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ABSTRACT

Multi-core CPUs, along with recent advances in memory
and buses, render commodity hardware a strong candidate
for building f exible and high-performance software routers.
With a forwarding plane physically composed of many packet
processing components and operations, resource allocation
in multi-core systems is not trivial. Indeed, packets crossing
cache hierarchies degrade forwarding performance, since the
bottleneck is main memory access. Therefore, forwarding
path allocation and input/output processing become chal-
lenging, especially when states and data structures have to
be shared among multiple cores. In this context, we investi-
gate a set of input/output processing architectures, as well as
resource allocation strategies for forwarding paths. For each
packet processing operation, we uncover the gains and possi-
ble implications by either running different components con-
currently or replicating the same components across differ-
ent cores. !

1. INTRODUCTION

Recent research has shown that modern PCs can perform
as well as high-performance routers [1, 2]. With multiple,
general-purpose multi-core CPUs and high speed intercon-
nects, inexpensive mid-range server machines can sustain
aggregate packet rates in the region of 10 Mp/s (millions of
packets per second) for minimum-sized packets (64 bytes),
while sustaining line rate on multiple 10Gbps interfaces for
longer packets (1,500 bytes). Although PCs are never going
to challenge high-end hardware forwarding for raw perfor-
mance, their low price and programmability make them a
very attractive platform for many edge-networking tasks.

Previous work [1] has also shown that the main perfor-
mance bottleneck of such servers was memory access, through
a combination of memory latency and memory/front-side
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bus overload. Modern server CPUs have a Non-Uniform
Memory Architecture (NUMA) with one memory controller
per CPU. This can reduce the problem somewhat, but the
number of cores per CPU continues to increase and memory
latency issues persist as the principal performance-limiting
factor for software routers.

To get high performance from software routers it is cru-
cial to reduce memory accesses to a minimum. In commod-
ity PCs this can be accomplished by making sure that pack-
ets, as well as most of the data structures needed to process
them, stay in cache memory as they travel from an input to
an output interface. This makes a cache hierarchy, the set
of multi-level caches present in a CPU, the basic hardware
unit of consideration when implementing software routers.
Since f exible software routers often depend on a set of inter-
connected packet processing elements, the challenge is then
to decide how to map these elements to a general-purpose,
multi-core CPU architecture so that we reduce memory ac-
cesses while maximizing the use of the resources available.

The advent of hardware multi-queuing on NICs provides
a building block. By allowing several CPU cores to concur-
rently access the same physical network interface, this tech-
nology can allow these cores to work independently from
each other, and thus process packets in parallel. However,
sometimes coordination is required between queues to im-
plement a desired behavior such as packet scheduling or band-
width regulation that is not supported by the NIC. Distributed
software output processing, requiring access to shared data,
is then necessary between cores. The corresponding syn-
chronization primitives and shared data needed impact per-
formance, especially if these are accessed from different cache
hierarchies.

In this paper we investigate how to map packet forward-
ing pipelines onto cores, making use of multi-queuing NICs
and maximizing the effectiveness of the cache hierarchy. We
show that the simple, obvious ways to use multi-queuing
limits performance, and we investigate more effective ways
to lay out the forwarding path across cores.

2. RELATED WORK

The past few years have seen many efforts towards build-
ing PC-based software routers. In [3] the authors propose
an architecture exploiting multi-core and hardware multi-



queuing to some extent, but they do not support coordinated
output processing nor do they investigate splitting or repli-
cation of forwarding path across cores, as we do.

Authors in [4] off oad output processing from the CPU
to a NetFPGA network card. In particular, they enable net-
work I/O fairness across virtual machines (VM) by apply-
ing independent, per-VM rate limiters in hardware. While
rate-limiting is useful, networks cards are unlikely to sup-
port a wide range of advanced scheduling policies in hard-
ware. Handling these in software requires synchronization
mechanisms, and our work investigates the performance im-
pact of doing such coordinated output processing.

RouteBricks [2] explores the scaling of software routers
by enabling parallelism across multiple servers. This com-
plements our work, since our approach can be used with
RouteBricks to scale router capacity by adding more servers.

PacketShader [5] uses GPUs to improve the performance
of a software router. GPUs are particularly good at per-
forming computational and memory-intensive tasks. Con-
sequently, workloads like IPSec (computationally-intensive)
or running an Openf ow switch (memory-intensive for large
numbers of Openf ow entries) are particularly suited to Pack-
etShader, while tasks that ft in the CPU cache, such as IP
forwarding, show small or negligible improvement compared
to the CPU-only case. Further, GPUs have the additional
cost of having to copy data to the GPU memory and back.
In contrast, CPUs are good at handling conditional branches
and more complex data structures, so we expect that imple-
menting processing like that of an IDS would produce better
results on a CPU than on a GPU. All in all, both our approach
and the one in PacketShader lessen the memory access per-
formance bottleneck, and we expect any high-performance,
PC-based architecture to use a combination of these depend-
ing on the type of work load.

3. PLATFORM

To measure performance we need to choose a software ar-
chitecture and hardware platform. For hardware, we use an
Intel Nehalem-based system. This is a typical modern multi-
core system, with two Nehalem CPUs (see f gure 1). These
are 2.8GHz Xeon 5560, quad-core CPUs, with each core
having 32KB L1 instruction and data caches and a 256KB
L2 cache. In addition, each processor has an 8MB L3 cache
shared among all of its cores. Comparable AMD Opteron
systems have a very similar architecture, so our results should
apply for most current x86 server-class machines.

Our system has two dual-port 10Gb/s Ethernet PCI-express
cards (model 82598EB). These cards support hardware multi-
queuing, effectively splitting the card into a set of interfaces
(64 for receiving and 32 for transmitting). They also sup-
port Receiver Side Scaling (RSS), which uses a crude hash
on packet reception to load-balance packet f ows across the
set of available hardware queues. Although smarter cards
are available (for example, some have programmable CAMs
that can map specif ¢ f ows to specif ¢ queues), for the results
in this paper the difference is not important.
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Figure 1: System architecture with two Intel Nehalem
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Software Architecture

We use Click [6] in kernel-mode on a Linux 2.6.24.7 system,
to perform packet processing, since it provides not only a
f exible platform but also yields high performance [1].

Click conf gurations consist of a set of modules (known
as elements) connected in a data-f ow style graph. Elements
provide packet processing functions, for instance queuing or
IP table look-ups. We call a forwarding path the set of Click
elements that any packet traverses from input to output. Es-
sentially a forwarding path consists of chains of pipelined el-
ements, and these chains can be scheduled to run on different
kernel threads on specif ¢ cores, giving the parallelism and
core aff nity we need to evaluate performance constraints.
Click provides a separate scheduler for each Click kernel
thread, which schedules execution of the schedulable chains
of elements assigned to the thread. We call such a schedula-
ble chain of elements a task. A forwarding path is instanti-
ated as a set of tasks interconnected by Click queues.

We assign a single Click kernel thread to each CPU core
to avoid interference with the Linux scheduler scheduling
the threads [7], and then assign the various Click tasks under
consideration to these threads as needed. We use Click in
polling mode, and all the experiments in this paper use 64
byte packets, as large packets tend to saturate the NICs and
mask the differences between solutions.

An important question is whether we can claim generality
from our results: would they apply if a different software
architecture were used? Essentially this is asking whether
the use of Click is artif cially limiting performance, so that a
different architecture would not suffer the same limitation.

We found one case where this was true, and address it in
Section 5.3. In all other cases we show that the dominat-
ing effects are due to memory accesses, and this appears to
be fundamental; any forwarding path architecture perform-
ing the same task will need similar memory accesses, so the
question then becomes how to map packet processing func-
tionality to cores, irrespective of what software architecture
is used to perform this mapping.

4. FORWARDING PATH ALLOCATION
Sharing packet forwarding between multiple CPU cores

allows us to forward more packets or to increase the amount

of processing done per packet. There are essentially two
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Figure 2: Computation-intensive allocation scenarios

ways to allocate forwarding functionality to cores:

1. Split the forwarding path into several tasks (connected
by queues) each assigned to a different CPU core.

2. Split the traff ¢ (using hardware multi-queues) between
multiple parallel forwarding paths, each running on its
own core.

To examine task distribution, we consider a computation-
intensive IPSec scenario. We instantiate the IPSec forward-

ing path on four CPU cores in different ways shown in Fig. 22.

These three scenarios give throughputs of approximately
1.1,0.9 and 1.6 Mpps respectively. Even for a CPU-intensive
task, we can see that having a packet switch cores results in
a signif cant performance penalty. Splitting the forwarding
path horizontally is also very prone to a few cores becom-
ing a bottleneck if the split cannot be uniformly distributed
across the cores (E.g. Fig. 2b). Such a pipeline bottleneck
causes the other cores of the pipeline to stall, wasting pre-
cious computing power. It is rarely easy to balance a single
pipeline across several cores.

We get similar results with pure IP forwarding: having a
packet switch cores should be avoided. For the rest of this
paper we treat this as given, and examine the remaining is-
sues to be addressed to get good performance while keeping
a packet on a single core.

S. INPUT PROCESSING

The very frst element of any Click forwarding path is re-
sponsible for fetching packets from a NIC and is called a
PollDevice (PD).

Until recently, the input processing architecture was rather
straightforward: there was a strict one-to-one association
between an interface and a PD. However, with the advent

2These graphs have been simplif ed to ease the presentation by re-
moving low-impact elements.
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Figure 3: A simple software router strategy for input
processing (four forwarding paths shown).

of hardware multi-queuing, new possibilities have emerged
which we explore below.

5.1 Simple Input Approach

Figure 3 shows the original input architecture used by
a default Click conf guration. On a multi-core system, to
increase aggregate input bandwidth each interface can be
“bound” to a specif ¢ core by assigning the corresponding
PD to the Click thread with aff nity to that core. Without
hardware multi-queuing, it is hard to use multiple cores in
parallel to handle the input task for an interface because this
would result in unacceptable packet re-ordering.

This simple approach has two consequences from a per-
formance point-of-view. First, the maximum processing power
that can be dedicated to processing an input in a software
router is one core. Indeed, using a single core to fetch 64
byte packets from a 10 GbE interface we obtained 6.97Mpps.
This is only 49% of the nominal bandwidth. Performing ad-
ditional per-packet processing on the core beyond this fetch
operation will reduce performance further.

A further downside of this approach arises when traff ¢
load on different interfaces is unequal. In this common case
some input tasks will be idling, polling empty queues and
wasting cycles on the associated cores.

5.2 A More Flexible Approach

To resolve these issues, we use hardware multi-queuing
on modern NICs. This splits an interface into multiple “sub-
interfaces”, each consisting of a hardware queue mapped
into the OS as its own device that can be “bound” to a CPU
core. Combined with Receiver-Side Scaling (RSS) to load
balance incoming f ows onto these queues within the NIC,
this allows more f exible input processing allocation.

Using multi-queuing, we can recycle unused input pro-
cessing power by automatically reassigning it to busier inter-
faces. To do so, we bind a set of interfaces to a set of cores
as illustrated in Fig. 4. Each physical interface is split into
as many hardware queues as there are cores bound to the set
of interfaces. To poll these queues, each core runs one input
task per sub-interface. Each core then fetches packets from
all the interfaces in turn, simply “skipping” an empty queue.
As RSS hashes on a per-f ow basis, the problem of packet
reordering within f ows is eliminated.

We tested this scenario with small packets and “discard-
ing” PDs, and measured a rate of 6.25Mpps per interface
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Figure 4: A strategy using hardware multi-queuing.

when all the interfaces were fully loaded using 4 cores and 4
NICs. This is actually a reduction in the per-core forwarding
performance compared to the naive approach in section 5.1.

That there is no benef't is not surprising, as the aim of
this approach is to allow automatic redirection of unused in-
put processing cycles amongst a set of interfaces: because
each core polls several interfaces it is less likely to run out of
data to feed its forwarding paths. In the experiment above,
there are no underloaded interfaces, hence no beneft. In-
deed, we also observed that 3 cores could achieve a line rate
of 10Gbps with 64 byte packets on a single interface using 3
hardware queues.

5.3 Reducing Context Switch Costs

The input architecture above suffers from a subtle perfor-
mance issue. Each core hosts several input tasks; when these
get scheduled on an empty hardware queue, they not only
waste CPU cycles while checking the queue, but they also
incur a Click context switch in exchange for no useful work.
This is not fundamental, but is purely related to the default
Click model of mapping one poll device to each interface.
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Figure 5: Replacing multiple PollDevices elements with
a single MultiplePolldevice element.

To amortize the overhead of accessing ring buffers on the
NIC, a Click PD reads a burst of packets, necessary for high
performance. However, in the Fig. 4 conf guration, should
any hardware queue have fewer packets than the allowed

burst, the corresponding PD is limited to the number of pack-
ets in that queue. This sharing reduces eff ciency, as the
polling overhead is then “paid” for fewer packets.

To mitigate these effects, a number of hardware queues
can be assigned to a single element (Fig. 5). This reduces
the likelihood that an element will process no packets, since
it has more queues to try to poll packets from. Where a
polled queue has fewer packets than the burst limit, the el-
ement can then poll the next queue to make up the burst.
Polling several queues in succession does incur several times
the overhead related to accessing the hardware, but these are
incurred within a single element context switch, thus reduc-
ing the overall cost. In practice, when fully loaded, the input
queues build to a reasonable size anyway.

L Mt

364
324

30
28 4 = 2 s
244
20 4 20
164
124
-
2 4 8 16

32 Batching value

2
3

s o

Figure 6: Improvement with four interfaces polled by
each core

To quantify these effects, we implemented an extended
PollDevice element that polls multiple hardware queues on
different NICs within a single scheduling cycle. Figure 6
shows the increase in packet rate of the conf guration with
the extended PD element polling 4 queues on 4 separate in-
terfaces (1 queue per interface), as in Fig. 5, compared to
the conf guration in Fig. 4. This approach performs between
20% and 30% better, depending on the batching value for
this four interface scenario. With more interfaces we would
expect to have an even bigger improvement, as both the re-
duction in schedulable elements and context-switches per
packet would be reduced. Finally we can extract the per-
formance the underlying hardware is capable of.

6. OUTPUT PROCESSING

The schedulable element of a Click output task is called a
ToDevice (TD). This is usually the last element of a forward-
ing path and its basic job is to transmit packets to an output
interface. The performance of a multi-core router depends
critically on how the cores divide up this task.

6.1 Output Processing Architectures

Before the era of hardware multi-queuing, there were two
basic ways to do output processing. The simplest (Fig. 7(a))
uses one TD to handle an interface. Typically a round-robin
scheduler multiplexes the various Click queues associated
with the TD onto it. In a typical router, these queues will
come from different incoming interfaces. While simple, this
output architecture requires that packets often switch cores
at least once to reach the TD, since the corresponding PDs
may be assigned to different cores.
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Figure 7: Uncoordinated output processing

Several TDs can also share an output interface, as shown
in Fig. 7(b). This approach avoids the need for packets to
switch cores, and also allows the processing power dedicated
to an interface to be increased by allocating several cores to
it. However, it also requires low level locking to coordinate
access to the interface hardware from several elements.

Finally, with the advent of hardware multi-queuing, sev-
eral cores can access one output interface without the need
for software locking by binding each corresponding TD to

one of the interface’s multiple hardware output queues (Fig. 7(c)).

To compare these alternatives, we ran an experiment with
increasing numbers of simple forwarding paths containing
just an input task, an output task, and a Click queue connect-
ing the two. For the scenario in Fig. 7(a), the single output
task, shared by all FPs, is assigned to a core on CPUI. The
input tasks are allocated to free cores, starting with those on
CPUI. For the other two scenarios, the full simple FPs are
allocated to single cores, again populating CPU1 frst.

The aggregated throughput is shown in Fig. 8. Clearly
a single TD per output port yields the worst performance.
This is to be expected: since a single output task is servicing
all FPs, the core handling the task cannot keep up and so
this scenario is CPU-limited. When only one FP is used,
however, we see that this conf guration still performs slightly
worse than the two others. This is caused by the packets

switching cores, albeit through the shared L3 cache.

In the second scenario (Fig. 7(b)) aggregate performance
decreases signif cantly when the f fth FP is added. This is
because, up until that point, the lock used for synchroniza-
tion was only accessed from CPUO, and thus its value stayed
fresh in the L3 cache of that CPU. But with the addition of
the ffth FP, FPs are now running on both CPUs, and this
causes the cached value of the lock to be invalidated when-
ever a TD on the other CPU changes its value, forcing main
memory accesses and slowing all FPs down.

From these results, it is clear that hardware multi-queuing
affords vastly superior performance for output processing
by enabling a true parallel output architecture. However, it
should be noted that once a packet has been placed in a hard-
ware queue on an interface, the card’s hardware will trans-
mit it on the link using the NIC’s internal policy (e.g., simple
round-robin across the hardware queues). Once the packet is
in the interface buffer, it is out of the control of the software
router. While this might be perfectly f ne sometimes, there
are cases where a software router requires more advanced
traff ¢ control at the output; we study the implications of this

in the next section.
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Figure 8: Performance of basic output processing

6.2 Coordinated Output Processing

As we have seen, hardware multi-queuing is great at sup-
porting FP parallelization. However, if the NIC does not
support features such as traff ¢ management (e.g., bandwidth
regulation) or advanced scheduling policies (e.g., weighted
fair queuing), these must be handled in software, requir-
ing software synchronization mechanisms (e.g., locks) even
when HW multi-queue is used (see Fig. 9).

To assess the impact of such extra mechanisms, we im-
plemented an interface access control mechanism based on
a simple token bucket element. The bucket has a depth equal
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Figure 9: Coordinated output processing (1 TD per core)



to the greatest burst allowed through an interface, and f'lls at
a rate equal to the long term average throughput allowed.
The token bucket element is designed to be inserted in out-
put tasks in-between the Click queue and the TD. These ele-
ments must acquire a lock to access the shared data structure
that represents the state of the bucket. We examined two
strategies for acquiring tokens from the bucket: one token at
a time (“1-token”) or multiple tokens. In the latter case, the
number of tokens acquired is equal to the minimum of the
number of tokens in the bucket and the number of packets
waiting in the Click queue (“min(N,Q)”). In both strategies,
TDs send a packet for each acquired token after releasing
the lock.

For our experiments we set the depth of the token bucket
to 100 and the flling rate to 20 Mpps (just over line rate);
the results are shown in Fig. 10. First, we observe that in
both cases the aggregate throughput achieved is lower than
that achieved in the scenario of Fig. 7(c) where access to
the hardware queues was uncoordinated; this is caused by
the use of a locking primitive. However, both token bucket
scenarios achieve better performance than the scenario of
Fig. 7(b) that also uses locks for synchronization.

In the 1-token scenario, each output task must acquire the
lock before sending each packet, just as in scenario 7(b). It
might therefore seem strange that the 1-token scenario per-
forms signif cantly better. The reason for this is that, in
all token bucket cases, all packets are sent outside of the
lock, and as the output tasks are bound to different hardware
queues on the interface, more parallelism is achieved than in
the case of 7(b) where the lock imposes strict serial access
to the NIC.

Finally, the reason why the min(N,Q) scenarios perform
better than the 1-token when there are up to 3 FPs is because
the lock is kept in CPU1’s cache hierarchy at all times and
because lock contention is reduced by the fact that TDs ac-
quire multiple tokens at once, while still exploiting the paral-
lelism afforded by hardware multi-queuing. However, with
FPs on both CPUs, the performance is limited by cache in-
validation on the lock.

While locks clearly have their costs, other experiments
(not presented here due to space constraints) show that it is
cheaper to use a lock than to split forwarding paths across
CPU cores. In all cases, we see that locking on a lock that
stays fresh in the local cache at all times is much cheaper
than locking across cache hierarchies.

7. CONCLUSION

To fully exploit the substantial computational capacity of
recent multi-core server architectures for software routers,
a suitable forwarding architecture is needed that is capable
of high-speed packet forwarding. We have shown the crucial
role hardware multi-queueing plays in enabling high degrees
of parallelism, fexibility and performance. However, we
have also demonstrated that hardware multi-queueing does
not completely eliminate the need for task synchronization
in software routers, especially in the case where coordinated
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Figure 10: Performance w/ coordinated output process-
ing

output processing amongst the hardware queues is required.

Replication of full forwarding paths on several CPU cores
usually offers the best allocation strategy, primarily because
it is better at using spare CPU cycles through higher paral-
lelization. Nevertheless, when the forwarding paths are nu-
merous and complex, hybrid solutions using lower levels of
parallelization may be preferable. This points to the need
for identifying metrics to quantify the computing and per-
formance requirement of forwarding paths to use in more
fexible allocation schemes. Our work also conf rms that the
prime hardware unit to consider for all data touched by for-
warding paths (including system features such as locks) is
the cache hierarchy.

Finally, we note that commodity-hardware architectures
have evolved at a very high pace recently, and we believe this
will continue for some time ahead. In the future, NICs could
become integrated with CPUs, adding a new dimension to
the already complex problem of forwarding path allocation
and aff nity. We hope the work presented in this paper gives
important directions towards building high-performance soft-
ware router platforms.
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