, cet ensemble est nécessairement borné

Théorème 2.1. (The Jordan-Hölder Chain Condition) Si L est un treillis de lon-

gueur finie semimodulaire, alors les chaînes maximales de L ont même longueur.

Preuve. La démonstration se fait par récurrence sur la longueur de L. Si la longueur de L

vaut 0 ou 1, la propriété est triviale. Supposons maintenant que la propriété soit vraie pour tous

les treillis semimodulaires de longueur < n. Désignons alors par L un treillis semimodulaire

de longueur n et par C = {a0, . . . ,an} (où a0 = 0 < a1 < . . . < an−1 < an = 1) une chaîne

maximale de longueur n. Soit C ′ = {b0, . . . ,bm} (où b0 = 0 < b1 < . . . < bm−1 < bm = 1) une

autre chaîne maximale de L. Si a1 = b1 alors, dans [a1), qui est un sous-treillis semimodulaire

de L (puisque la relation de couverture est conservée dans [a1)), la chaîne C\{a0} est maximale

et a une longueur n−1. Dès lors, la chaîne C ′\{b1}, qui est également une chaîne maximale de

[a1), doit avoir la longueur n− 1 par hypothèse de récurrence. Dans ce cas, on a donc m = n.

Si au contraire a1 6= b1, alors on considère une chaîne maximale C ′′ du treillis [a1 ∨ b1).

Soit k la longueur de C ′′. Comme L est semimodulaire et que a0 = b0 = 0, il vient a1 ≺ a1∨b1
et b1 ≺ a1 ∨ b1. Dès lors, C ′′ ∪ {a1} est une chaîne maximale de longueur k + 1 de [a1) et

C \ {a0} est une chaîne de longueur n− 1 de [a1). On déduit par hypothèse de récurrence que

k + 1 = n − 1. En appliquant le même raisonnement à C ′′ ∪ {b1} et à C ′ \ {b0}, on obtient

aussi que k + 1 = m− 1. Ainsi, m = n. ♦

On peut également caractériser la semimodularité et la modularité en utilisant les fonctions

hauteurs sur L.

Définition 2.2. Soit L un treillis de longueur finie. On définit une fonction hauteur h sur

L: si a ∈ L on définit h(a) comme la longueur de la plus longue chaîne maximale de (a].

Selon la proposition 2.1, si L est un treillis semimodulaire de longueur finie, h(a) est égal

à la longueur de n’importe quelle chaîne maximale de (a].

Proposition 2.3. Soit L un treillis de longueur finie. Les propositions suivantes sont

équivalentes:

(1) L est semimodulaire;

(2) si a, b et c sont des éléments de L tels que a 6= b, a∧b ≺ a et a∧b ≺ b, alors a ≺ a∨b

et b ≺ a ∨ b;
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(3) si a ≤ b sont des éléments de L et si C est une chaîne maximale de [a, b], alors

{x ∨ c | x ∈ C} est une chaîne maximale de [a ∨ c, b ∨ c]

(4) h(a) + h(b) ≥ h(a ∧ b) + h(a ∨ b).

Preuve. Tout d’abord, il est trivial que les conditions (1) et (3) sont équivalentes.

Montrons maintenant que (1) est une conséquence de (2). Soient a et b deux éléments de

L tels que b couvre a. Si c ≤ a ou si a∨ c ≥ b, alors il est clair que a∨ c ≺ b∨ c ou a∨ c = b∨ c.

Si au contraire c 6≤ a et a ∨ c 6≥ b, alors b n’est pas un élément de [a, a ∨ c]. Considérons alors

a0 = a < a1 < · · · < an−1 < an = a ∨ c une chaîne maximale de l’intervalle [a, a ∨ c]. On

obtient ainsi que les éléments distincts b et a1 couvrent a alors que b ∧ a1 = a. Dès lors, on

déduit de l’hypothèse (2) que b ∨ a1 couvre a1. On procédant par induction, on montre que

b ∨ ai couvre ai pour tout i ≤ n. En particulier b ∨ an = b ∨ (a ∨ c) = b ∨ c couvre an = a ∨ c,

ce qui suffit.

Prouvons ensuite que (3) implique (4). Puisque (3) est équivalent à la semimodularité, nous

allons pouvoir appliquer le théorème 2.1. Soient a et b deux éléments de L et C une chaîne

maximale de [a ∧ b, b]. Par le théorème 2.1, on sait que la longueur de C vaut h(b)− h(a∧ b).

Par ailleurs, selon (3), l’ensemble D = {a ∨ x | x ∈ C} est une chaîne maximale de [a, a ∨ b].

Or, par définition de D, la longueur de D est au plus égale à celle de C. Comme la longueur

de D vaut h(a ∨ b) − h(a), il vient h(b) − h(a ∧ b) ≤ h(a ∨ b) − h(a).

Pour démontrer que (4) admet (2) comme conséquence, on montre par récurrence sur h(x)

que (2) est vrai dans les intervalles du type (x] pour tout x dans L. Si h(x) = 0, c’est-à-dire

si x = 0, la propriété est triviale. Supposons maintenant que la propriété est satisfaite dans

tous les intervalles (y] tels que h(y) < h(x), c’est-à-dire pour tous les y < x, et démontrons la

pour (x]. Soient a et b deux éléments de (x] tels que a 6= b, a ∧ b ≺ a et a ∧ b ≺ b. Puisque

a < x, on sait par hypothèse de récurrence que la proposition (2) est satisfaite dans le treillis

(a] et donc, puisque (2) implique (1), que (a] est semimodulaire. Ainsi, puisque a couvre a∧ b,

on obtient en appliquant le théorème 2.1, que h(a)− h(a ∧ b) = 1. Dès lors, selon l’hypothèse

(4), il vient

h(a ∨ b) ≤ h(a) + h(b) − h(a ∧ b) = h(b) + 1,

ce qui suffit pour conclure que b ≺ a∨ b. On procède de même pour montrer que a ≺ a∨ b ♦

Corollaire 2.4. Si L est un treillis de longueur finie, alors les conditions suivantes sont

équivalentes:

(1) le treillis L est modulaire;

(2) le treillis L est semimodulaire et dualement semimodulaire;

(3) pour tous a et b dans L, il vient h(a) + h(b) = h(a ∧ b) + h(a ∨ b).

Preuve. On sait déjà que la première condition implique la deuxième. Montrons que la

troisième est une conséquence de la deuxième. Comme L est semimodulaire, on obtient par le

théorème 2.3 que si a et b sont deux éléments de L on a

h(a) + h(b) ≥ h(a ∧ b) + h(a ∨ b).
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Par ailleurs, comme L est dualement semimodulaire, c’est-à-dire que le dual de L est semimo-

dulaire, en appliquant cette même proposition au dual de L, on obtient

h(a) + h(b) ≤ h(a ∧ b) + h(a ∨ b),

(on note que dans le dual de L, la hauteur d’un élément x est égal à la longueur de L moins

la hauteur de x dans L).

Enfin, supposons que la condition (3) soit satisfaite et montrons que l’on peut obtenir (1).

En effet, si L n’est pas modulaire, il contient un pentagone {u,a,b,c,v}. On a donc

h(i) = h(a ∨ c) = h(a) + h(c) − h(a ∧ c) = h(a) + h(c) − h(0)

et

h(i) = h(b ∨ c) = h(b) + h(c) − h(b ∧ c) = h(b) + h(c) − h(0),

donc h(a) = h(b), ce qui est clairement absurde. ♦
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CHAPITRE 3

Treillis des quotients dans Xn

Posséder une dualité topologique pour une classe d’algèbres est souvent un avantage non

négligeable pour l’étude de cette classe. Les grands exemples historiques de dualités topolo-

giques (la dualité de Stone pour les algèbres de Boole (cf. [30]), la dualité de Priest-

ley pour les treillis distributifs bornés (cf. [27] et [28]), la dualité de Pontryagin pour les

groupes abéliens (cf. [25] et [26])) ont permis des avancées considérables dans la connaissance

des classes d’algèbres étudiées: étude des objets libres, du treillis des quotients, des coproduits,

des classes d’isomorphie etc.

Cependant, ces dualités ne constituent pas la panacée aux problèmes de l’algébriste. Il y

a évidemment des questions qui sont aussi difficiles à étudier d’un point de vue topologique

qu’algébrique.

L’étude du treillis des sous-algèbres fait partie de cette classe de problèmes qu’une dualité

topologique ne permet pas systématiquement de simplifier. Ainsi, l’histoire a démontré que

seules quelques dualités parmi celles développées ont permis de dualiser heureusement l’étude

des propriétés du treillis des sous-algèbres. Ce fut le cas par exemple pour les algèbres de Hey-

ting ou pour les R-sous-treillis d’un treillis distributif borné (cf. [15] et [33] respectivement).

Comme nous allons essayer de nous en convaincre, le cas de la dualité pour la classe

HSP(Łn) (n désigne un naturel non nul pour le reste du chapitre) est un nouvel exemple

de dualité permettant l’étude du treillis des sous-algèbres. En effet, nous parviendrons, grâce

à la dualité, à prouver que le treillis des sous-algèbres d’une MVn-algèbre est dualement

atomique, nous déterminerons les conditions sous-lesquelles une MVn-algèbre finie possède

un treillis de sous-algèbres dans lequel tout élément est intersection d’éléments maximaux et

nous étudierons avec succès la semi-modularité, la modularité et la distributivité de ces treillis.

1. Structures quotients dans Xn

1.1. Quotients dans Xn. Dans cette section, nous allons définir l’ensemble des quotients

d’une structure de Xn = IScP(Ł
˜n

) et y greffer une structure de treillis. C’est ainsi que, tout

au long de ce chapitre, nous réserverons les notations X
˜

et Y
˜

pour désigner des structures de

Xn.

À cause de la nature relationnelle de Ł
˜n

, nous ne pouvons pas, étant donné un morphisme

surjectif π : X
˜

→ Y
˜

, reconstruire la structure Y
˜

uniquement sur base de la connaissance

du noyau de π et de X
˜

. En effet, la condition de continuité imposée aux morphismes de

Xn assure que l’espace Y sous-jacent à Y
˜

est isomorphe à X/ ker(π) (par définition de la

topologie quotient). Malheureusement – contrairement au cas des algèbres ou des structures

topologiques purement fonctionnelles – le fait que le morphisme π transporte les relations r
X
m̃

dans r
Y
m̃ (m parcourant les diviseurs de n) n’est pas une condition assez forte pour en déduire
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la structure sur Y
˜

. Ainsi, il est possible de définir plusieurs structures sur Y faisant de π un

Xn-morphisme.

Ces réflexions nous amènent à la définition suivante.

Définition 1.1. Une structure quotient (ou simplement un quotient) d’une structure X
˜

de Xn est la donnée d’une équivalence de Boole R sur X et d’un ensemble ΓX/R = {rm |

m ∈ div(n)} de sous ensembles de X/R tels que

• la structure 〈X/R; ΓX/R; τ〉, où τ désigne la topologie quotient, est un élément de

Xn;

• l’application de passage au quotient π : X
˜

→ 〈X/R; ΓX/R; τ〉 est Xn-morphisme.

Ce quotient sera noté 〈X/R,ΓX/R〉 (ou souvent 〈X/R,Γ〉 lorsqu’aucune confusion ne sera

possible) et nous réserverons la notion Quot(X
˜

) pour désigner l’ensemble des quotients de X
˜

.

Nous avons donc remédié à la « faiblesse » de la notion de Xn-morphisme en définis-

sant les quotients par la donnée d’un quotient topologique et d’une structure sur ce quotient

topologique.

Dans la suite, nous assimilerons souvent le quotient 〈X/R,Γ〉 avec la structure de Xn définie

par Γ sur X/R (c’est-à-dire 〈X/R; Γ, τ〉), le contexte permettant d’éliminer toute confusion.

Exemple 1.2. Illustrons dès à présent cette définition par un exemple bâti sur une struc-

ture X
˜

finie. Fixons n = 6 et considérons la structure X
˜

= {x,y} où x ∈ s
X

2̃ et y ∈ s
X

6̃ .

Pour représenter les quotients de cette structure, nous adoptons les conventions suivantes :

• nous représentons tout quotient 〈X,Γ〉 de X
˜

construit sur {x,y} par un couple d’en-

tiers (mx,my) où x ∈ s
〈X,Γ〉
mx et y ∈ s

〈X,Γ〉
my ;

• les structures quotients 〈X/R,Γ〉 de X
˜

où R = {X} sont quant à elles représentées

par un entier (mX) défini par X ∈ s
〈X/R,Γ〉
mX .

Cela étant, l’ensemble Quot(X
˜

) contient dix éléments:

Quot(X
˜

) = {(2,6),(2,3),(2,2),(2,1),(1,6),(1,3),(1,2),(1,1),(2),(1)}.

Nous exploiterons à nouveau cette structure X
˜

pour illustrer nos futurs développements.

À la lecture de l’exemple précédent, bien qu’un peu simpliste, nous pouvons déjà nous

demander s’il est possible d’obtenir une formule permettant d’exprimer le cardinal de Quot(X
˜

)

à partir de grandeurs liées à X
˜

lorsque cette structure est finie. Cette question de combinatoire

est plus compliquée qu’il n’y paraît. En effet, il est vrai qu’on trouve dans la littérature une

formule permettant de compter le nombre de relations d’équivalence sur un ensemble fini. Il est

également aisé, étant donné une équivalence R sur l’espace sous-jacent à la structure finie X
˜

,

de compter le nombre de quotients de X
˜

construits sur X/R. Malheureusement, le travail de

combiner les deux informations dans une formule exploitable est d’une toute autre nature, et

ne nous paraît pas trivial. La question de l’obtention de cette formule reste d’ailleurs ouverte.
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1.2. Treillis sur Quot(X
˜

). Sans structure, l’ensemble Quot(X
˜

) est un peu pauvre. Nous

allons donc lui greffer la structure de treillis dont l’ordre sous-jacent est défini de la manière

suivante.

Définition 1.3. Étant donné deux quotients 〈X/R,Γ〉 et 〈X/S,∆〉 de Xn, nous écrirons

〈X/R,Γ〉 ≤ 〈X/S,∆〉 si

• R ≤ S ;

• la factorisation π̃S de πS à travers X/R est un Xn-morphisme de 〈X/R,Γ〉 dans

〈X/S,∆〉.

Il est immédiat de vérifier que ≤ est une relation d’ordre partiel sur Quot(X
˜

). La proposi-

tion suivante affirme qu’elle définit en fait une structure de treillis et en décrit les opérations.

Proposition 1.4. La relation ≤ définit sur Quot(X
˜

) une structure de treillis. De plus, si

〈X/R,Γ〉 et 〈X/S,∆〉 sont deux quotients de X
˜

alors

• 〈X/R,Γ〉 ∧ 〈X/S,∆〉 = 〈X/(R ∧ S),Λ〉, où

Λ = {π̃−1
R (r〈X/R,Γ〉m ) ∩ π̃−1

S (r〈X/S,∆〉
m ) | m ∈ div(n)},

π̃−1
R (resp. π̃−1

S ) désignant la factorisation de πR (resp. πS) à travers X/(R ∧ S);

• 〈X/R,Γ〉 ∨ 〈X/S,∆〉 = 〈X/(R ∨ S),Υ〉 où x ∈ r
〈X/(R∨S),Υ〉
m si et seulement si m est

divisible par

pgcd({l ∈ div(n) | π̃−1
R∨S,R(x) ∩ r

〈X/R,Γ〉
l 6= ∅ ou π̃−1

R∨S,S(x) ∩ r
〈X/S,∆〉
l 6= ∅}),

où π̃R∨S,R (resp. π̃R∨S,S) désigne la factorisation de πR∨S à travers X/R (resp. à

travers X/S).

Preuve. Montrons tout d’abord que 〈X/(R ∧ S),Λ〉 est bien un quotient de X
˜

. Les appli-

cations π̃R et π̃S étant continues, il est manifeste que Λ est constitué de sous-espaces fermés.

Par ailleurs, la condition (X) est ici trivialement satisfaite. On vérifie alors directement que

notre construction nous assure que π̃R et π̃S sont des morphismes.

D’autre part, si 〈X/T,Σ〉 désigne un quotient de X
˜

qui est plus petit à la fois que 〈X/R,Γ〉

et que 〈X/S,∆〉, alors T est nécessairement plus petit que R ∧ S. Il reste à vérifier que Λ

définit la plus grande structure sur X/(R ∧ S) qui fasse de π̃R et π̃S des morphismes, ce qui

est évident.

Passons à la preuve de l’existence et de la description du supremum. On déduit de la

définition de 〈X/(R ∨ S),Υ〉 que

(1) r〈X/(R∨S),Υ〉
m =

⋃

1≤r≤|div(n)|

⋃

(m1,...,mr)∈div(n)r

pgcd(m1,...,mr)∈div(m)

I(m1,...,mr),

où I(m1,...,mr) est défini par
⋃

1≤i≤r

π̃R∨S,R(r〈X/R,Γ〉m1
) ∩ . . . ∩ π̃R∨S,R(r〈X/R,Γ〉mi

) ∩ π̃R∨S, S(r〈X/S,∆〉
mi+1

) ∩ . . . ∩ π̃R∨S, S(r〈X/S,∆〉
mr

).

En effet, si m est un multiple de

pgcd({l ∈ div(n) | π̃−1
R∨S,R(x) ∩ r

〈X/R,Γ〉
l 6= ∅ ou π̃−1

R∨S,S(x) ∩ r
〈X/S,∆〉
l 6= ∅}),
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si

{m1, . . . ,mi} = {l ∈ div(n) | π̃−1
R∨S,R(x) ∩ r

〈X/R,Γ〉
l 6= ∅}

et si

{mi+1, . . . ,mr} = {l ∈ div(n) | π̃−1
R∨S, S(x) ∩ r

〈X/S,∆〉
l 6= ∅},

alors x est un élément de

π̃R∨S,R(r〈X/R,Γ〉m1
) ∩ · · · ∩ π̃R∨S,R(r〈X/R,Γ〉mi

) ∩ π̃R∨S, S(r〈X/S,∆〉
mi+1

) ∩ · · · ∩ π̃R∨S, S(r〈X/S,∆〉
mr

).

Inversement, si (m1, . . . ,mr) est un r-uplet de diviseurs de n vérifiant

pgcd(m1, . . . ,mr) ∈ div(m)

et si x est un élément de

π̃R∨S,R(r〈X/R,Γ〉m1
) ∩ · · · ∩ π̃R∨S,R(r〈X/R,Γ〉mi

) ∩ π̃R∨S, S(r〈X/S,∆〉
mi+1

) ∩ · · · ∩ π̃R∨S, S(r〈X/S,∆〉
mr

),

alors

{m1, . . . ,mr} ⊆ {l ∈ div(n) | π̃−1
R∨S,R(x) ∩ r

〈X/R,Γ〉
l 6= ∅ ou π̃−1

R∨S,S(x) ∩ r
〈X/S,∆〉
l 6= ∅}.

Dès lors,

pgcd({l ∈ div(n) | π̃−1
R∨S,R(x) ∩ r

〈X/R,Γ〉
l 6= ∅ ou π̃−1

R∨S,S(x) ∩ r
〈X/S,∆〉
l 6= ∅})

est un diviseur du pgcd(m1, . . . ,mr) qui divise m.

De l’égalité (1), on déduit que les sous-espaces r〈X/(R∨S),Υ〉
m de X/(R∨S) sont fermés. En

effet, les r〈X/R,Γ〉m et r〈X/S,∆〉
m sont des sous-espaces fermés d’espaces compacts, et sont donc

eux-mêmes des compacts. Il s’ensuit que π̃R∨S,R(r
〈X/R,Γ〉
m ) et π̃R∨S, S(r

〈X/S,∆〉
m ) sont des fermés

en tant que sous-espaces compacts (puisqu’images continues de compacts) d’un espace séparé.

Par ailleurs, la structure 〈X/(R ∨ S),Υ〉 proposée vérifie la condition (X) de l’axiomati-

sation des structures de Xn. En effet, si x est un élément de X/(R ∨ S) et si on désigne par

mx l’entier

pgcd({l ∈ div(n) | π̃−1
R∨S,R(x) ∩ r

〈X/R,Γ〉
l 6= ∅ ou π̃−1

R∨S,S(x) ∩ r
〈X/S,∆〉
l 6= ∅}),

il vient successivement

x ∈ r〈X/(R∨S),Υ〉
m ∩ r

〈X/(R∨S),Υ〉
m′ ⇔ mx ∈ div(m) et mx ∈ div(m′)

⇔ mx ∈ div(pgcd(m,m′))

⇔ x ∈ r
〈X/(R∨S),Υ〉
pgcd(m,m′) .

Il reste à vérifier que 〈X/(R ∨ S),Υ〉 est le supremum des structures 〈X/R,Γ〉 et 〈X/S,∆〉, ce

qui est évident. ♦

Dans la suite, nous désignerons par Quot(X
˜

) le treillis des quotients de X
˜

dont les opéra-

tions ∨ et ∧ sont définies dans la propositon 1.4.
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Exemple 1.5. Appliquons la proposition 1.4 en représentant le treillis des quotients de la

structure définie dans l’exemple 1.2. On obtient alors le treillis Quot(X
˜

) qui se représente par
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¶
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¶
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¶
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S
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¶
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¶
¶

¶
¶
¶
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S
S
S
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S
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¶
¶
¶
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¶

¶
¶
¶
¶
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(2,3)

(2,6)

(1,6)

(1,3)(1,2)

(1,1)

(2)

(2,1)

(2,2)

(1)

u

u

u

u

u

uu

uu

u

1.3. Liens entre Quot(Dn(A)) et Sub(A). Dans ce qui suit, nous noterons Sub(A) le

treillis des sous-algèbres de l’algèbre A de A. Pour rappel, l’infmum de deux sous-algèbres de

A est leur intersection et leur supremum est la sous-algèbre de A engendrée par l’union de

leurs éléments.

L’intérêt de l’étude du treillis des quotients d’une structure de Xn apparaît lorsqu’on

constate qu’il partage ses propriétés avec le treillis des sous-algèbres de son algèbre duale.

Proposition 1.6. Si A est une algèbre de A, alors le treillis Sub(A) est anti-isomorphe

au treillis Quot(Dn(A)).

Preuve. Cela résulte du fait que les foncteurs Dn et En font correspondre les morphismes

surjectifs aux plongements et inversement.

Cela étant, définissons l’application φ par

φ : Sub(A) → Quot(Dn(A)) : B 7→ 〈Dn(A)/ ker(Dn(iB,A)),ΓB〉,

si iB,A : B ↪→ A est le plongement canonique et si

ΓB = { ˜Dn(iB,A)
−1

(rD(B)
m ) | m ∈ div(n)},

où ˜Dn(iB,A) est la factorisation de Dn(iB,A) à travers Dn(A)/ ker(iB,A).

Cette application φ est clairement bijective. Montrons qu’elle est antitone. Si B est une

sous-algèbre de A et si C est une sous-algèbre de B alors le diagramme suivant est commutatif:

Dn(A)
Dn(iB, A)

// //

πker(iB, A)
²²
²²

πker(iC, A)

++ ++VVVVVVVVVVVVVVVVVVVVVV
Dn(B)

eπker(iC, A)
²²
²²

Dn(iC, B)
// // Dn(C)

〈Dn(A)/ ker(Dn(iB,A)),ΓB〉
33

∼=

33 33hhhhhhhhhhhhhhhhhhhhhh

〈Dn(A)/ ker(Dn(iC,A)),ΓC〉
55

∼=

55 55kkkkkkkkkkkkkkk

ce qui prouve que φ(B) ≤ φ(C).

Inversement, si α est un Xn-morphisme surjectif entre 〈X/R,Γ〉 et 〈X/S,∆〉, alors En(α)

est (à isomorphisme près) un plongement de φ−1(〈X/S,∆〉) dans φ−1(〈X/R,Γ〉), ce qui montre

que φ−1 est antitone. ♦
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Ainsi, la proposition précédente nous donne un outil adapté dans l’étude du treillis Sub(A)

des sous-algèbres des éléments A de A. En effet, l’étude de ce treillis est équivalente à celle de

Quot(Dn(A)). Or, la description des « relations » entre les éléments de ce treillis est parfois plus

aisée que celles entre les sous-algèbres de A. Nous pouvons donc déterminer plus facilement les

propriétés de structure du treillis Quot(Dn(A)). Ces propriétés se transportent alors au treillis

Sub(A) par dualité.

Les propriétés particulières des éléments de Sub(A) sont quant à elles beaucoup moins

accessibles par cette technique. En effet, il nous faudrait pour cela obtenir une description plus

précise du dual des éléments de Xn, ce qui n’est pas toujours trivial. Nous aurons plusieurs

fois l’occasion d’illustrer cette dichotomie dans la suite.

Exemple 1.7. L’algèbre duale de la structureX
˜

définie dans l’exemple 1.2 est A = Ł2×Ł6.

Son treillis de sous-algèbres se représente par le treillis anti-isomorphe à celui représenté dans

l’exemple 1.5.

2. À la recherche d’éléments maximaux dans Sub(A)

Le premier problème auquel nous pouvons nous attaquer avec succès consiste à déterminer

s’il est possible de trouver au dessus de chaque élément de Sub(A) un élément maximal.

Dualement, cela revient à déterminer si le treillis Quot(Dn(A)) est atomique.

Pour répondre à cette question, nous allons d’abord obtenir le description des éléments

minimaux dans Quot(X
˜

).

2.1. Quotient minimum de X
˜

pour une équivalence de Boole donnée. Étant

donnée une équivalence de Boole R définie sur l’espace sous-jacent à X
˜

, nous allons montrer

que l’ensemble des quotients de X
˜

qui sont construits sur X/R est un sous-treillis de Quot(X
˜

)

qui admet un minimum.

Proposition 2.1. Si R est une équivalence de Boole sur X, alors l’ensemble des quo-

tients de X
˜

qui sont construits sur X/R est un sous treillis de Quot(X
˜

) dont le minimum est

la structure 〈X/R,Γ
X/R
Min

〉 définie par

Γ
X/R
Min

= {
⋃

1≤r≤|div(n)|

⋃

{m1,...,mr}⊆div(n)
pgcd(m1,...,mr)∈div(m)

πR(r
X
m̃1) ∩ · · · ∩ πR(r

X
m̃r) | m ∈ div(n)}.

Preuve. Le fait que l’ensemble des quotients de X
˜

qui sont construits sur X/R soit un

sous-treillis de Quot(X
˜

) est trivial.

Cela étant, si la structure 〈X/R,Γ
X/R
Min

〉 est effectivement un quotient de X
˜

, il ne fait aucun

doute qu’elle soit le minimum des quotients de X
˜

dont l’espace sous-jacent est X/R.

Or, il est clair que Γ
X/R
Min

est constitué de fermés de X/R. Par ailleurs la condition (X) de

l’axiomatisation des éléments de Xn est satisfaite: si m et m′ sont des diviseurs de n, alors

r
〈X/R,Γ

X/R
Min

〉

pgcd(m,m′) ⊆ r
〈X/R,Γ

X/R
Min

〉
m ∩ r

〈X/R,Γ
X/R
Min

〉

m′ .

Inversement, si m1, . . . ,mr et mr+1, . . . ,ms sont des diviseurs de n tels que pgcd(m1, . . . ,mr) =

m et pgcd(mr+1, . . . ,ms) = m′ alors pgcd(m1, . . . ,ms) = pgcd(m,m′), ce qui prouve que

r
〈X/R,Γ

X/R
Min

〉
m ∩ r

〈X/R,Γ
X/R
Min

〉

m′ ⊆ r
〈X/R,Γ

X/R
Min

〉

pgcd(m,m′) . ♦
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Dans la plupart des cas, si aucune confusion n’est possible, nous n’hésiterons pas à noter

par 〈X/R,ΓMin〉 la structure 〈X/R,Γ
X/R
Min

〉.

Dualement, la proposition précédente s’interprète comme ceci: pour toute sous-algèbre de

Boole C de l’ensemble des idempotents B(A) de A, l’ensemble des sous-algèbres de A qui

possède C comme ensemble d’idempotents est un sous-treillis de Sub(A) (ce qui est évident)

qui admet un maximum (idem) dont on a obtenu la description du dual.

Une question moins triviale consiste à déterminer pour quelles structures X
˜

l’ensemble

constitué des structures 〈X/R,ΓMin〉 où R parcourt l’ensemble des équivalences de Boole sur

X est un sous-treillis de Quot(X
˜

).

2.2. Description des éléments minimaux dans Quot(X
˜

). Nous allons maintenant

donner une description des éléments minimaux du treillis Quot(X
˜

).

2.2.1. Structures construits sur un quotient propre de X. La proposition 2.1 nous suggère

de bons candidats comme éléments minimaux : les quotients 〈X/R,ΓMin〉 où R est une équiva-

lence minimale du treillis des équivalences de Boole sur X. Cependant, ces structures ne sont

pas nécessairement minimales. Nous pourrions en effet imaginer construire un quotient de X
˜

sur le même espace sous-jacent à X
˜

et qui soit strictement compris entre X
˜

et 〈X/R,ΓMin〉.

Ce cas est régi par le proposition suivante.

Proposition 2.2. Si R est une equivalence de Boole sur X, alors

(1) la plus grande structure 〈X,∇R〉 construite sur le même espace topologique que X
˜

et

qui fait de π : 〈X,∇R〉 → 〈X/R,ΓMin〉 un Xn-morphisme est définie par

x ∈ r
〈X,∇R〉
m si pgcd({l ∈ div(n) | xR ∩ r

X

l̃ 6= ∅}) ∈ div(m);

(2) si en plus R est une équivalence de Boole minimale, alors le quotient 〈X/R,ΓMin〉

est minimal dans Quot(X
˜

) si et seulement si les ensembles r
X
m̃ sont R-saturés ( i.e.

r
X
m̃ est une union de R-classes d’équivalence pour tout m ∈ div(n)).

Preuve. La première partie de l’énoncé découle du fait que

r〈X,∇R〉
m = π−1

R (r〈X/R,ΓMin〉
m )

pour tout diviseur m de n. La seconde est une conséquence de la première: la condition de

saturation des relations r
X
m̃ est équivalente à l’égalité des structures X

˜
et 〈X,∇R〉. ♦

Si on se rappelle que les équivalences de Boole minimales sur l’espace de Boole X sont

les relations binaires R pour lesquelles il existe deux éléments x 6= y de X tels que

R = {{z} | z ∈ X \ {x,y}} ∪ {{x,y}},

la proposition 2.2 nous donne alors la forme des quotients minimaux de X
˜

qui ont pour espace

sous-jacent un quotient propre de X. On en déduit en effet que ces quotients sont obtenus en

reliant deux points de X
˜

qui se situent dans un même s
X
m̃, la structure sur le quotient étant

alors définie naturellement.
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2.2.2. Structures construites sur X. Nous allons maintenant envisager le cas des quotients

minimaux de X
˜

construits sur le même espace sous-jacent que X
˜

.

Proposition 2.3. La structure 〈X,Γ〉 est minimale dans Quot(X
˜

) si et seulement si il

existe un diviseur m de n, un diviseur premier p de m et un élément x de s
X
m̃ tels que

r
〈X,Γ〉
k =

{
r
X

k̃ si m
p 6∈ div(k),

r
X

k̃ ∪ {x} si m
p ∈ div(k),

pour tout k ∈ div(n).

Preuve. La preuve découle simplement du fait que {x} est un fermé de X pour tout x ∈ X

puisque l’espace X est séparé. ♦

Ainsi, pour construire de telles structures, on « transporte » un élément x de s
X
m̃ dans

s
〈X,Γ〉
m′ où m′ est un élément maximal dans le treillis des diviseurs de m.

On obtient l’atomicité du treillis Quot(X
˜

) en conséquence des propositions 2.2 et 2.3.

Proposition 2.4. Si X
˜

est une structure de Xn, alors le treillis Quot(X
˜

) est atomique.

Preuve. Si 〈X,Γ〉 est un quotient propre de X
˜

, alors la proposition 2.3 nous assure l’exis-

tence d’un atome entre X
˜

et 〈X,Γ〉.

Si R est une équivalence de Boole non triviale sur X et si 〈X/R,Γ〉 est un quotient de X
˜

,

alors il existe dans le treillis des équivalences de Boole sur X une relation minimale R′ sous

R. Si les relations r
X
m̃ sont R′-saturées pour tout m ∈ div(n), alors 〈X/R′,ΓMin〉 est un atome

de Quot(X
˜

) plus petit que 〈X/R,Γ〉. Si aucune des équivalences minimales sous R ne satisfait

à cette condition de saturation, alors la proposition 2.3 nous fournit quand-même l’existence

d’un atome sous 〈X/R,Γ〉. ♦

On peut se demander si toutes les configurations d’atomes sont envisageables. C’est-à-dire

s’il est possible de trouver des structures X
˜

dont le treillis des quotients possède à la fois

des atomes construits sur X et des atomes construits sur des quotients propres de X; des

structures possédant un type d’atomes mais pas l’autre, etc.

Exemple 2.5. Nous allons exhiber, pour chacune des configurations précitées, un exemple

de structure X
˜

satisfaisant à cette configuration.

• Structures X
˜

possédant des atomes construits sur des quotients propres mais pas

d’atome construit sur X. On constate que le treillis de l’exemple 1.5 en est un modèle.

• Structures X
˜

possédant des atomes construits sur X mais pas d’atome construit sur

des quotients propres X. La structure Y
˜

= {x,y}, où

s
Y

1̃ = {x,y},

en est un exemple. En fait, les modèles de cette configuration d’atomes sont exacte-

ment les structures X
˜

qui vérifient s
X

1̃ = X (c’est-à-dire les espaces de Boole).

• Structures X
˜

possédant des atomes construits sur X et des atomes construits sur des

quotients propres X. La structure Z
˜

= {x,y}, où

s
Z

2̃ = {x,y},
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en est un exemple.

Une autre question qui se pose à ce stade de notre réflexion est de déterminer la classe des

structures de Xn dans les quotients desquels tout élément est supremum d’atomes. Il s’agit

évidemment d’une classe propre de Xn, comme le prouve l’exemple 1.5 (l’élément (2) n’est pas

supremum d’atomes).

Pour répondre à cette question, nous allons partir à la recherche d’un système de ∨-

générateurs qui contient les atomes.

2.3. Système de ∨-générateurs dans le cas fini. Par système de ∨-générateurs de

Quot(X
˜

), nous entendons un sous-ensemble G de Quot(X
˜

) tel que

• tout élément de Quot(X
˜

) s’écrit comme un supremum d’un nombre fini d’éléments

de G;

• l’ensemble G est minimal parmi les ensembles possédant cette propriété.

Nous allons, sous l’hypothèse que X
˜

soit fini, construire un système de ∨-générateurs de

Quot(X
˜

) qui contient les atomes de ce treillis.

Définition 2.6. Soient X
˜

un membre fini de Xn et x un élément de s
X
m̃. Si p est un

diviseur premier de m (nous noterons P(m) l’ensemble des diviseurs premiers de m) et si l est

un naturel non nul tel que pl ∈ div(m), alors on définit le quotient

〈X,Γ(x,m/pl)〉

de X
˜

par

s
〈X,Γ

(x, m/pl)
〉

k =





s
X

k̃ si k 6= m
pl ,

s
X

k̃ ∪ {x} si k = m
pl ,

pour tout k ∈ div(n).

Si on joint à l’ensemble des structures de la définition précédente les structures 〈X/R,ΓMin〉

où R parcourt l’ensemble BMin(X) des équivalences de Boole minimales sur X, on obtient

alors un système de ∨-générateurs.

Proposition 2.7. L’ensemble

G = {〈X/R,ΓMin〉 | R ∈ BMin(X)} ∪
⋃

m∈div(n)

⋃

x∈s
X

m̃

{〈X,Γ(x,m/pl)〉 | p ∈ P(m) & pl ∈ div(m)}

est un système de ∨-générateurs de Quot(X
˜

) qui en contient les atomes.

Preuve. Il est clair que G contient les atomes de Quot(X
˜

). Montrons que G est une partie

∨-génératrice. En effet, si 〈X/S,∆〉 est un quotient de X
˜

, alors l’équivalence de Boole S est

le supremum d’une partie Φ de BMin(X).

Construisons alors la structure 〈X,∆′〉, où ∆′ est défini par

r〈X,∆
′〉

m = π−1
S (r〈X/S,∆〉

m ).

Il s’agit d’un quotient de X
˜

qui est supremum d’une partie G′ de G. Au total, il vient

〈X/S,∆〉 =
∨
G′ ∨

∨

R∈Φ

〈X/R,ΓMin〉.
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Il reste à montrer que G est minimal parmi les parties ∨-génératrices de Quot(X
˜

). Il est clair

que si R est une équivalence de Boole minimale sur X, alors G \ {〈X/R,ΓMin〉} ne peut

générer Quot(X
˜

) puisque le sous-treillis ∨-engendré par G \ {〈X/R,ΓMin〉} ne contient pas la

structure 〈X/R,ΓMin〉.

Par un raisonnement similaire, on déduit qu’on ne peut pas débarrasser G d’une structure

du type 〈X,Γ(x,m/pl)〉 (où m ∈ div(n), s ∈ s
X
m̃, p ∈ P(m) et pl ∈ div(m)) tout en conservant

une partie ∨-génératrice. ♦

On obtient très facilement par simple comptage le cardinal de la partie génératrice dont

il est question dans la proposition précédente.

Corollaire 2.8. Si X
˜

est une structure finie de Xn, alors Quot(X
˜

) admet un système de

∨-générateurs qui possède

C2
|X| +

∑

m∈div(n)

∑

p∈P(m)

|{l ∈ N0 | pl ∈ div(m)}|.|s
X
m̃|

éléments. ¥

Ainsi, une Xn-structure finie X
˜

admet un treillis des quotients ∨-généré par ses atomes si

et seulement si la partie G dont il est question dans la proposition 2.7 coïncide avec l’ensemble

des atomes de Quot(X
˜

). La proposition suivante sert de critère pour caractériser l’ensemble

de ces structures.

Proposition 2.9. Une Xn-structure finie X
˜

admet un treillis des quotients ∨-généré par

ses atomes si et seulement s’ il existe un diviseur m de n dont la décomposition en nombres

premiers ne fait apparaître que des facteurs distincts et qui vérifie

s
X
m̃ = X.

Preuve. Montrons que la condition est nécessaire. En effet, supposons qu’il existe deux

naturels distincts m et m′ et deux éléments x et y tels que x ∈ s
X
m̃ et y ∈ s

X

m̃′ . Alors la structure

〈X/R,ΓMin〉 où

R = {{u} | u ∈ X \ {x,y}} ∪ {{x,y}}

est un élément de G qui n’est pas un atome selon la proposition 2.2.

Supposons maintenant qu’il existe un naturel m, un diviseur premier p de m tels que p2

divise m et s
X
m̃ = X. Alors, si x est un élément de X

˜
, la structure

〈X,Γ(x,m/p2)〉

fait partie de G sans être un atome de Quot(X
˜

).

Cela étant, on prouve directement que la condition est suffisante. ♦

Le raisonnement précédent peut s’étendre (partiellement) aux structures non finies. En

effet, dans ce cas, toute partie ∨-génératrice minimale de Quot(X
˜

) qui contient les atomes

doit nécessairement contenir G. Si cette partie coïncide avec l’ensemble des atomes, il en est

de même pour G (cf. la démonstration de la proposition 2.7). Or, la démonstration de la

nécessité de la proposition 2.9 reste valide dans le cas non fini. On peut donc affirmer que

les Xn-structures (non finies) qui admettent un treillis des quotients généré par les atomes se
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trouvent parmi les puissances booléennes des algèbres Łm où m est un diviseur de n dont la

décomposition en nombres premiers ne fait intervenir que des facteurs distincts. Malheureu-

sement, la suffisance de cette condition fait intervenir des problèmes de nature topologique

(qui ne sont pas une conséquence du caractère booléen de X, mais bien de la structure qui

est greffée dessus). Ces problèmes topologiques disparaissent naturellement lorsque m = 1. La

structure se réduit alors en effet à un espace de Boole.

Dualement, la proposition 2.9 prend la forme suivante.

Proposition 2.10. Supposons que A soit une algèbre finie de A. Toute sous-algèbre de

A est intersection de sous-algèbres maximales de A si et seulement si A est isomorphe à une

puissance finie de l’algèbre Łm où m est un diviseur de n dont la décomposition en nombre

premiers ne fait apparaître que des facteurs distincts. ¥

Exemple 2.11. Ainsi, on peut trouver dans l’algèbre Ł2 × Ł6, dont le dual est la struc-

ture définie dans l’exemple 1.2, une sous-algèbre qui n’est pas intersection de sous-algèbres

maximales (c’est la cas de l’algèbre duale de (2,1) par exemple).

D’autre part, toute sous-algèbre de Ł15 est intersection d’éléments maximaux. Son treillis

de sous-algèbre est isomorphe au treillis des diviseurs de 15.

2.4. Éléments maximaux dans Sub(A). Les considérations de la section précédente se

dualise en l’étude des éléments maximaux dans Sub(A).

Ainsi, à l’aide de la proposition 1.6, on obtient le dual de la proposition 2.4.

Proposition 2.12. Si A est une algèbre de A alors il existe au dessus de toute sous-algèbre

B de A une algèbre C maximale dans Sub(A). ¥

Les développements qui suivent illustrent parfaitement la dichotomie dont nous faisions

écho dans la remarque précédant la section 2. En effet, nous avons pu obtenir le caractère

dualement atomique de Sub(A) (propriété de structure de Sub(A)) grâce à l’étude du treillis

Quot(Dn(A)). Cependant, bien que nous ayons une méthode de construction effective des

éléments minimaux de ce dernier, nous ne pourrons pas obtenir une telle construction pour les

éléments maximaux de Sub(A). Tout au plus pouvons nous proposer les descriptions suivantes

des éléments maximaux. Une de celles-ci demande une définition préliminaire.

Définition 2.13. Soient R une équivalence de Boole sur l’ espace de Boole X et

(Ax)x∈X une famille d’algèbres (de même type). Un R-produit booléen des Ax (x ∈ X) est une

algèbre A (de même type que les Ax) telle que

• l’algèbre A est produit sous-direct (par un plongement p) des (Ax)x∈X ;

• pour tous a et b dans p(A), le sous-espace [p(a) = p(b)] = {x ∈ X | p(a)(x) = p(b)(x)}

est un fermé de X;

• pour tous a et b dans p(A) et tout ouvert-fermé R-saturé de X, l’élément p(a)|ω ∪

p(b)|X\ω appartient à p(A).

Ainsi, on ne modifie que légèrement la troisième condition de la définition de produit boo-

léen (souvent appelée patchwork property pour des raisons évidentes) pour obtenir le définition
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d’un R-produit booléen. Cette condition n’est en effet alors imposée qu’aux ouverts-fermés

R-saturés.

Proposition 2.14. Soit B une sous-algèbre de la MVn-algèbre A et i le plongement

canonique de B dans A. Alors, l’application

eA|B : B ↪→
∏

u∈Dn(A)

u(A)

est une représentation de B comme ker(Dn(i))-produit booléen des quotients simples de A si

et seulement si les sous-espaces r
Dn(A)
m sont ker(Dn(i))-saturés.

En particulier, la sous-algèbre B est maximale dans Sub(A) et vérifie B(B) 6= B(A) si et

seulement si les conditions suivantes sont satisfaites:

• l’algèbre B(B) est une sous-algèbre maximale de B(A);

• l’application

eA|B : B ↪→
∏

u∈Dn(A)

u(A)

est une représentation de B comme ker(Dn(i))-produit booléen des quotients simples

de A.

Preuve. Montrons que la condition est nécessaire. Le fait que B soit produit sous-direct

par eA des u(A) (u ∈ Dn(A)) nous enseigne que u(A) = u(B) quel que soit u dans Dn(A).

Donc, si (u,v) ∈ ker(Dn(i)), il vient u(B) = v(B), c’est-à-dire u(A) = v(A), ce qui suffit pour

conclure que les rDn(A)
m sont ker(Dn(i))-saturés.

Inversement, si les sous-espaces rDn(A)
m sont ker(Di)-saturés, alors il est clair que eA|B est

un plongement.

Par ailleurs, si u est un élément de D(A), on déduit la surjectivité de pu ◦ eA|B du fait que

uker(Dn(i))(B) = u(A) puisque la classe de u est dans les mêmes sous-espaces rDn(A)
m que u.

Bien sûr, les égalisateurs [eA(b) = eA(c)] sont des ouverts-fermés de Dn(A) pour tous b et

c dans B puisque B est une sous-algèbre de A et que eA est une représentation booléenne de

A.

On vérifie pour conclure que la patchwork property est satisfaite pour les ouverts-fermés

ker(D(i))-saturés de Dn(A) et pour tous eA(b) et eA(c) dans eA(B). On sait déjà que α =

eA(b)|ω ∪ eA(c)|Dn(A)\ω appartient à eA(A). Pour prouver qu’il s’agit également d’un élément

de eA(B), il nous suffit de vérifier que α(u) = α(v) pour tout (u,v) ∈ ker(Dn(i)). Or, puisque

ω est kerDn(i)-saturé, il vient

α(u) = α(v) =

{
u(b) si u ∈ ω

u(c) si u ∈ Dn(A) \ ω,

ce qui conclut donc la démonstration de la première partie.

La deuxième partie est une conséquence directe de la première et de la proposition 2.2 ♦
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La proposition suivante tente de décrire les sous-algèbres maximales de A qui possèdent

les mêmes idempotents que A.

Proposition 2.15. La sous-algèbre B de A est maximale dans Sub(A) et possède les

mêmes idempotents que A si et seulement s’il existe un u dans Dn(A) tel que l’application

eA|B : B ↪→
∏

u∈Dn(A)

Bu

où

• Bv = v(A) pour tout v ∈ Dn(A) tel que v 6= u;

• Bu est une sous-algèbre maximale de u(A);

est une représentation booléenne de B.

Preuve. Simple conséquence de la proposition 2.3. ♦

3. Éléments maximaux dans Quot(X
˜

)

Décrire les éléments maximaux du treillis Quot(X
˜

) lorsque X
˜

est une Xn-structure est une

tâche plus facile que d’en décrire les atomes.

Nous allons pour cela adopter la notation suivante: nous désignerons par pgcd(X
˜

) l’entier

pgcd(X
˜

) = pgcd({l ∈ div(n) | r
X

l̃ 6= ∅})

pour toute Xn-structure X
˜

. Si Y est un sous-espace fermé de X, on notera Y
˜

la restriction de

la structure de X
˜

sur Y (le contexte permettant toujours de déterminer pour tout Y fermé

dans X quelle est la structure considérée sur X et dont va hériter Y
˜

).

Proposition 3.1. Un structure quotient 〈X/R,Γ〉 de X
˜

est maximale dans Quot(X
˜

) si et

seulement si elle satisfait l’une des conditions suivantes:

(1) on a

• R = {X},

• pgcd(X
˜

) 6= 1,

• il existe un diviseur premier p de pgcd(X
˜

) tel que

s〈X/R,Γ〉p = {X};

(2) il existe un ouvert-fermé ω de X tel que R = {X,X \ ω} et tel que

s
〈X/R,Γ〉
1 = X/R.

Preuve. On prouve aisément que les structures proposées sont maximales. Montrons dès

lors que tout quotient maximal 〈X/R,Γ〉 de X
˜

est d’une des deux formes proposées. En effet,

si R = {X}, puisque 〈X/R,Γ〉 n’est pas maximum, il vient X ∈ s
〈X/R,Γ〉
p où p est un diviseur

premier de n. Du fait que 〈X/R,Γ〉 est un quotient de X
˜

, on déduit que p doit être un diviseur

de pgcd(X
˜

).

Si au contraire, R est une équivalence propre, alors elle forme un atome du treillis des

équivalence de Boole sur X. Sinon, il existerait un élément S de B(X) \ {{X}} plus grand

que R. La structure 〈X/S,∆〉 définie par

s
〈X/S,∆〉
1 = X/S
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serait alors un quotient plus grand que 〈X/R,Γ〉 mais non maximum, ce qui contredirait

la maximalité de ce dernier quotient. Ainsi, il existe un ouvert-fermé ω de X tel que R =

{X,X \ ω} et la conclusion s’ensuit aisément. ♦

L’exemple 1.5 nous indique que les deux types d’éléments maximaux peuvent coexister

dans le treillis des quotients d’une Xn-structure. Mieux, puisque le treillis des équivalences de

Boole sur un espace de Boole est dualement atomique, il existera toujours dans Quot(X
˜

)

des éléments maximaux satisfaisant à la deuxième condition de la proposition 3.1. On obtient

donc ainsi une démonstration topologique d’une propriété algébrique bien connue.

Proposition 3.2. Si X
˜

est une structure de Xn, alors le treillis Quot(X
˜

) est dualement

atomique.

Preuve. Soit 〈X/R,Γ〉 un quotient propre deX
˜

. Si R = X, cela implique que pgcd(X
˜

) 6= 1,

et on peut construire au dessus de 〈X/R,Γ〉 un élément maximal vérifiant la deuxième condition

de la proposition 3.1.

Sinon, R est une équivalence de Boole propre sur X, et on déduit du caractère duale-

ment atomique de B(X) que l’on peut construire au dessus de 〈X/R,Γ〉 un élément maximal

satisfaisant à la deuxième condition de la propositon 3.1. ♦

4. Semimodularité de Sub(A)

Nous allons exploiter notre dualité pour étudier la semimodularité du treillis Sub(A). Ainsi,

selon la propriété 1.6, le treillis Sub(A) est semimodulaire si et seulement si Quot(Dn(A)) est

dualement semimodulaire.

Nous partons donc à la recherche des structures X
˜

qui possèdent à un treillis des quotients

dualement semimodulaire.

Le premier lemme permet de limiter la « taille » de ces structures (et est lié à la semi-

modularité du treillis des sous-algèbres pour les algèbres de Boole) et le second impose des

contraintes sur leur « forme ».

Lemme 4.1. Si |X
˜
| ≥ 4 alors Quot(X

˜
) n’est pas dualement semimodulaire.

Preuve. Supposons que x, y, z et t soient quatre éléments distincts de X
˜

. Définissons les

équivalences de Boole R et S par

R = {u | u ∈ X \ {x,y,z,t}} ∪ {{x,y},{z,t}}

et

S = {u | u ∈ X \ {x,y,z,t}} ∪ {{x,y,z,t}}.

On construit alors les quotients 〈X/R,Γ〉 et 〈X/R,∆〉 de X
˜

en définissant Γ et ∆ par

r
〈X/R,Γ〉
m = πR(r

X
m̃) ∪ {πR(x),πR(z)} ∀ m ∈ div(n),

et

r
〈X/S,∆〉
m = πS(r

X
m̃) ∪ {πS(x)} ∀ m ∈ div(n).

Ainsi, la structure 〈X/S,∆〉 couvre 〈X/R,Γ〉. On définit enfin la relation T sur X par

T = {u | u ∈ X \ {x,y,z,t}} ∪ {{x,z},{y,t}}
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et la structure quotient 〈X/T,Υ〉 par

r
〈X/T,Υ〉
m = πT (r

X
m̃) ∪ {πT (x),πT (y)} ∀ m ∈ div(n).

Il est alors facile de montrer que 〈X/S,∆〉 ∧ 〈X/T,Υ〉 = 〈X/T,Υ〉 et que dès lors

〈X/R,Γ〉 ∧ 〈X/T,Υ〉 6¹ 〈X/S,∆〉 ∧ 〈X/T,Υ〉

ce qui prouve que Quot(X
˜

) n’est pas dualement semimodulaire.

♦

Lemme 4.2. Si on peut trouver dans X
˜

deux éléments x et y tels que x ∈ s
X
m̃x et y ∈ s

X
m̃y

avec pgcd(mx,my) 6= 1, alors Quot(X
˜

) n’est pas dualement semimodulaire.

Preuve. Considérons la structure 〈X/R,ΓMin〉 où R est l’équivalence de Boole définie sur

X par

R = {{u} | u ∈ X \ {x,y}} ∪ {{x,y}}.

Pour construire une structure 〈X/R,∆〉 couvrant 〈X/R,ΓMin〉, considérons un facteur premier

p de m = pgcd(mx,my) et définissons ∆ par

r
〈X/R,∆〉
k =

{
r
〈X/R,ΓMin〉
k si m

p 6∈ div(k),

r
〈X/R,ΓMin〉
k ∪ {πR(x)} si m

p ∈ div(k).

Cela étant, on considère également la structure 〈X,Υ〉 définie par

r
〈X,Υ〉
k =





r
〈X˜〉

k if m
p 6∈ div(k),

r
〈X
˜
〉

k ∪ {x,y} if m
p ∈ div(k).

Ainsi, la structure 〈X/R,ΓMin〉 ∧ 〈X,Υ〉 est la structure définie sur X par

r
〈X/R,ΓMin〉∧〈X,Υ〉
k =

{
r
X

k̃ if m 6∈ div(k),

r
X

k̃ ∪ {x,y} if m ∈ div(k).

Quant à la structure 〈X/R,∆〉∧ 〈X,Υ〉, elle est égale à 〈X,Υ〉. On constate donc que ces deux

structures diffèrent et ne se couvrent pas l’une l’autre. ♦

Il se trouve que les contraintes imposées par les deux lemmes précédents sont les conditions

nécessaires et suffisantes à imposer à X
˜

pour que son treillis des quotients soit dualement semi-

modulaire.

Proposition 4.3. Le treillis Quot(X
˜

) est dualement semimodulaire si et seulement si une

des conditions suivantes est satisfaites:

(1) |Quot(X
˜

)| = 1;

(2) Quot(X
˜

) = {x,y} et x ∈ s
X
m̃x, y ∈ s

X
m̃y avec pgcd(mx,my) = 1;

(3) Quot(X
˜

) = {x,y,z} et x ∈ s
X
m̃x, y ∈ s

X
m̃y , z ∈ s

X
m̃z avec mx,my et mz deux à deux

premiers entre eux.
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Preuve. Il nous suffit de montrer la suffisance de chaque condition.

Si |X
˜
| = 1, alors Quot(X

˜
) est isomorphe au treillis des diviseurs d’un entier m ∈ div(n)

et est donc dualement semimodulaire.

Si X
˜

= {x,y} avec x ∈ s
X
m̃x et y ∈ s

X
m̃y où pgcd{mx,my} = 1, alors Quot(X

˜
) est isomorphe

au treillis div(mx) × div(my) ∪ {T} où T est défini comme une borne supérieure. Or, il est

direct de vérifier que ce treillis est dualement semimodulaire (en se rappelant que le produit

de deux treillis semimodulaires est semimodulaire).

Enfin, si Quot(X
˜

) = {x,y,z} et x ∈ s
X
m̃x , y ∈ s

X
m̃y , z ∈ s

X
m̃z avec mx,my et mz deux à

deux premiers entre eux, alors on prouve en procédant au cas par cas par une énumération

fastidieuse que Quot(X
˜

) est dualement semimodulaire. ♦

Nous pouvons donc caractériser les algèbres A dont le treillis des sous-algèbres est semi-

modulaire.

Proposition 4.4. Si A est une algèbre de A alors le treillis Sub(A) est semimodulaire si

et seulement si A est isomorphe à l’une des algèbres suivantes:

• Łm où m est un diviseur n;

• Łm × Łm′ où m et m′ sont des diviseurs de n premiers entre eux;

• Łm × Łm′ × Łm′′ où m, m′ et m′′ sont des diviseurs de n deux à deux premiers entre

eux. ¥

Exemples 4.5. La structure de l’exemple 1.5 ne satisfait pas à l’une des conditions de la

propriété 4.3 et ne donne pas lieu à un treillis des quotients dualement semimodulaire. Ainsi,

l’élément (1) couvre (2), mais (1,1) ∧ (2) = (2,2) et (1,1) ∧ (1) = (1,1).

Par contre, la structure Y
˜

= {x,y,z}, où

x ∈ s
Y

1̃ , y ∈ s
Y

2̃ et z ∈ s
Y

3̃ ,

possède un treillis des quotients semimodulaire. Pour en représenter son diagramme de Haase,

nous adoptons les conventions suivantes (elles étendent les conventions de l’exemple 1.2):

• nous représentons tout quotient 〈Y,Γ〉 de Y
˜

construit sur {x,y,z} par un triplet d’en-

tiers (mx,my,mz) où x ∈ s
〈Y,Γ〉
mx , y ∈ s

〈X,Γ〉
my et z ∈ s

〈Y,Γ〉
mz ;

• les structures quotients 〈Y/R,Γ〉 de Y
˜

où R est une équivalence minimale sont repré-

sentées par un triplet d’entiers en convenant que deux entiers soulignés définissent

une classe (la valeur commune de ces entiers définit alors le sous-ensemble s〈Y/R,Γ〉m

dans lequel se trouve cette classe);

• les structures quotients 〈Y/R,Γ〉 de Y
˜

où R = {Y } sont quant à elles représentées

par un entier (mY ) défini par Y ∈ s
〈Y/R,Γ〉
mY .
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Avec ces conventions, on obtient le diagramme suivant:
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À ce stade de nos développements, on peut se demander si le caractère fini que possèdent

les algèbres de A qui donnent lieu à un treillis de sous-algèbres semimodulaire est propre

aux variétés finiment engendrées de MV-algèbres, ou si les variétés non finiment engendrées

possèdent aussi cette particularité. Autrement dit, est-il possible de trouver dans certaines

sous-variétés de MV une algèbre non finie dont le treillis des sous-algèbre est semimodulaire?

La réponse est positive pour toutes les sous-variétés non finiment engendrées. En effet,

dans l’exemple suivant, nous allons montrer que l’algèbre C de Chang, qui est une algèbre

infinie qui se trouve dans toute sous-variété non finiment engendrée de MV, admet un treillis

de sous-algèbres semimodulaire.

Exemple 4.6. Rappelons que la MV-algèbre C = 〈C,⊕ ,¯ ,¬,(0,0),(1,1)〉 de Chang est

définie sur

C = {(0,a) | a ∈ Z+} ∪ {(1,b) | b ∈ Z−},

par

(i,x) ⊕ (j,y) =





(0,x+ y) si i+ j = 0,

(1,min(0,x+ y)) si i+ j = 1,

(1,0) if i+ j = 2;

et par

¬(i,x) =

{
(0,− x) if (i = 1),

(1,− x) if (i = 0).

On se convainc facilement que tout élément de Sub(C) est isomorphe à C et que Sub(C) est

anti-isomorphe au treillis div(N0) des naturels non nuls ordonnés par division.

En effet, l’application

φ : Sub(C) → div(N0) : B 7→ inf{z | (0,z) ∈ B & z 6= 0},

est un anti-isomorphisme. Pour le prouver, on procède de manière classique.

Montrons d’abord que toute sous-algèbre B de C est engendrée par (0,φ(B)). De fait, si

x est un élément de B \ 〈(0,φ(B))〉, on peut supposer, quitte à considérer ¬x, qu’il existe un

b > φ(B) tel que x = (0,b). Il existe alors des naturels q et r tels que

b = q.φ(B) + r
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avec 0 < r < φ(B) (sinon x ∈ 〈(0,φ(B))〉). Ainsi, l’élément

(1,− b) ⊕ (0,q.φ(B)) = (1,q.φ(B) − b) = (1,− r)

appartient à B, et il en est donc de même pour (0,r). Cela est absurde vu la définition de

φ(B).

La bijectivité de φ étant acquise, il nous reste à prouver que φ et φ−1 sont antitones, ce

qui est évident.

On en déduit donc que Sub(C) est semimodulaire.

5. Modularité de Sub(A)

5.1. Semimodularité duale de Sub(A). Nous allons maintenant déterminer quelles

sont les algèbres A de A dont le treillis des sous-algèbres est dualement semimodulaire. Il est

donc équivalent de chercher les structures X
˜

de Xn qui possèdent un treillis des quotients

semimodulaire.

Cette propriété est plus universelle que la précédente.

Proposition 5.1. Si X
˜

est un membre de Xn, alors Quot(X
˜

) est semimodulaire. De

manière équivalente, le treillis Sub(A) des sous-algèbres d’un membre A de A est dualement

semimodulaire.

Preuve. Supposons d’abord que 〈X/R,Γ〉 et 〈X/R,Γ′〉 soient deux quotients de X
˜

tels

qu’on obtient Γ′ en « transportant » un élément x de s〈X/R,Γ〉m dans s〈X/R,Γ
′〉

m
p

où p est un

diviseur premier de m:

r
〈X/R,Γ′〉
k =

{
r
〈X/R,Γ〉
k if m

p 6∈ div(k),

r
〈X/R,Γ〉
k ∪ {x} if m

p ∈ div(k).

Ainsi, 〈X/R,Γ′〉 couvre 〈X/R,Γ〉.

Cela étant, si 〈X/S,∆〉 appartient à Quot(X
˜

), on définit les structures 〈X/R,Γ〉∨〈X/S,∆〉

et 〈X/R,Γ′〉 ∨ 〈X/S,∆〉 sur X/(R ∨ S).

De plus, si x 6∈ π̃−1
R∨S,R(y), il vient alors

y ∈ s
〈X/R,Γ〉∨〈X/S,∆〉
m ⇔ y ∈ s

〈X/R,Γ′〉∨〈X/S,∆〉
m .

Mais, si y est l’élément de X/(R ∨ S) vérifiant π̃R∨S,R(x) = y, alors

y ∈ s〈X/R,Γ〉∨〈X/S,∆〉
m

et
y ∈ s

〈X/R,Γ′〉∨〈X/S,∆〉
m ou y ∈ s

〈X/R,Γ′〉∨〈X/S,∆〉
m
p

.

En conséquence,

〈X/R,Γ〉 ∨ 〈X/S,∆〉 = 〈X/R,Γ′〉 ∨ 〈X/S,∆〉

ou

〈X/R,Γ〉 ∨ 〈X/S,∆〉 ≺ 〈X/R,Γ′〉 ∨ 〈X/S,∆〉.

Considérons alors les deux quotients 〈X/R,Γ〉 ≺ 〈X/R′,Γ′〉 pour lesquels il existe un

diviseur m de n et deux éléments x,y ∈ s
〈X/R,Γ〉
m tels que

R′ = {zR | z 6∈ π−1
R (x) ∪ π−1

R (y)} ∪ {π−1
R (x) ∪ π−1

R (y)},
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l’ensemble Γ′ étant défini pour assurer que 〈X/R,Γ′〉 couvre 〈X/R,Γ〉.

Si 〈X/S,∆〉 est un troisième quotient de X
˜

, nous montrons d’abord que les équivalences

de Boole R′ ∨ S et R ∨ S sont égales ou que l’une couvre l’autre (i.e. nous prouvons que le

treillis des équivalences de Boole est semimodulaire). En effet, si x1 est un élément de π−1
R (x)

et si y1 est un élément de π−1
R (y), il vient

R ∨ S = R′ ∨ S ⇒ (x1,y1) ∈ R ∨ S.

Sinon

R′ ∨ S = {zR∨S | z 6∈ π−1
R (x) ∪ π−1

R (y)} ∪ {xR∨S
1 ∪ yR∨S

1 },

et donc R ∨ S ≺ R′ ∨ S.

Cela étant, si R ∨ S = R′ ∨ S, alors on montre facilement que

〈X/R,Γ〉 ∨ 〈X/S,∆〉 = 〈X/R′,Γ′〉 ∨ 〈X/S,∆〉

Si R ∨ S ≺ R′ ∨ S, on a plutôt

〈X/R,Γ〉 ∨ 〈X/S,∆〉 ≺ 〈X/R′,Γ′〉 ∨ 〈X/S,∆〉,

ce qui boucle la preuve. ♦

5.2. Modularité de Sub(A). Étant donné qu’un treillis fini est modulaire si et seule-

ment s’il est à la fois semimodulaire et dualement semimodulaire (cf. la proposition 1.5), les

propositions 4.4 et 5.1 se synthétisent de la manière suivante.

Proposition 5.2. Si A est une algèbre de A, alors le treillis Sub(A) de ses sous-algèbres

est modulaire si et seulement si A est isomorphe à l’une des algèbres suivantes:

• Łm où m est un diviseur n;

• Łm × Łm′ où m et m′ sont des diviseurs de n premiers entre eux;

• Łm × Łm′ × Łm′′ où m, m′ et m′′ sont des diviseurs de n deux à deux premiers entre

eux. ¥

6. Distributivité de Sub(A)

Nous allons rechercher les algèbres A dont le treillis des sous-algèbres est distributif, en se

rappelant que l’ensemble des treillis distributifs forme une sous-variété de la variété des treillis

modulaires.

Proposition 6.1. Si A est une algèbre de A, alors le treillis Sub(A) de ses sous-algèbres

est distributif si et seulement si A est isomorphe à l’une des algèbres suivantes:

• Łm où m est un diviseur n;

• Łm × Łm′ où m et m′ sont des diviseurs de n premiers entre eux;

Preuve. Si A est isomorphe à Łm (resp. Łm × Ł′
m ∪ {T}) où m est un diviseur de n (resp.

où m et m′ sont des diviseurs de n premiers entre eux), alors son treillis de sous-algèbres est

isomorphe au treillis div(m) (resp. div(m) × div(m′)) et est par conséquent distributif.
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Si A est isomorphe à Łm×Łm′ ×Łm′′ où m, m′ et m′′ sont des diviseurs de n deux à deux

premiers entre eux, nous allons montrer qu’il existe dans Quot(Dn(A)) (donc dans Sub(A)) un

sous-treillis isomorphe au diamant. En effet, supposons que Dn(A) = {x,y,z}, où

x ∈ s
Dn(A)
m , y ∈ s

Dn(A)
m′ et z ∈ s

Dn(A)
m′′ .

Considérons alors les relations R, S et T définies par

R = {{x,y},{z}}, S = {{y,z},{x}} et T = {{x,z},{y}},

et construisons les quotients 〈X/R,Γ(R)〉, 〈X/S,Γ(S)〉 et 〈X/T,Γ(T )〉 de Dn(A) en posant

s
〈X/R,Γ(R)〉
1 = X/R, s

〈X/S,Γ(S)〉
1 = X/S et s

〈X/T,Γ(T )〉
1 = X/T.

On vérifie alors directement que le sous-treillis de Quot(Dn(A)) engendré par ces trois éléments

est isomorphe au diamant. ♦

Ainsi, c’est le caractère non distributif du treillis des sous-algèbres d’une algèbre de Boole

à plus de trois éléments qui restreint la distributivité du treillis des sous-algèbres des MV-

algèbres dans les variétés finiment engendrées.

Notons enfin que si le treillis des sous-algèbres d’une MV-algèbre d’une variété non finiment

engendrée est distributif, cela n’implique pas nécessairement que cette algèbre est finie, à

l’opposé du cas qui nous occupe.

7. Quelques questions ouvertes

Les travaux que nous avons exposés et qui concernent le treillis des sous-algèbres dans les

variétés MVn sont loin d’être exhaustifs à ce sujet. De nombreuses questions restent en effet

ouvertes.

Parmi elles, nous avons déjà souligné le problème de pouvoir estimer précisément le cardinal

de Quot(X
˜

) lorsque cette structure est finie. Ce problème de combinatoire pourrait trouver

une solution dans la théorie des multi-ensembles finis, qui sont des ensembles finis à chaque

élément desquels on associe un poids (c’est-à-dire un entier naturel non nul). Les morphismes

entre multi-ensembles finis X et Y sont alors les applications f : X → Y qui sont telles que

le poids associé à f(x) est un diviseur du poids associé à x pour tout x dans X.

Un autre problème intéressant consiste à essayer de caractériser les treillis (d’abord dans la

cas fini) qui sont isomorphes à un treillis de sous-algèbres d’une MV-algèbre A de MVn. Nous

avons par exemple essayé, sans succès pour le moment, d’obtenir un procédé de construction

dans le cas simple du treillis des sous-algèbres d’une algèbre du type Łm1
× · · · × Łmr

où

les mi (i ∈ {1, . . . ,r}) sont deux à deux premiers entre eux. En fait, c’est l’abondance et la

« densité » des idempotents dans cette algèbre qui constitue l’obstacle majeur à l’obtention

d’une telle construction lorsque r est supérieur à .

La caractérisation des structures X
˜

qui sont telles que {〈X/R,ΓMin〉 | R ∈ B(X)} est un

sous-treillis de Quot(X
˜

) est un autre problème auquel on pourrait s’attaquer.

Par ailleurs, il serait intéresssant d’essayer d’étendre nos développements à des sous-

variétés non finiment engendrées de MV-algèbres. On pourrait au départ s’appuyer sur d’autres

dualités—comme celle développée par P. Niederkorn dans sa thèse ([24]) et qui concerne
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la classe des MV-algèbres archimédiennes rationnelles, ou encore la dualité récemment décou-

verte par Cignoli, Dubuc and D. Mundici dans [7] pour les MV-algèbres localement finies.

Il faudrait ensuite tenter de s’affranchir de l’outil (puissant mais aliénant) des dualités pour

étendre les résultats à des classes de MV-algèbres pour lesquelles aucune dualité n’est connue.

Une piste à suivre serait peut-être de s’attaquer à la classe des MV-algèbres archimédiennes,

car nous avons vu que la description des éléments maximaux dans Sub(A) faisait intervenir

cette classe de manière naturelle.

Pour terminer, mentionnons un problème classique associé au treillis des sous-algèbres:

étudier la complémentation et la pseudo-complémentation de ces treillis (cf. [1] pour le cas

des algèbres de Boole).

L’existence de compléments dans les treillis Quot(X
˜

) est loin d’être une propriété uni-

verselle. Le premier résultat à ce sujet restreint la forme des compléments. Pour l’énoncer,

nous allons étendre les notations du début de la section  et convenir que pour tous quotients

〈X/R,Γ〉 et 〈X/R′,Γ′〉 de Quot(X
˜

), on désignera par pgcd(〈X/R,Γ〉,〈X/R′,Γ′〉) l’entier

pgcd(〈X/R,Γ〉,〈X/R′,Γ′〉) = pgcd({l ∈ div(n) | r
〈X/R,Γ〉
l ∪ r

〈X/R′,Γ′〉
l 6= ∅}.

Lemme 7.1. Le quotient 〈X/R,Γ〉 admet 〈X/R′,Γ′〉 comme complément dans Quot(X
˜

) si

et seulement si les trois conditions suivantes sont satisfaites:

• l’équivalence R′ est un complément de R dans B(X);

• pour tout élément x de X
˜

, il vient

πR(x) ∈ s
〈X/R,Γ〉
mR

πR′(x) ∈ s
〈X/R′,Γ′〉
mR′

}
⇒ x ∈ s

X

p̃pcm(mR,mR′ )
;

• on a pgcd(〈X/R,Γ〉,〈X/R′,Γ′〉) = 1. ¥
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CHAPITRE 4

Dualité pour les MV-algèbres à opérateurs

La théorie des algèbres de Boole à opérateurs fut introduite par Jónsson et Tarski

en  (cf. [16] et [17]). Entre autres applications, ces algèbres servirent de modèle à la

logique modale. En , G. Hansoul développa dans [14] une dualité catégorique pour la

classe des algèbres de Boole à opérateurs. Ce sont ces derniers résultats que nous essayons

de généraliser aux MV-algèbres.

Nous nous proposons donc de présenter ici une définition de MV-algèbre avec opérateurs

étendant naturellement la définition booléenne, ainsi qu’une dualité pour la classe des MV-

algèbres de HSP(Łn) munies d’un opérateur unaire.

1. MV-algèbres à opérateurs

La notion d’opérateur que nous allons introduire sur les MV-algèbres étend naturellement

aux MV-algèbres la définition bien connue d’un opérateur sur une algèbre de Boole. L’axio-

matisation présentée, bien que naturelle, est le fruit de plusieurs tentatives qui se sont révellées

stériles.

Définitions 1.1. Soit k un naturel non nul. Un opérateur k-aire sur la MV-algèbre A est

une application

f : Ak → A

vérifiant les trois conditions suivantes:

(MVO) l’application f est conormale: pour tous l dans {1, . . . ,k} et a1, . . . ,al−1,al+1, . . . ,ak

dans Ak

f(a1, . . . ,al−1,1,al+1, . . . ,ak) = 1;

(MVO) l’axiome (K) est satisfait sur chaque argument de f : pour tout l dans {1, . . . ,k}

l’équation

f(a1, . . . ,al−1,x→ y,al+1, . . . ,ak)

→ (f(a1, . . . ,al−1,x,al+1, . . . ,ak) → f(a1, . . . ,al−1,y,al+1, . . . ,ak)) = 1

est satisfaite sur A pour tous a1, . . . ,al−1,al+1, . . . ,ak dans A;

(MVO) l’application f respecte les LMV-termes croissants unaires: si τ est un terme croissant

unaire construit sur LMV et si a1, . . . ,ak sont des éléments de A, alors

τ(f(a1, . . . ,ak)) = f(τ(a1), . . . ,τ(ak)).

Lorsque k = 1, l’opérateur sera appelé opérateur modal et sera souvent noté ¤.

Une MV-algèbre à opérateurs est une algèbre 〈A,⊕ ,¯ ,¬,0,1,(fi)I∈I〉 où 〈A,⊕ ,¯ ,¬,0,1〉

est une MV-algèbre et où fi est un opérateur ki-aire sur A pour tout indice i de l’ensemble I.
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Une MV-algèbre modale est une MV-algèbre sur laquelle on a défini un unique opérateur

modal.

Dans ce qui suit, nous abuserons des raccourcis d’écriture habituels qui nous autoriseront

à désigner par 〈A,(fi)i∈I〉 la MV-algèbre à opérateurs 〈A,⊕ ,¯ ,¬,0,1,(fi)i∈I〉. Par ailleurs,

nous noterons A la MV-algèbre sous-jacente à la MV-algèbre à opérateurs 〈A,(fi)i∈I〉 (i.e.

la réduction de 〈A,(fi)i∈I〉 au langage LMV.) Enfin, pour faciliter l’écriture de nos résultats,

nous allons fixer pour le reste du chapitre un ensemble d’indices I et un symbole fonctionnel

fi d’arité ki pour tout i ∈ I. Ainsi, toutes nos MV-algèbres à opérateurs seront construites sur

le langage {⊕,¯ ,¬,0,1} ∪ {fi | i ∈ I}. Nous noterons MVO la classe formée par ces algèbres.

La moindre des propriétés que l’on puisse espérer d’un opérateur sur la MV-algèbre A est

que celui-ci se révèle être un opérateur d’algèbre de Boole lorsqu’on le restreint à l’ensemble

B(A) des idempotents de A.

Lemme 1.2. L’axiome MVO est équivalent à

f(a1, . . . ,al−1,x→ y,al+1, . . . ,ak)

≤ f(a1, . . . ,al−1,x,al+1, . . . ,ak) → f(a1, . . . ,al−1,y,al+1, . . . ,ak)

pour tout 1 ≤ l ≤ k et tous a1, . . . ,al−1,al+1, . . . ,ak dans A. De plus, il implique la monotonie

de f en chacun de ses arguments.

Preuve. La démonstration est une conséquence directe de la définition de l’ordre sur une

MV-algèbre. ♦

Proposition 1.3. Si 〈A,(fi)i∈I〉 est une MV-algèbre à opérateurs, alors

〈B(A),(fi|B(A)ki )i∈I〉

est une algèbre de Boole à opérateurs.

Preuve. Soient i un indice de I et a1, . . . ,aki des éléments de B(A). Comme le terme

τ(x) = x⊕ x est un terme croissant unaire de LMV, il vient

τ(fi(a1, . . . ,aki)) = fi(τ(a1), . . . ,τ(aki)) = fi(a1, . . . ,aki),

ce qui prouve que l’application fi|B(A)ki est à valeurs dans B(A).

Par ailleurs, si l est un élément de {1, . . . ,ki} et si bl est un idempotent de A, alors la

monotonie de fi en son le argument implique que

fi(a1, . . . ,al−1,al ∧ bl,al+1, . . . ,aki)

≤ fi(a1, . . . ,al−1,al,al+1, . . . ,aki) ∧ fi(a1, . . . ,al−1,bl,al+1, . . . ,aki).

Enfin, montrons qu’on a l’inégalité inverse. En effet, puisque B(A) est une algèbre de

Boole, il vient al → (bl → (al ∧ bl)) = 1, donc

fi(a1, . . . ,al−1,al,al+1, . . . ,aki) ≤ fi(a1, . . . ,al−1,bl → (al ∧ bl),al+1, . . . ,aki),
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puis

fi(a1, . . . ,al−1,al,al+1, . . . ,aki)

≤ fi(a1, . . . ,al−1,bl,al+1, . . . ,aki) → fi(a1, . . . ,al−1,al ∧ bl,al+1, . . . ,aki).

Pour finir, en conclut en exploitant la monotonie de fi en son le argument que

fi(a1, . . . ,al−1,al,al+1, . . . ,aki) ∧ fi(a1, . . . ,al−1,bl,al+1, . . . ,aki)

≤ fi(a1, . . . ,al−1,al ∧ bl,al+1, . . . ,aki),

ce qui suffit pour conclure la preuve. ♦

Exemples 1.4. Donnons maintenant quelques exemples simples d’opérateurs sur des MV-

algèbres. Soit A une MV-algèbre.

(1) Il est clair que l’identité est un opérateur unaire sur A.

(2) L’application 1 : A→ A : a 7→ 1 est un opérateur modal sur A.

(3) Si A est totalement ordonné et si k est un naturel non nul alors l’application

f : Ak → Ak : (a1, . . . ,ak) 7→ (min(a1, . . . ,ak), . . . ,min(a1, . . . ,ak))

est un opérateur unaire sur Ak (qui coïncide avec l’identité si k = 1). En effet, il

est trivial que f(1, . . . ,1) = (1, . . . ,1). Par ailleurs, si τ est un LMV-terme croissant

unaire et si (a1, . . . ,ak) est un k-uplet d’éléments de A, il vient successivement

τ(f(a1, . . . ,ak)) = (τ(min(a1, . . . ,ak)), . . . ,τ(min(a1, . . . ,ak)))

= (min(τ(a1), . . . ,τ(ak)), . . . ,min(τ(a1), . . . ,τ(ak))

= f(τ(a1), . . . ,τ(ak))

puisque τ est croissant.

Vérifions enfin que l’application f vérifie l’axiome (MVO). Soient (a1, . . . ,ak) et

(b1, . . . ,bk) deux k-uplets d’éléments de A. Par définition de f , l’inéquation

f((a1, . . . ,ak) → (b1, . . . ,bk)) ≤ f(a1, . . . ,ak) → f(b1, . . . ,bk)

est équivalente à

min(a1 → b1, . . . ,ak → bk) ≤ min(a1, . . . ,ak) → min(b1, . . . ,bk),

c’est-à-dire à ∧

i≤k

(bi ⊕ ¬ai) ≤ (
∧

i≤k

bi) ⊕ ¬(
∧

i≤k

ai)

ou encore à ∧

i≤k

(bi ⊕ ¬ai) ≤
∧

i≤k

(bi ⊕ ¬(
∧

i≤k

ai)),

vu la distributivité de ⊕ sur
∧

. On conclut alors en notant que, puisque
∧
i≤k ai ≤ ai

pour tout i ≤ k, on a

bi ⊕ ¬ai ≤ bi ⊕ ¬
∧

i≤k

ai

pour tout i dans {1, . . . ,k}.
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La proposition suivante permet de relier la notion d’opérateur à celle d’homomorphisme.

Proposition 1.5. Soit f un opérateur k-aire sur la MV-algèbre A. Si l est un naturel de

{1, . . . ,k}, si a1, . . . ,al−1,al+1, . . . ,ak sont des éléments de A et si fl désigne l’application

fl : A→ A : a 7→ f(a1, . . . ,al−1,a,al+1, . . . ,ak),

alors fl est un homomorphisme si et seulement si les deux conditions suivantes sont satisfaites:

• f est normal: f(a1, . . . ,al−1,0,al+1, . . . ,ak) = 0;

• f respecte ⊕ sur son le-argument:

f(a1, . . . ,al−1,a⊕ b,al+1, . . . ,ak) = f(a1, . . . ,al−1,a,al+1, . . . ,ak)⊕ f(a1, . . . ,al−1,b,al+1, . . . ,ak)

pour tous a et b dans A.

Preuve. La proposition est évidemment nécessaire. Montrons qu’elle est suffisante. Par

hypothèse, on sait que fl(a⊕b) = fl(a)⊕fl(b) pour tous a et b dans A. Il nous reste à prouver

que fl(¬a) = ¬fl(a) pour tout a dans A. Or, puisque f est un opérateur, il vient

f(a1, . . . ,al−1,a→ 0,al+1, . . . ,ak)

→ f((a1, . . . ,al−1,a,al+1, . . . ,ak) → f(a1, . . . ,al−1,0,al+1, . . . ,ak)) = 1

ou encore

f(a1, . . . ,al−1,¬a,al+1, . . . ,ak) ≤ ¬f(a1, . . . ,al−1,a,al+1, . . . ,ak),

puisque f(a1, . . . ,al−1,0,al+1, . . . ,ak) = 0.

Par ailleurs, il vient successivement

¬f(a1, . . . ,al−1,a,al+1, . . . ,ak) ≤ f(a1, . . . ,al−1,¬a,al+1, . . . ,ak)

⇔ ¬f(a1, . . . ,al−1,a,al+1, . . . ,ak) → f(a1, . . . ,al−1,¬a,al+1, . . . ,ak) = 1

⇔ f(a1, . . . ,al−1,¬a,al+1, . . . ,ak) ⊕ f(a1, . . . ,al−1,a,al+1, . . . ,ak) = 1

⇔ f(a1, . . . ,al−1,a⊕ ¬a,al+1, . . . ,ak) = 1,

puisque f est un opérateur qui respecte ⊕ sur son le argument. Comme f est conormal, on

obtient bien que fl respecte ¬, ce qui conclut la preuve. ♦

Pour terminer cette petite introduction, déterminons l’effet de l’image inverse d’un opéra-

teur sur un filtre.

Proposition 1.6. Soit f un opérateur k-aire sur la MV-algèbre A. Si F est un filtre de

A et si l ∈ {1, . . . ,k} alors

f−1(a1, . . . ,al−1,F,al+1, . . . ,ak) := {x ∈ A | f(a1, . . . ,al−1,x,al+1, . . . ,ak) ∈ F}

est un filtre de A pour tous a1, . . . ,al−1,al+1, . . . ,ak dans A.

Preuve. Soient a1, . . . ,al−1,al+1, . . . ,ak des éléments de A et fl l’application

fl : A→ A : x 7→ f(a1, . . . ,al−1,x,al+1, . . . ,ak).

Si x et x → y sont deux éléments de f−1
l (F ), c’est-à-dire si fl(x → y) et fl(x) appartiennent

à F , il vient, puisque fl satisfait à l’axiome (K),

fl(x→ y) → (fl(x) → fl(y)) = 1,

donc (fl(x) → fl(y)) ∈ F puis fl(y) ∈ F puisque F est un filtre. ♦
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2. Dualité pour les MV-algèbres à opérateurs dans HSP(Łn)

Dans cette section, nous allons construire une dualité pour la catégorie dont les objets

sont les MMV-algèbres (c’est-à-dire les MV-algèbres modales) construites sur les MV-algèbres

de la variété HSP(Łn). Pour ce faire, nous allons mimer la technique classique qui consiste à

traduire l’opérateur en une relation binaire sur la structure duale.

Par ailleurs, la dualité que nous allons développer peut naturellement s’étendre à la classe

des MVn-algèbres à opérateurs, comme dans le cas des algèbres de Boole. Si nous nous

sommes restreints à la classe des MVn-algèbres modales, c’est pour éviter une trop grande

lourdeur dans la formalisation de cette dualité (dont les développements que nous proposons

ne sont qu’une première approche).

La catégorie que nous allons dualiser est la suivante.

Définitions 2.1. La catégorie MMVn est la catégorie

• dont les objets sont les MV-algèbres à opérateur unaire 〈A,⊕ ,¯ ,¬,0,1,¤〉 construites

sur les MV-algèbres A de HSP(Łn);

• dont les morphismes sont les homomorphismes de MV-algèbre f : A→ B vérifiant

f(¤A(a)) = ¤B(f(a))

pour tout a dans A.

Bien sûr, comme il en est d’usage, si 〈A,¤A〉 et 〈B,¤B〉 sont deux MMVn-algèbres,

nous réserverons la notation MMVn(〈A,¤A〉,〈B,¤B〉) pour désigner l’ensemble des MMVn-

morphismes de 〈A,¤A〉 dans 〈B,¤B〉.

Pour construire le dual d’un objet de cette catégorie, l’idée, similairement à ce qui se passe

pour les algèbres de Boole, est d’essayer de dualiser l’opérateur ¤ en une relation binaire sur

le dual de la MV-algèbre sous-jacente à l’objet dont il est question. Les lecteurs familiers avec

la dualité pour les algèbres de Boole à opérateurs (dont les grands principes sont rappelés

dans les prolégomènes) ne seront donc pas étonnés par la définition suivante:

Définition 2.2. Si 〈A,¤〉 est un objet de MMVn, on définit sur Dn(A) la relation binaire

R
Dn(A)
¤

par

(u,v) ∈ R
Dn(A)
¤

⇔ ∀ x ∈ A (u(¤x) = 1 ⇒ v(x) = 1).

Bien entendu, lorsqu’aucune confusion ne sera possible, nous préférerons noter RDn(A) la

relation RDn(A)
¤

. Comme d’habitude, nous adopterons également les notations suivantes: si X

est un sous-ensemble de Dn(A), nous noterons RDn(A)(X) l’ensemble

RDn(A)(X) = {v ∈ Dn(A) | ∃ u ∈ X t.q. uRDn(A)v},

et nous réserverons la notation (RDn(A))−1(X) pour désigner l’ensemble

(RDn(A))−1(X) = {u ∈ Dn(A) | ∃ v ∈ X t.q. uRDn(A)v}.

Évidemment, pour ne pas alourdir les notations, si u est un élément de Dn(A), nous préfé-

rerons les notations RDn(A)u ou RDn(A)(u) à RDn(A)({u}) et (RDn(A))−1(u) à (RDn(A))−1({u}).

Le premier pas dans le processus de dualisation est de vérifier qu’il est possible, étant

donné un objet 〈A,¤〉 de MMVn, de redéfinir sur la MV-algèbre sous-jacente à cet objet (ou,
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de manière équivalente, sur son bidual ED(A)) l’opérateur ¤ sur base de l’unique connaissance

de relation RDn(A) sur le dual Dn(A) de cette algèbre. C’est le but de la proposition suivante.

Proposition 2.3. Si 〈A,¤〉 est une MMVn-algèbre, alors

eA(¤x)(u) =
∧

v∈RDn(A)u

v(x)

pour tout x dans A et pour tout u dans Dn(A).

Preuve. Soit u un élément de Dn(A) et x un élément de A. Montrons tout d’abord que

u(¤x) ≤
∧

v∈RDn(A)u

v(x).

Pour cela, il nous suffit de prouver que u(¤x) ≤ v(x) pour tout v dans RDn(A)u. Procédons

par l’absurde et supposons qu’il existe un v dans RDn(A)u et un i
n dans Łn tels que v(x) <

i
n ≤ u(¤x). On considère alors le terme croissant τi de LMV défini dans la sous-section 1.3.2

du premier chapitre.

Il vient donc

v(τi(x)) = τi(v(x)) = 0

puisque v est un homomorphisme de MV-algèbre et τi est un terme de LMV. D’autre part,

u(¤τi(x)) = u(τi(¤x)) = τi(u(¤x)) = 1

vu la croissance de τi. Or, puisque uRDn(A)v, cette dernière identité implique que v(τi(x)) = 1,

ce qui est absurde.

Complétons la preuve en montrant qu’on ne peut pas avoir

u(¤x) <
∧

v∈RDn(A)u

v(x).

Sinon, il existe un j
n dans Łn tel que

u(¤x) <
j

n
≤

∧

v∈RDn(A)u

v(x).

On obtient donc

u(¤τj(x)) = 0 et v(τj(x)) = 1

pour tout v dans RDn(A)u.

Cela étant, comme ¤−1(u−1(1)) est un filtre, l’algèbre A/¤−1(u−1(1)) est un membre de

la variété HSP(Łn) et est par conséquent une sous-algèbre d’une puissance de Łn. De plus, si π

désigne l’application de passage au quotient π : A→ A/¤−1(u−1(1)), il vient π(τj(x)) 6= 1 et il

existe donc un homomorphisme w′ : A/¤−1(u−1(1)) → Łn tel que w′(π(τs(x))) 6= 1. Dès lors,

l’application w = w′ ◦ π est un élément de Dn(A) tel que uRDn(A)w alors que w(τs(x)) 6= 1,

ce qui est absurde. ♦

Ainsi, le processus de dualisation semble bien entamé: il est possible, en connaissant la

relation RDnA
¤

sur le dual de l’algèbre A, de récupérer l’opérateur¤ sur A à l’aide des ensembles

R
DnA
¤

(u) (u ∈ Dn(A)).

Examinons maintenant les propriétés de la relation RD(A).
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Proposition 2.4. Si 〈A,¤〉 est une MMVn-algèbre, alors la relation RDn(A) possède les

propriétés suivantes:

• Si x est un élément de A et si i appartient à {1, . . . ,n}, on a

(RD(A))−1([x :
i

n
]) = [¤(¬τi(x) ⊕ τi+1(x)) : 0],

si on convient que τi+1 = 0 lorsque i = n;

• le graphe de la relation RDn(A) est un fermé de Dn(A) × Dn(A);

• pour tout i dans {1, . . . ,n} et pour tout x dans A, on a

(
⋃

{m∈div(n)| i
n
6∈Łm}

rDn(A)
m ) ∩ (RDn(A))−1([τi+1(x) : 0]) ∩X \ (RDn(A))−1([τi(x) : 0]) = ∅

où on convient que [τi+1(x) : 0] = Dn(A) si i = n (auquel cas le terme τi+1 n’est pas

correctement défini).

Preuve. Si b est un idempotent de B(A), alors, en appliquant la proposition 2.3, on obtient

que (RD(A))−1([b : 0]) = [¤b : 0]. Dés lors, comme [x : i
n ] = [τi+1(x) ⊕ ¬τi(x) : 0] (avec notre

convention sur τi+1), il vient

(RD(A))−1([x :
i

n
]) = [¤(¬τi(x) ⊕ τi+1(x)) : 0]

Par ailleurs, si (u,v) 6∈ RD(A), on peut trouver un élément x de A et un j dans {0, . . . ,n−1}

tels que u(¤x) = 1 et v(x) = j
n . Alors, le couple (u,v) appartient à l’ouvert-fermé [¤x : 0]×[x :

j
n ] qui est une partie de D(A) × D(A) \RD(A), ce qui démontre la deuxième propriété.

Pour démontrer le troisième résultat, procédons par l’absurde. Supposons qu’il existe un

x dans A, un i dans {1, . . . ,n} et un u dans rDn(A)
m avec i

n 6∈ Łm tels qu’on peut trouver un v

dans RD(A)(u) avec v(x) = i
n et qu’aucun w dans RD(A)(u) ne vérifie w(x) < i

n . Alors, selon

la proposition 2.3, il vient u(¤x) = i
n alors que i

n 6∈ Łm. ♦

Remarques 2.5. Remarquons que si 1 ≤ i ≤ n−1, le terme τi+1(x)⊕¬τi(x) n’est pas croissant (en

effet τi+1(x) ⊕¬τi(x) 6≤ τi+1(
i
n
) ⊕ ¬τi(

i
n
) si x < i

n
). Ainsi, on ne peut pas conclure (heureusement) à

l’égalité entre [¤(τi+1(x) ⊕ ¬τi(x)) : 0] et [τi+1(¤x) ⊕ ¬τi(¤x) : 0].

Par ailleurs, il est clair, vu la proposition 2.3 que

(RD(A))−1[τ1(x) ⊕ ¬τ0(x) = 0] = [¤x : 0].

Enfin, il découle de nos conventions sur τn+1 que

(RD(A))−1[τn+1(x) ⊕ ¬τn(x) = 0] = ∅.

si x 6= 1.

Notons aussi que si ¤ est un opérateur sur A et si x est un élément de A, il vient

u(¤x) =
i

n
⇔ u ∈ (RDn(A))−1([τi+1(x) : 0]) ∩X \ (RDn(A))−1([τi(x) : 0]),

où on convient que [τi+1(x) : 0] = Dn(A) si i = n.

Le temps est maintenant venu de vérifier si les trois conditions de la proposition 2.4 sont

des conditions suffisantes à imposer à une relation définie sur le dual Dn(A) d’une MMVn-

algèbre A pour que l’application définie dans la proposition 2.3 se révèle être un opérateur
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modal. C’est l’objet de notre prochain résultat, pour lequel nous allons poser la définition

suivante.

Définition 2.6. Une relation binaire RX˜ (bien souvent, nous oublierons délibérément de

rappeler la dépendance en X
˜

) définie sur une structure X
˜

de Xn est appelée relation modale

si elle satisfait aux trois conditions suivantes:

(R) (RX˜ )−1(ω) est un ouvert-fermé pour tout ouvert-fermé ω de l’espace topologique X

sous-jacent à X
˜

.

(R) le graphe de la relation RX˜ est un fermé de Dn(A) × Dn(A);

(R) pour tout i dans {0, . . . ,n} et pour tout α dans En(X˜
), on a

(RX˜ )−1((τi+1(α))−1(0)) ∩X \ (RX˜ )−1((τi(α))−1(0)) ∩
⋃

{m| i
n
6∈Łm}

r
X
m̃ = ∅.

Il est clair que si R est une relation binaire sur X
˜

qui vérifie R(r
X
m̃) ⊆ r

X
m̃, alors R satisfait

à la troisième condition de la définition précédente. Une des questions qui restent ouvertes est

de déterminer si cette condition est nécessaire.

Remarque 2.7. Si R est une relation modale sur X
˜

, alors le sous-espace Ru est un fermé de X

pour tout u dans X
˜

. En effet, si u et v sont des éléments de X tels que v n’appartient pas à Ru, alors

le couple (u,v) n’est pas un élément de R et il existe des ouverts-fermés ωx et ωy de X tels que ωu×ωv

contient (u,v) et soit une partie de X ×X \R. On en déduit que ωv contient v mais aucun élément de

Ru, ce qui conclut la preuve.

Proposition 2.8. Si X
˜

est une structure de Xn et si R est une relation modale sur X
˜

,

alors l’application ¤R définie sur En(X˜
) par

(¤Rα)(u) =
∧

v∈Ru

α(v)

est un opérateur modal sur En(X˜
).

Preuve. Tout d’abord, notons que si u est un élément de X
˜

et si i est dans {0, . . . ,n}, il

vient

(¤Rα)(u) = i
n ⇔

{
u ∈ R−1((τi+1(α))−1(0)) ∩X \R−1((τi(α))−1(0)) si i < n,

u ∈ X \R−1((τi(α))−1(0)) si i = n.

En effet, l’élément u est dans R−1((τi+1(α))−1(0)) si et seulement s’il existe un v dans Ru tel

que α(v) ≤ i
n . Par ailleurs, u appartient à X \R−1((τi(α))−1(0)) si et seulement si α(v′) 6< i

n

pour tout v′ dans Ru.

Cela étant, la continuité de l’application ¤Rα découle du fait que l’image inverse par R

d’un ouvert-fermé reste un ouvert-fermé. Par ailleurs, la troisième condition de la définition

2.6 nous assure que ¤Rα respecte les relations rm (m ∈ div(n)). Au total, l’application ¤Rα

est un élément de En(X˜
) pour tout α dans En(X˜

).

Il nous reste à prouver que ¤R est effectivement un opérateur modal sur En(X˜
). Il est

d’abord évident que ¤R1 = 1. Par ailleurs, si τ est un terme croissant unaire sur LMV et si α

est un élément de En(X˜
), il vient

τ(¤Rα) = ¤Rτ(α)
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si et seulement si

τ(
∧

v∈Ru

α(v)) =
∧

v∈Ru

τ(α)(v)

pour tout u dans X
˜

. Or, si u est un élément de X
˜

, on déduit de la croissance de τ que

τ(
∧

v∈Ru

α(v)) ≤
∧

v∈Ru

τ(α)(v).

Par ailleurs, l’infemum des α(v) pour v parcourant Ru étant réalisé en un certain α(v0)

(v0 ∈ Ru), il vient également

τ(
∧

v∈Ru

α(v)) = τ(α(v0)) ≥
∧

v∈Ru

τ(α)(v).

Pour conclure, il nous suffit maintenant de prouver que l’application ¤R satisfait à l’axiome

(K) sur En(X˜
), c’est-à-dire que

(¤R(α→ β) → (¤Rα→ ¤Rβ))(u) = 1

pour tous α et β dans En(X˜
) et tout u dans X

˜
. Or, si α et β sont des éléments du dual de X

˜
,

et u est un élément de X
˜

, il vient successivement

(¤R(α→ β) → (¤Rα→ ¤Rβ))(u) = 1

⇔ (¤R(α→ β)(u)) ≤ (¤Rα)(u) → (¤Rβ)(u)

⇔
∧
v∈Ru(β(v) ⊕ ¬α(v)) ≤ (

∧
v∈Ru β(v)) ⊕ ¬(

∧
v′∈Ru α(v′))

⇔
∧
v∈Ru(β(v) ⊕ ¬α(v)) ≤

∧
v∈Ru(β(v) ⊕ ¬

∧
v′∈Ru α(v′)).

Or, si uRv, il vient
∧
v′∈Ru α(v′) ≤ α(v), donc

¬α(v) ≤ ¬
∧

v′∈Ru

α(v′)

et ainsi

β(v) ⊕ ¬α(v) ≤ β(v) ⊕ ¬
∧

v′∈Ru

α(v′),

ce qui conclut la preuve. ♦

Résumons notre parcours dans le processus de dualisation des objets de la catégorie

MMVn: nous avons défini la notion de relation modale sur un objet de Xn et nous savons que

tout opérateur modal sur une algèbre A de MVn se traduit (de manière canonique) en une

relation modale sur son dual Dn(A) et inversement (idem). Par ailleurs, nous savons que les

techniques que nous avons développées assurent que si l’on traduit un opérateur ¤ sur A en

une relation modale R¤ sur Dn(A) (selon la définition 2.6), puis que nous traduisons, suivant

la proposition 2.8, cette relation modale R¤ en un opérateur ¤R¤ sur ED(A), alors l’opérateur

obtenu est, à isomorphisme près, identique à l’opérateur ¤ de départ. C’était en effet l’objet

de la proposition 2.3.

Pour conclure le processus la dualisation des objets de MMVn, il nous suffit donc main-

tenant de prouver que la traduction successive d’une relation modale R sur la structure X
˜

de X en un opérateur ¤R sur En(X˜
), puis de cet opérateur en une relation R¤R

sur DE(X
˜

)

aboutit au final (à isomorphisme près) à la relation modale R de départ. C’est l’objet de la

proposition suivante.
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Proposition 2.9. Si X
˜

est une structure de Xn, si R est une relation modale sur X
˜

, si

¤R est l’opérateur modal (défini sur En(X˜
)) associé à R selon la proposition 2.8 et si R¤R

est

la relation modale (définie sur DE(X
˜

)) associée à ¤R, alors, à isomorphisme près, les relations

R et R¤R
coïncident.

Preuve. Premièrement, montrons que si u et v sont des éléments de X
˜

tels que uRv alors

εX
˜

(u)R¤R
εX
˜

(v). En effet, puisque uRv, il vient, par définition de ¤R,

¤R(α)(u) ≤ α(v)

pour tout α dans En(X˜
). On en déduit que εX

˜
(u)R¤R

εX
˜

(v) par définition de R¤R
.

Inversement, supposons que εX
˜

(u)R¤R
εX
˜

(v), c’est-à-dire que

∀ α ∈ En(X˜
) (εX

˜
(u)(¤Rα) = 1 ⇒ εX

˜
(v)(α) = 1),

ou encore

∀ α ∈ En(X˜
) ((¤Rα)(u) = 1 ⇒ α(v) = 1),

ou enfin

∀ α ∈ En(X˜
) (Ru ⊆ α−1(1) ⇔ v ∈ α−1(1))

vu la définition de ¤R.

On en déduit que uRv. Sinon, il existe un ouvert-fermé ω de X ×X tel que

(u,v) ∈ ω ⊆ X ×X \R.

De manière équivalente, puisque X est un espace de Boole dont le dual (sous la dualité de

Stone) est isomorphe à l’ensemble des idempotents de En(X˜
), il existe deux éléments α et β

de En(X˜
), à valeurs dans {0,1}, tels que

(u,v) ∈ α−1(0) × β−1(0) ⊆ X ×X \R.

Ainsi, il vient

Ru ⊆ X \ β−1(0) = β−1(1)

donc β(v) = 1, ce qui est absurde. ♦

Il est maintenant temps de s’occuper de la dualisation des morphismes de MMVn.

Proposition 2.10. Soient 〈A,¤〉 et 〈B,¤〉 deux MMVn-algèbres. Si f : A → B est un

homomorphisme de MMVn-algèbre, alors l’application Dn(f) est un morphisme de Xn entre

Dn(B) et Dn(A) tel que

Dn(f) ◦R = R ◦ Dn(f).

Preuve. Soit u un élément de Dn(B). Montrons d’abord que

Dn(f)(Ru) ⊆ R(Dn(f)(u)).

Pour cela, il nous suffit de montrer que si v appartient à Ru et si x est un élément de A tel que

(Dn(f)(u))(¤x) = 1, alors (Dn(f)(v))(x) = 1. Or, puisque l’application f respecte l’opérateur

¤, on a u(f(¤x)) = 1 si et seulement si u(¤f(x)) = 1, cette dernière identité entraînant

v(f(x)) = 1 puisque uRv.

Montrons ensuite que

R(Dn(f)(u)) ⊆ Dn(f)(Ru).
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Soit v′ un élément de R(Dn(f)(u)). Par définition, on a donc

u(¤f(x)) = 1 ⇒ v′(x) = 1

pour tout x dans A.

Cela étant, l’ensemble Dn(f)(Ru) est l’image par une application continue d’un espace

compact (Ru est un fermé de l’espace compact Dn(B)) et est par conséquent un compact.

Comme c’est un sous-espace d’un espace séparé, il s’agit donc d’un fermé de Dn(A). Ainsi,

pour montrer que v′ appartient à Dn(f)(Ru), il suffit de prouver que tout voisinage de v′

rencontre Dn(f)(Ru).

Soit donc b un idempotent de A et [b : 0] un ouvert-fermé de base de Dn(A) contenant

v′. Nous allons construire un élément de [b : 0] ∩ Dn(f)(Ru), c’est-à-dire un homomorphisme

v appartenant à Ru tel que v(f(b)) = 0. Pour cela, notons que ¤−1(u−1(1)) est un filtre qui

ne contient pas f(b) (si c’était le cas, l’image de v′ en f(b) serait égale à 1). Il existe donc

un filtre premier F contenant ¤−1(u−1(1)) mais pas f(b). Dès lors, si π désigne la projection

de A dans A/F , on obtient π(f(b)) 6= 1. On conclut alors, similairement à la preuve 2.3, à

l’existence d’un v de Ru tel que v(f(b)) = 0 (puisque f(b) est un idempotent de A). ♦

Le dual de cette proposition prend la forme suivante.

Proposition 2.11. Soient X
˜

et Y
˜

deux structures de Xn et RX
˜

(resp. RY
˜
) une relation

modale sur X
˜

(resp. sur Y
˜
). Si ψ : X

˜
→ Y

˜
est un Xn-morphisme vérifiant

ψ ◦RX
˜

= RY
˜
◦ ψ,

alors En(ψ) est un homomorphisme de MMVn-algèbre de 〈En(Y˜
),¤RY

˜
〉 dans 〈En(X˜

),¤RX

˜
〉.

Preuve. Il nous suffit de montrer que si α appartient à En(ψ), alors

En(ψ)(¤RY

˜
α) = ¤RX

˜
(En(ψ)(α)).

Cela revient à prouver que

¤RY

˜
α(ψ(u)) = ¤RX

˜
(α ◦ ψ)(u)

pour tout u dans X
˜

. Or, si u est un élément de X
˜

, l’équation précédente est équivalente à
∧

v∈RY

˜
(ψ(u))

α(v) =
∧

v′∈RX

˜
(u)

α(ψ(v′)),

par définition de ¤RX

˜
et ¤RY

˜
. On conclut alors en utilisant le fait que ψ(RX

˜
(u)) = RY

˜
(ψ(u))

pour tout u dans X
˜

. ♦

Nous pouvons donc maintenant définir ce qui se révélera être la catégorie duale à MMVn.

Définitions 2.12. La catégorie MX n est la catégorie

• dont les objets sont les Xn-structures modales, c’est-à-dire les structures topologiques

〈X
˜
,RX

˜
〉 où

• X
˜

est un objet de Xn,

• RX
˜

est une relation modale sur X
˜

;

• dont les morphismes sont les applications ψ : 〈X
˜
,RX

˜
〉 → 〈Y

˜
,RY

˜
〉 telles que

• ψ est un Xn-morphisme,
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• ψ ◦RX
˜

= RY
˜
◦ ψ.

Cela étant, si 〈X
˜
,RX

˜
〉 et 〈Y

˜
,RY

˜
〉 sont deux objets de MX n, nous désignerons, suivant

l’habitude, par MX n(〈X˜
,RX

˜
〉,〈Y

˜
,RY

˜
〉) l’ensemble des MX n-morphismes de 〈X

˜
,RX

˜
〉 dans

〈Y
˜
,RY

˜
〉.

Nos précédents développements se synthétisent maintenant de la façon suivante.

Théorème 2.13. Soit D∗
n : MMVn → MX n le foncteur défini par

D∗
n :

{
〈A,¤A〉 7→ 〈Dn(A),R

Dn(A)
¤A

〉

f ∈ MMVn(〈A,¤A〉,〈B,¤B〉) 7→ Dn(f) ∈ MX n(D
∗
n(〈B,¤B〉),D

∗
n(〈A,¤A〉))

où R
Dn(A)
¤A

est la relation associée à ¤A de la définition 2.2.

Soit également E∗
n : MX n → MMVn le foncteur défini par

E∗
n :

{
〈X
˜
,RX˜

〉 7→ 〈En(X˜
),¤RX˜

〉

ψ ∈ MX n(〈X˜
,RX˜

〉,〈Y
˜
,RY˜

〉) 7→ En(ψ) ∈ MMVn(E
∗
n(〈Y˜

,RY˜
〉),E∗

n(〈X˜
,RX˜

〉))

où ¤RX

˜
est l’opérateur associé à RX

˜
suivant la proposition 2.8.

Alors les catégories MMVn et MX n sont dualement équivalentes par les foncteurs D∗
n et

E∗
n.

Preuve. C’est une synthèse des propositions 2.3, 2.8, 2.9, 2.10 et 2.11. ♦

Exemples 2.14. Voici quelques illustrations directes de cette dualité.

(1) Si X
˜

est une Xn-structure et si R est la relation modale définie sur X
˜

par Ru = ∅ pour

tout u dans X
˜

, alors l’opérateur ¤R est l’opérateur défini sur E(X
˜

) par (¤Rα)(u) = 1

pour tout u dans X
˜

.

(2) Si X
˜

est une Xn-structure et si R est la relation modale définie sur X
˜

par Ru = u

pour tout u dans X
˜

, alors l’opérateur ¤R coïncide avec l’identité.

(3) Si ¤k est l’opérateur définit sur Łkn dans le troisième exemple de 1.4, alors R¤k
est

la relation modale définie sur Dn(Łkn) par Ru = Dn(Łkn) pour tout u dans Dn(Łkn).

3. Quelques exemples

Une des questions fréquemment étudiée lorsqu’on développe une théorie de dualité pour

des opérateurs consiste à déterminer quelles sont les propriétés des opérateurs qui admettent

une traduction lors du processus de dualisation. Étudions quelques cas classiques.

3.1. Dualité pour les opérateurs additifs et normaux. Vu la proposition 1.5, un

opérateur ¤ additif (i.e. ¤(x ⊕ y) = ¤x ⊕ ¤y) et normal (i.e. ¤0 = 0) sur la MV-algèbre A

est un homomorphisme de MV-algèbre de A dans lui-même. La proposition suivante ne doit

donc pas étonner le lecteur attentif.

Proposition 3.1. Si 〈A,¤〉 est une MMVn-algèbre telle que ¤ est additif et normal,

alors R
Dn(A)
¤

est un Xn-morphisme de Dn(A) dans lui-même.

Inversement, si 〈X
˜
,R〉 est une MX n-structure telle que la relation R est un Xn-morphisme,

alors ¤R est un endomorphisme de En(X˜
).
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Preuve. Soit u ∈ Dn(A). Nous allons prouver que

R
Dn(A)
¤

(u) = {Dn(¤)(u)},

ce qui suffira puisque ¤ est un homomorphisme de MV-algèbre. Évidemment, Dn(¤)(u) ap-

partient à RDn(A)
¤

(u). Par ailleurs, si v est un élément de RDn(A)
¤

(u), alors ¤−1(u−1(1)) est un

filtre maximal inclus dans v−1(1), alors que v−1(1) est un filtre propre.

Inversement, si R est un Xn-morphisme sur X
˜

et si α est un élément de En(X˜
), nous allons

montrer que

¤R(α) = En(R)(α).

En effet, si u appartient à X
˜

, il vient

(¤Rα)(u) =
∧

v∈R(u)

α(v)) = α(R(u)) = (En(R)(α))(u),

ce qui conclut la preuve. ♦

3.2. Dualisation de l’équation ¤x→ ¤¤x = 1. Nous allons maintenant dualiser les

opérateurs qui satisfont à l’équation ¤x → ¤¤x = 1, c’est-à-dire qui vérifient ¤x ≤ ¤¤x.

Les lecteurs familiers avec le cas correspondant pour les algèbres de Boole ne devraient pas

être désorientés.

Proposition 3.2. Si 〈A,¤〉 est une MMVn-algèbre qui satisfait à l’équation ¤x →

¤¤x = 1, alors la relation R
Dn(A)
¤

est transitive.

Inversement, si 〈X
˜
,R〉 est une MX n-structure telle que R est transitif, alors ¤Rα →

¤R¤Rα = 1 pour tout α dans En(X˜
).

Preuve. Supposons que uRDn(A)v et vRDn(A)w. Si x est un élément deA tel que u(¤x) = 1,

alors u(¤¤x) = 1, donc v(¤x) = 1 puisque uRDn(A)v et enfin w(x) = 1 puisque vRDn(A)w.

Inversement, si 〈X
˜
,R〉 est une MX n-structure transitive, nous devons montrer que pour

tout α dans En(X˜
) et tout u dans X

˜
l’inégalité

(¤Rα)(u) ≤ (¤R¤Rα)(u)

équivalente à ∧

v∈Ru

α(v) ≤
∧

v∈Ru

(¤α)(v)

est satisfaite. On conclut donc en notant que le deuxième membre de cette inégalité est égal

à
∧
v∈Ru

∧
v′∈Rv α(v′), et en exploitant la transitivité de R. ♦

3.3. Dualité pour les opérateurs d’intérieurs. Un opérateur d’intérieur sur la MV-

algèbre A est un opérateur ¤ qui satisfait aux deux équations ¤¤x = ¤x et ¤x→ x = 1.

De nouveau, nous constatons que ces opérateurs se dualisent de manière classique.

Proposition 3.3. Si ¤ est un opérateur d’intérieur sur la MMVn-algèbre A, alors

RDn(A) est un préordre sur Dn(A).

Inversement, si 〈X
˜
,R〉 est une MX n-structure telle que R est un préordre, alors l’opérateur

¤R est un opérateur d’intérieur sur En(X˜
)
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Preuve. Puisque ¤¤x = ¤x, on sait déjà que RDn(A) est transitif. La réflexivité de RDn(A)

découle quant à elle du fait que ¤x ≤ x pour tout x dans A.

Inversement, si R est un préorde, il est transitif et 〈En(X˜
),¤R〉 satisfait à l’équation ¤x→

¤¤x = 1 sur E(X
˜

). Montrons maintenant que l’équation ¤x→ x = 1 (donc ¤¤x→ ¤x = 1)

est également satisfaite. Comme

(¤Rα)(u) =
∧

v∈Ru

α(v)

et que u ∈ Ru, il est évident que (¤Rα)(u) ≤ α(u) pour tout u dans X
˜

, ce qui suffit. ♦

4. Quelques questions ouvertes

Le présent travail ne doit être vu que comme une introduction à la théorie des MV-

algèbres à opérateurs. Néanmoins, la dualité topologique que nous avons développée pour la

classe MMVn pourrait se révéler être un outil puissant pour une étude plus approfondie de

ces algèbres. Ainsi, les résultats des sections précédentes font place à de multiples questions

concernant la dualité développée et son champs d’application.

Il serait tout d’abord intéressant de déterminer si la condition de saturation R(r
X
m̃) ⊆ r

X
m̃

où R est une relation modale est une condition nécessaire. Si ce n’est pas le cas, les relations

modales qui vérifient cette condition définissent une classe d’opérateurs modaux dont il serait

utile d’obtenir l’axiomatisation.

Par ailleurs, nous avons montré qu’un opérateur modal sur une MV-algèbre A définit un

opérateur d’algèbre de Boole sur B(A). Inversement, il n’est pas vrai que tout opérateur

d’algèbre de Boole sur B(A) s’étend en un opérateur sur A. En effet, cela signifierait que

toute relation booléenne définie sur l’espace topologique sous-jacent à une structure X
˜

de Xn
est une relation modale sur X

˜
(propriété pour laquelle il est très facile d’obtenir un contre-

exemple dans les structures finies). Ainsi, on pourrait essayer de déterminer la classe des

opérateurs sur B(A) qui s’étendent en un opérateur sur A.

Ensuite, nous pourrions tenter de construire les produits et les coproduits dans la catégorie

MX n et déterminer si la dualité développée fait correspondre les produits aux coproduits et

inversement. Ce travail constitue une piste sérieuse pour l’obtention des algèbres libres dans

la classe MMVn, résultat essentiel pour l’étude d’une logique modale multivaluée.
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LMV 1 a ≺ b 10

x→ y 1 N5 10

MV 1 M3 10

B(A) 2 〈X/R; ΓX/R,τ〉 18

[0,1] 2 Quot(X
˜

) 18

Łn 2 〈X/R,Γ〉 ≤ 〈X/S,∆〉 19

Con(A) 3 〈X/R,Γ〉 ∧ 〈X/S,∆〉 19

F(A) 3 〈X/R,Γ〉 ∨ 〈X/S,∆〉 19

div(n) 3 Quot(X
˜

) 20

τi 4 Sub(A) 21

MVn 4 〈X/R,Γ
X/R
min 〉 22

Ł
˜n

4 〈X,∇R〉 23

Xn 4 P(m) 25

X
˜

4 〈X,Γ(x,m/pl)〉 25

r
X
m̃ 4 BMin(X) 25

Dn 5 pgcd(X
˜

) 29

En 5 C 33

eA 5, 6 pgcd(〈X/R,Γ〉,〈X/R′,Γ′〉) 37

εX
˜

5 (K) 38

[x : i
n ] 5 〈A,(fi)i∈I〉 39

χ(B) 5 MVO 39

[x : 0] 5 MMVn 42

s
X
m̃ 7 MMVn(〈A¤A〉,〈B¤B〉) 42

X ′
n 7 R

Dn(A)
¤

42

Fn 7 RD(A) 42

Kn 7 RD(A)(X) 42

D′
n 7 (RD(A))−1(X) 42

E′
n 7 RD(A)(u) 42

Rχ(B) 8 (RD(A))−1(u) 42

MB 9 RX˜ 45

ME 9 ¤R 45

χ′ 9 MX n 48

η 9 D∗
n 49

¤X 9 E∗
n 49
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C de Chang, 33
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conormal, 8, 38
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distance, 2

distributif, 10
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modal, 9

filtre, 2
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maximal, 2
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premier, 3

propre, 2
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de McNaughton, 3
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idempotent, 2

intérieur, 50

longueur
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modulaire, 10

multi-ensemble fini, 36

MV-algèbre, 1
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C de Chang, 33

à opérateurs, 38

ordre sur, 2

archimédienne, 6

modale, 39
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treillis sur, 2
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opérateur

additif, 49

algèbre de Boole à, 8

d’intérieur, 50
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sur une algèbre de Boole, 8
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normal, 41
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quotient, 18

système de ∨-générateurs, 25

topologie
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e
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