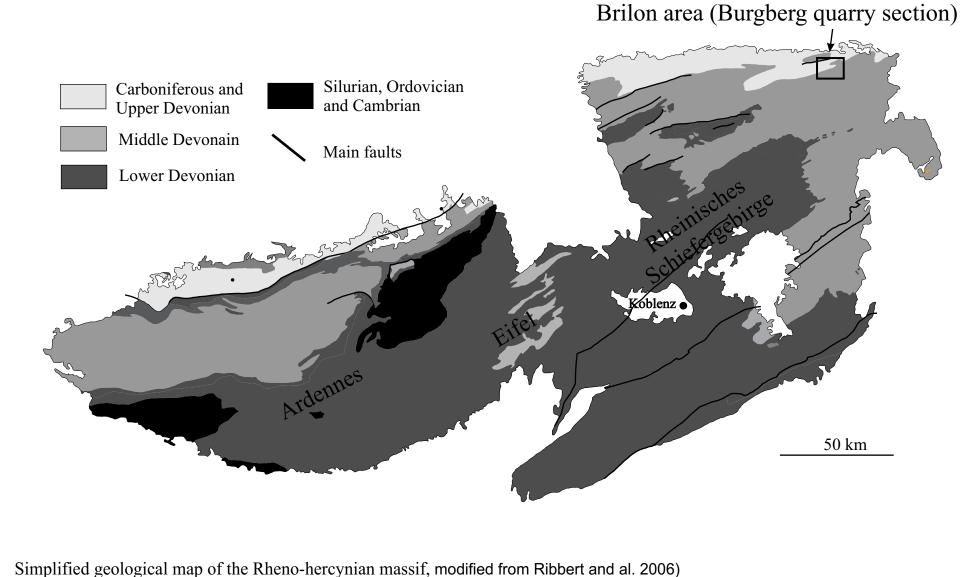
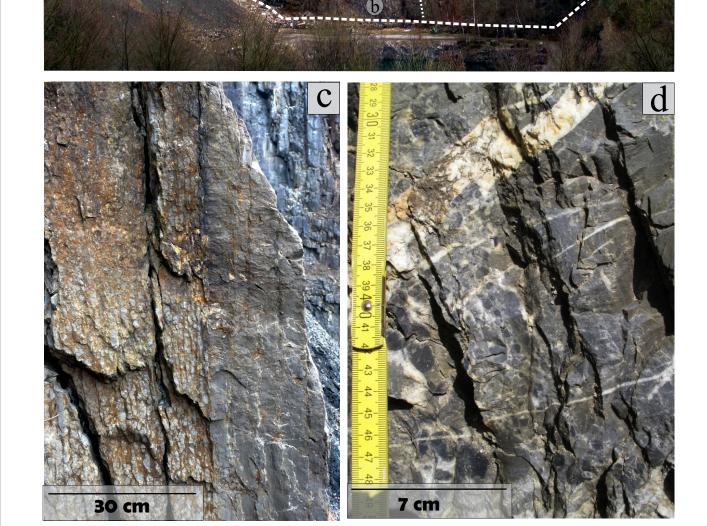

Sedimentary development of a continuous Middle Givetian to Lower Carboniferous section from the fore-reef fringe of the Brilon reef-complex (Rheinisches Schiefergebirge, Germany)


Pas, D. Da Silva, A.C. Cornet, P. Pierre Bultynck Königshof, P Boulvain, F.

'Sedimentary Petrology, B20, Université of Liège (ULg), Sart-Tilman B-4000 Liège, Belgium ²Department of Paleontology, Royal Belgian Institute of Natural Sciences, rue Vautier 29, BE-1000 Brussels, Belgium ³Senckenberg, Forschungsinstitut und Naturmuseum Frankfurt, Senckenberganlage 25, 60325 Frankfurt, Germany


Summary

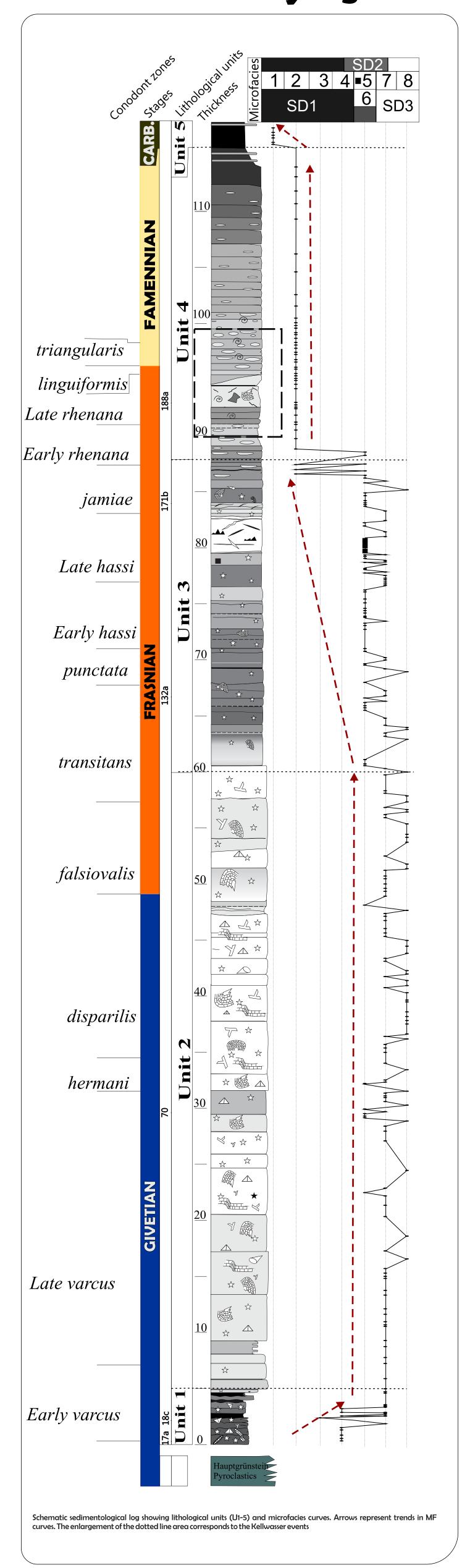
The Brilon-reef complex is one of the biggest Devonian carbonate buildups (~80 km²) of the Rheinisches Schiefergebirge. The Burgberg section is located in the south-eastern fore-reef area of the Brilon reef-complex and exposes a succession of strata (117 m thick) which extend from the Middle Givetian (middle varcus conodont zone) to the Lower Carboniferous. This outstanding outcrop offers the opportunity to investigate the main phases of development, demise and drowning of the Brilon reef-complex from a fore-reef setting. Field and microfacies observations led to the definition of five lithological units (1-5) and nine microfacies which are integrated into a sedimentary model divided into off-reef, intermediate fore-reef and proximal fore-reef sedimentary domains (SD). SD1 is the most distal setting observed and is characterized by fine-grained sediment, dominated by pelagic biota and the local occurrence of gravity flow deposit. SD2 is characterized by a mixture of biota and sediments coming from both deeper-water and shallow-water sources and is influenced by storm and gravity flow currents. In this domain Renalcis mound-like structures could develop locally. Finally, SD3 corresponds to the most proximal setting which is strongly influenced by gravity flow currents derived from the reef and the back reef of the Brilon reef-complex, bringing significant proportion of reef-builder remains. The microfacies stacking pattern through the Middle Givetian to Carboniferous of the Burgberg section indicates five main palaeoenvironmental trends corresponding to the lithological units (U1-5). From the base to the top of the section, these units are: (U1) - initial development of reef building upon submarine volcanoclastic deposits during the Middle Givetian (middle varcus zone); (U2) - the significant seaward growth of the reef from the Middle Givetian to the Early Frasnian, marked by the high increase of reef-derived material to the fore-reef area; the maximum development of the Brilon reef-complex to the south extending from the disparilis to the falsiovalis conodont biozones; (U3) - the stepwise withdrawal of the reef influence from the Middle to the Late Frasnian (jamiae conodont biozone) characterized by a progressive decrease in shallow-water derived materials and increase in fine-grained sediments and deep-water biota; (U4) - demise and drowning of the Brilon reef-complex as a result of the Late Frasnian Kellwasser events (upper rhenana and triangularis conodont biozones) and development of a submarine rise characterized by nodular and cephalopod limestone deposits extending from the Late Frasnian to the Late Famennian; (U5) - significant deepening of the Burgberg area starting in the Late Famennian, marked by pelagic shales overlying the nodular limestone deposits.



The Burgberg section

alternation of thick lenticular-shaped coarse-grained limestone with thin carbonaceous black shale characterizing the base of the section. b channel-like structure within bed number 117. c thin-bedded limestone passing upward to nodular limestone, d zoom on the breccia texture characterizina the microfacies breccia (MFB).

In the centre of the figure: Section 1 of the Burgberg quarry (view from the south) with location of the pictures a-d. a


boundary. b Intercalation of three limestone beds called the "crenistria beds" (Rudiger Stritzke, personal

communication). These beds contain crenistria goniatites typical of the Lower Carboniferous.

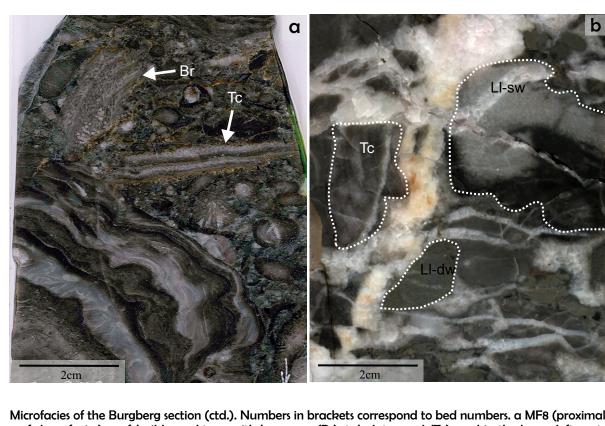
biostratigraphy.

locally important.

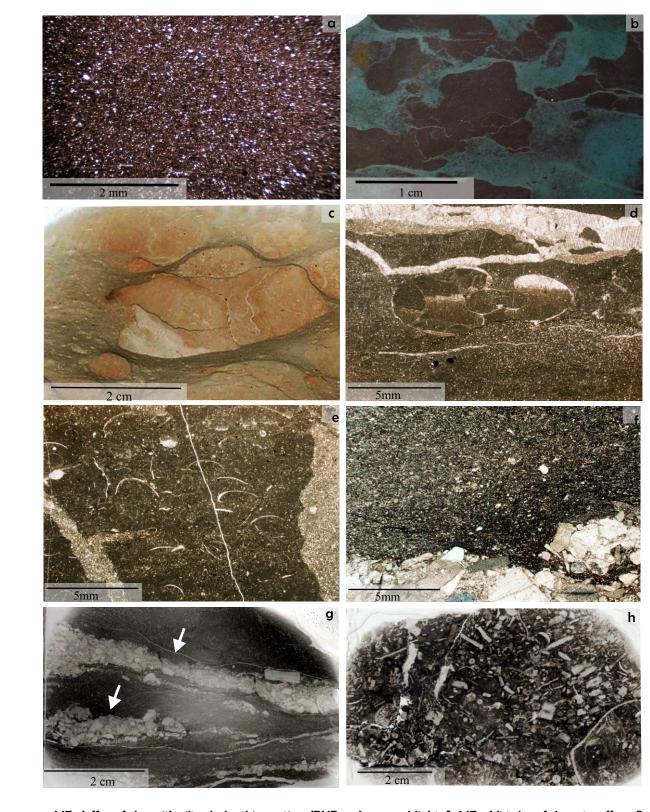
Sedimentary log

Conclusions

✓ The Burgberg section provides an outstanding continuous succession of about 30Ma in a fore-reef facies setting. The stratigraphical framework of the entire section is well-documented by conodont

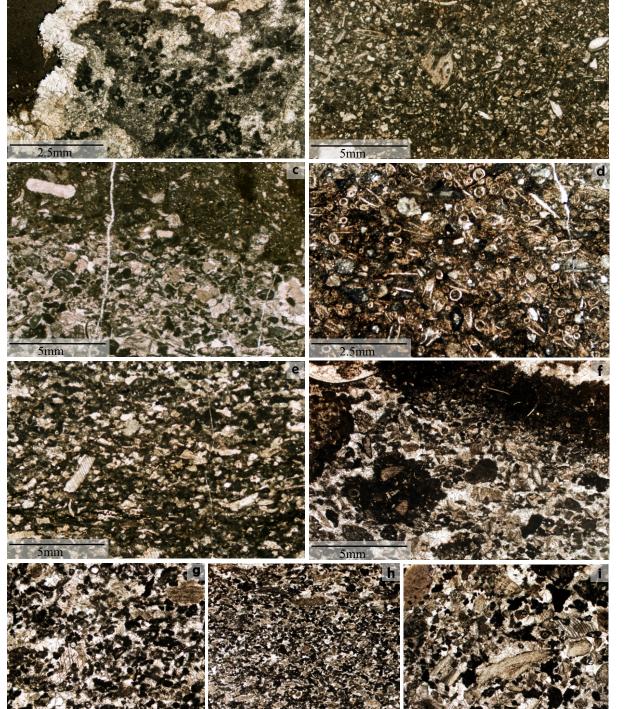

✓ The main sedimentary processes playing a role in the Burgberg section are gravity flows (turbidite, debris and grain flows) and pelagic sedimentation (settling). Reworking by storms and bioturbation are

varcus conodont biozone, (2) the establishment of the reef structure lasting from Middle Givetian to Early Frasnian with a culmination recorded from the disparilis to falsiovalis conodont biozones, (3) the

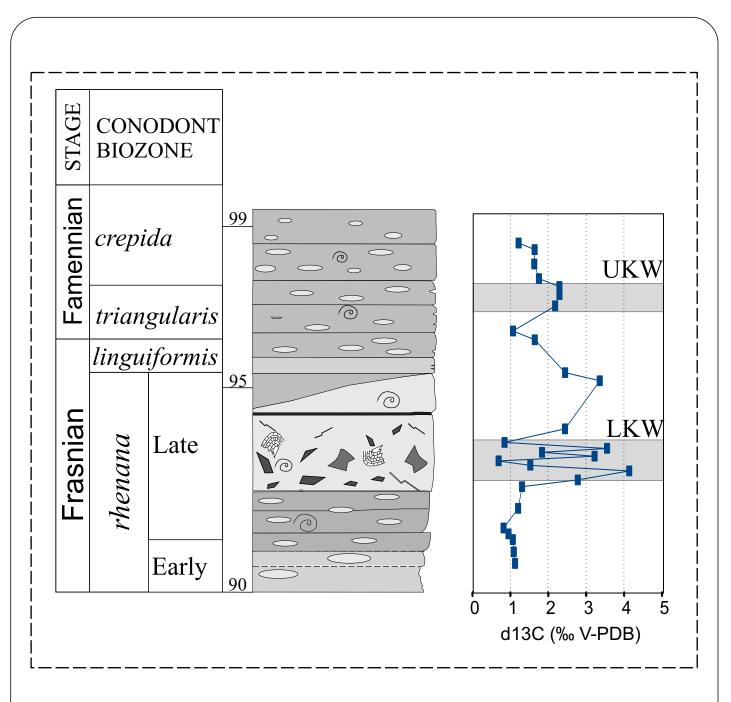

✓ Based on detailed microfacies studies the reef development of the Brilon reef can be reconstructed. The major evolutionary phases are (1) initial development of the Brilon reef which started within the middle

✓ The section ranges from the middle varcus conodont biozone to the Early Carboniferous and contains the global Kellwasser events as shown by biostratigraphical and carbon-isotope results.

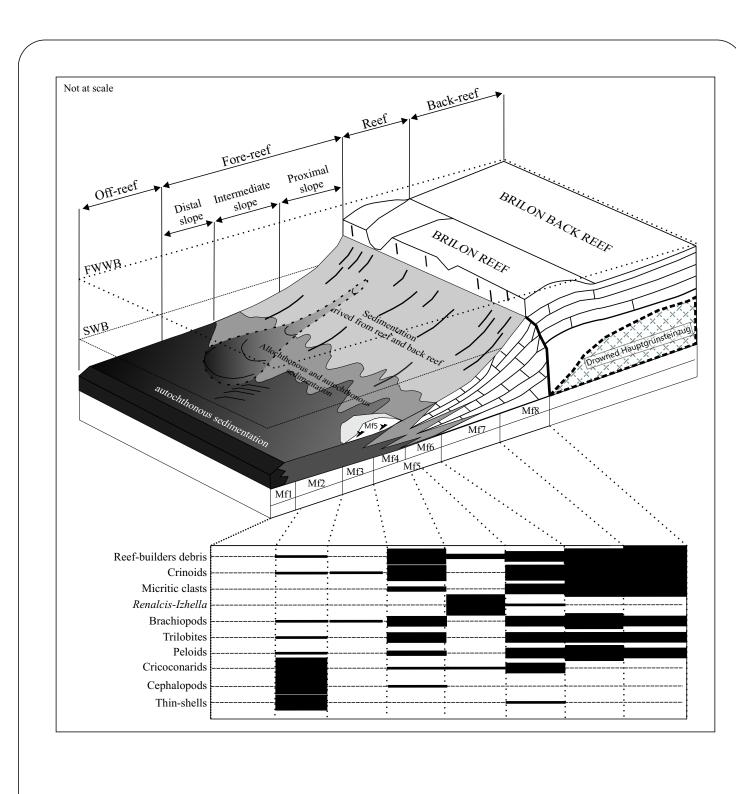
Microfacies



reef-slope facies): reef-builder rudstone with bryozoan (Br), tabulate coral (Tc), and in the lower-left part, multiple encrustations of stromatoporoids and bryozoans, scanned thin-section (BUR 112a), normal light, b MFB


a MF1 (off-reef deposit): silty shale, thin-section (BUR 212), normal light. b MF2 (distal reef slope to off-reef): microbioclastic mudstone-wackestone showing remarkable nodular/mottled fabric highlighted by the dickson staining, scanned thin-section (BUR 196b), normal light. € MF2 (distal reef slope to off-reef deposit): Nodular texture, scanned thin-section (BUR 183b). d MF2 (distal reef slope to off-reef deposit): fine-grained mudstone with a goniatite shell, thin-section (BUR 192a). e MF2 (distal reef slope to off-reef deposit): microbioclastic mudstone with juvenile shells of pelagic bivalves, thin-section (BUR197a), normal light. ¶ MF3 (distal reef-slope to off-reef deposit): carbonaceous microbioclastic wackestone to packstone overlying coarse-grained crinoidal packstone of MF4, thin-section (BUR 18d), normal light. 9 MF3 (distal reef-slope to off-reef deposit): microbioclastic wackestone to packstone showing intercalation of coarse-grained bioclastic packstone of MF4, scanned thin-section (BUR 18d), normal light. In MF4 (distal reef-slope to off-reef deposit): coarse unsorted crinoidal packstone with

brachiopod shells, thin-section (BUR 17d), normal light.


structure with micritic matrix, thin-section (BUR 166b), normal light. b MF5 (intermediate reef-slope): finegrained crinoidal packstone with some cricoconarid shells, thin-section (BUR 146), normal light. € MF6 (intermediate reef-slope): transition between MF6 (fine-grained crinoidal packstone) and MF7 (bioclastic grainstone), thin-section (BUR 122), normal light. d MF6 (intermediate reef-slope): styliolinids packstone, thinsection (BUR 132a), normal light. e MF6 (intermediate reef-slope): crinoid debris within a micritic matrix, thinsection (BUR 57), normal-light. • MF7 (proximal reef-slope deposit): bioclastic to lithoclastic grainstone with lithoclasts of MF6 facies, thin-section (BUR 131), normal light. g MF7 (proximal reef-slope): fine-grained peloidal grainstone, thin-section (BUR 36), normal light. h MF7 (proximal reef-slope): fine-grained lithic peloidal grainstone with crinoids, thin-section (BUR 128). i MF7 (proximal reef-slope) coarse-grained grainstone, thinsection (BUR 97c), normal light.

The Kellwasser events

The Kellwasser events have been recognized in the upper part of the Burgberg section beneath and The biostratigraphic position of this breccia level in the late rhenana conodont biozone as well as the major positive excursion in δ^{13} C corresponding to this level (amplitude of +4.14% and +3.56%; Fig. 6b), correspond to the Lower Kellwasser Event (LKW) displaying similar positive δ^{13} C excursions described in other European sections (Buggisch and Joachimski 2006). The Upper Kellwasser Event is also present in the section (Fig. 6b). The 6°C excursions are usually associated with black shale levels and are interpreted to correspond to deepening events, although, our breccia level with high $\delta^{\text{\tiny{13}}}$ C values, is likely to be related to a shallowing event. This breccia level could thus correspond to the strong sea-level fall occurring worldwide (Johnson et al. 1985; Wendt and Belka 1991; Chen et al. 2002; Bond et al. 2008) after the Lower Kellwasser Event in the Late Frasnian, which generated exposure and collapse of shallow platform settings. The high values of δ^{13} C recorded in the breccia level suggest a reworking of the

Palaeoenvironmental model

Petrographic analyses from the Burgberg section led to the definition of 9 microfacies representing a forereef to off-reef palaeoenvironmental setting (Fig. 10). In this model, three sedimentary domains (SD) are defined. SD1 corresponds to the most distal setting observed and is characterized by off-reef to distal reefslope sedimentation temporarily influenced by storm and gravity flow deposits (MF1 to 4). MF1 and MF2 were located in the most distal setting while MF3 and MF4 are associated with a slightly more proximal, oxygen depleted environment. In the intermediate reef-slope setting (SD2), sediments are composed of a mixture of deeper-water autochthonous and shallow-water allochthonous debris (MF6). In this setting, Renalcis mound-like structures could develop locally (MF5). In the upper reef-slope setting the most proximal facies of the succession are observed (MF7-8, SD3). These facies are strongly influenced by gravity currents derived from the marginal reef area of the Brilon reef-complex containing a significant amount of reef-builder debris.

Acknowledgments

Financial support for this project from the sedimentary laboratory of the University of Liège is gratefully acknowledged. The authors would like to thank Philippe Claeys and David De Vleeschouwer (Earth System Sciences, Vrije Universiteit Brussel) for the instrumental help provided for the stable isotope measurements. Many thanks to Rüdiger Stritzke for all the

References

information and comments provided for conodonts investigation.

- Bond D, Wignall PB, Racki G (2004) Extent and duration of marine anoxia during the Frasnian-Famennian (Late Devonian) mass extinction in Poland, Germany, Austria and France. Geological Magazine 141 (2):173-193
- Buggisch W, Joachimski MM (2006) Carbon isotope stratigraphy of the Devonian of central and Southern Europe. Palaeogeog Palaeoclimatol Palaeoecol 240:68-88 Chen D, Tuker M, Shen Y, Yans J, Preat A (2002) Carbon isotope excursions and sea-level change: implications for the Frasnian-Famennian biotic crisis. J Geol Soc London 159 (6):623-626
- Ribbert K-H, Skupin K, Oesterreich B (2006) Geologishe Karten von Preussen und benachbarten Gebeiten, von Nordhein-Westfalen, 1:25000. Blatt Madfeld (4518) Wendt J, Belka Z (1991) Age and depositional environment of upper devonian (early Frasnian to early famennian) black shales and limestones (Kellwasser facies) in the eastern Anti-Atlas, Morocco.

stepwise withdrawal of the reef development from the Middle to the Late Frasnian, (4) the end of the reef development as a result of the global Kellwasser events, and finally (5) significant deepening of the Burgberg area starting at the Late Famennian, characterized by pelagic shale sedimentation overlying the nodular limestone deposits.

 \checkmark The continuous sequence the Burgberg section represents an important contribution to Mid-Paleozoic reef deposits.

- Johnson JG, Klapper G, Sandberg CA (1985) Devonian eustatic fluctuations in Euramerica. Geol Soc Am Bulletin 96:567-587
- Zigler AP (1982) Geological Atlas of Western and Central Europe. Shell, Den Haag, the Netherlands