

3D MODELLING OF THE BLACK SEA NORTH WESTERN SHELF ECOSYSTEM

Southern European Seas: Assessing and Modelling Ecosystem changes

WP 4 - 6

Université
de Liège

Capet Arthur, Grégoire M., Beckers, JM., Joassin P., Naithani J., Borges A.V., Soetaert K., Vandenbulcke L.

The Model

36 States variables

Monthly RIVERS
fluxes and nutrients flows
(from SESAME
& A. Cociasu)

6h-atmospheric
forcings from ECMWF
(1.125°).
(from ERA40)

Physics (5)

Currents, T°, Salinity,
Surface elevation, Turbulence

Oxygen and Dissolved Inorganic Carbon (2)

Inorganic nutrients (5)

SiO, NO₃, NH₄, PO₄, "Reducers"

3 Phytoplankton (6) (free C/N)

Diatoms, Flagellates, Small Flagellates

Zooplankton (2)

Micro, Meso.

Gelatinous zooplankton(2)

Omnivorous, Carnivorous

Detrital matter (8)

Particulate, Semi-labile and Labile forms
Silicious Detritus, Aggregates

Sediments (5 2D)

Fast and slow decaying
C and S pool, Ncratio

Bacteria(1)

Model's Specificity

- No data assimilation : Necessity to construct specific Bosphorus representation to ensure conservation of volume and total salt content.

- Anoxic waters : The biological model explicitly includes anoxic chemistry through the use of a variable 'Oxygen demanding Units', as a proxy for reducers acting in the anoxic zone.

- Sediments coupling : Due to the importance of sediments dynamics for the shelf area we had to include a parametrisation of sediments taking into accounts deposit history, and bottom concentrations to express remineralisation fluxes.

Validation : Biology-climatic run

Spatio-temporal repartition of point-2-point statistics

Atmospheric and river forcings are averaged on decadal periods in order to construct a **“climatological” seasonal cycles**.

Those climatic runs are run under repetition of those seasonal forcings, in order to study **equilibrium states** in response to some typical environmental conditions.

This allow us to better analyse the interannual runs

Validation of those runs is done by gathering in-situ data from those decades, and comparing each data by its model spatio-temporal equivalent.

Validation: Horizontal

Validation biology : profiles (SHELF)

Outputs :

“inter-climatology” evolution of ecosystem conditions

Oxygen Dynamics

The model allows to analyse different parts of an element's dynamic.

Annual mean of oxygen fluxes, vertically integrated.
Units : mmolO/m²

Interannual Run

Dissolved Oxygen Comparison for the Shelf Area

mmO/m³

Jan85 Apr85 Jul85 Oct85 Jan86 Apr86 Jul86 Oct86 Jan87 Apr87 Jul87 Oct87 Jan88 Apr88 Jul88 Oct88 Jan89 Apr89 Jul89 Oct89 Jan90 Apr90 Jul90 Oct90

Surface Elevation principal modes

mode 1;% of expl. var.: 67.8059, cum.: 67.8059 $\times 10^{-3}$

mode 2;% of expl. var.: 14.9906, cum.: 82.7965

mode 3;% of expl. var.: 4.298, cum.: 87.0945

mode 4;% of expl. var.: 3.0981, cum.: 90.1926

Conclusions

- Once validated (!), 3D models allows to get an usefull insight in detailed dynamics of the ecosystems.
- As 3D complex models generates a big amount of data, climatologic run help to identify relevant indices to analyse interannual run.

The Black Sea, P. Alechinsky

Thanks for patience, attention and for your questions

Validation BIO SFD 6

SED_5

Validation BIO

Validation : Physics

Comparison of SST climatologies from model and satellite

interannual run
85 to 90

Validation : Physics (interannual run 85 to 90)

Comparison of SST modes of interannual variability with satellite

SST 1

mixedlayer

-1

SST 2

ETA

-4

SST 3

ETA

1

SST 4

mixedlayer

-3

Reduction in anoxic water

(OxygenDemanding Unit = $0.5H_2S + 2Mn^{2+} + 4Fe^{2+}$).

Soetaert et al., 1996. A model of early diagenetic processes from the shelf to abyssal depths. *Geochimica et Cosmochimica Acta*.

Validation : Biology-climatic run

Spatio-temporal repartition of point-2-point statistics

Atmospheric and river forcings are averaged on decadal periods in order to construct a **“climatological” seasonal cycles**.

Those climatic runs are run under repetition of those seasonal forcings, in order to study **equilibrium states** in response to some typical environmental conditions.

This allow us to better analyse the interannual runs

Validation of those runs is done by gathering in-situ data from those decades, and comparing each data by its model spatio-temporal equivalent.

Validation BIO

