
Electronic Communications of the EASST
Volume 17 (2009)

Workshops der
Wissenschaftlichen Konferenz

Kommunikation in Verteilten Systemen 2009
(WowKiVS 2009)

Flowstream Architectures

Adam Greenhalgh, Mark Handley, Mickaël Hoerdt, Felipe Huici, Laurent Mathy and Panagiotis
Papadimitriou

5 pages

Guest Editors: M. Wagner, D. Hogrefe, K. Geihs, K. David
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

Flowstream Architectures

Adam Greenhalgh1, Mark Handley 2, Mickaël Hoerdt3, Felipe Huici4, Laurent
Mathy5 and Panagiotis Papadimitriou6

3 m.hoerdt@lancaster.ac.uk5 l.mathy@lancaster.ac.uk6 p.papadimitriou@lancaster.ac.uk
Computing Dept., Lancaster University, UK

1 a.greenhalgh@cs.ucl.ac.uk2 m.handley@cs.ucl.ac.uk
Dept. of Computer Science, University College London, UK

4 felipe.huici@nw.neclab.eu
NEC Europe, Heidelberg, Germany

Abstract: The Internet has seen a proliferation of specialized middlebox devices
that carry out crucial network functionality such as load balancing, packet inspec-
tion or intrusion detection, amongst others. Traditionally, high performance network
devices have been built on custom multi-core, specialized memory hierarchies, ar-
chitectures which are well suited to packet processing. Recently, commodity PC
hardware has experienced a move to multiple multi-core chips, as well as the rou-
tine inclusion of multiple memory hierarchies in the so-called NUMA architectures.
While a PC architecture is obviously not specifically targeted to network applica-
tions, it nevertheless provides high performance cheaply.Furthermore, a few com-
modity switch technologies have recently emerged offeringthe possibility to control
the switching of flows in a rather fine grained manner. Put together, these new tech-
nologies offer a new network commodity platform enabling new flow processing
and forwarding at an unprecedented flexibility and low cost.

Keywords: virtualization, router, platform architecture, commodity hardware

1 Introduction

The Internet has seen a proliferation of specialized middlebox devices that carry out crucial
network functionality such as load balancing, packet inspection or intrusion detection, amongst
others. At the same time, we experience a trend towards the commoditization of hardware, which
allows for cheap and extremely capable switching and processing components (e.g., multi-core
chips). A few commodity switch technologies have recently emerged offering the possibility
to control the switching of flows in a rather fine grained manner [1]. Put together, these new
technologies render commodity hardware a viable platform for flow processing and forwarding
at an unprecedented flexibility and low cost. In this context, we propose a generic network
control, forwarding and flow processing platform built fromcommodity switch hardware and
a small cluster of servers. Such a platform is inexpensive, very flexible, scalable, and failure
tolerant.

1 / 5 Volume 17 (2009)

mailto:m.hoerdt@lancaster.ac.uk
mailto:l.mathy@lancaster.ac.uk
mailto:p.papadimitriou@lancaster.ac.uk
mailto:a.greenhalgh@cs.ucl.ac.uk
mailto:m.handley@cs.ucl.ac.uk
mailto:felipe.huici@nw.neclab.eu


Flowstream Architectures

2 Flowstream Architectures

We call such platforms “Flowstream Architectures”, for reasons that should be clear shortly.
Platforms built according to the Flowstream architecture can be characterized by the following
properties:

• The core of the platform consists of an ethernet switch configured to route flows. A flow
is defined in the OpenFlow sense, as packets that match a (possibly wildcarded) tuple of
source and destination addresses and ports.

• Streams of data from these flows are then routed to one of a number of attached commodity
server boxes for additional processing, before being forwarded on to the final destination.
The server boxes can also act as traffic sinks.

• Software running on the server boxes can be composed to provide processing pipelines of
modules.

• These modules are virtualized, in the sense that they can be moved between the servers to
balance load and provide robust service in the presence of failures.

• The switch and servers are managed as a single platform from the point of view of the
operators.

2.1 Description of a Platform

The platform consists of a flow-based switch, the servers (which we callmodule hoststo distin-
guish them from traditional servers), and a controller (seefigure1). Each host runs a number of
processing moduleswhere all of the actual flow processing takes place except forbasic forward-
ing which can be done by the switch. Further, hosts contain a special module called acontrol
module, which receives commands from the platform’s controller toremove, install or migrate
modules, as well as to provide monitoring information aboutthe host’s load and performance.

There are three main technologies available to us for implementing a module:

• A virtual machine running its own OS and module application.

• A process running on a virtual machine shared with other modules.

• A set of kernel forwarding elements instantiated in the kernel of the device driver domain
on one of the module hosts.

The first of these options is the most general and provides thebest inter-module isolation,
whereas the third will provide the highest performance for traffic that needs to traverse sev-
eral modules in the same module host. We envisage different applications will use different
implementation options, often on the same Flowstream platform.

For composing kernel forwarding elements, the Click modular router [4] provides a suitable
set of building blocks. For example, a module can be composedof a predefined set of Click ele-
ments, and under the control of the operator, cascades of such modules can be plumbed together
at run-time.

Proc. WowKiVS 2009 2 / 5



ECEASST

Figure 1: Overview of a Flowstream platform.

A Flowstream platform’s second main component is the Openflow switch [1], providing the
basic connectivity between module hosts and the network. Inaddition to this, the switch contains
a flow table which is configured by the controller at runtime, allowing different flows to be
directed to any of the ports on the switch. It is worth pointing out that while figure1 shows
a single switch, it would be certainly possible to scale the platform’s port density by including
additional switches.

The final component is the controller. Essentially, this is the brains of the platform and also
its user interface to the outside world. When the operator makes a request (for instance, running
an IDS on flows to a particular web server), the controller begins by choosing the module host
or hosts to install the processing module(s) on. Such a decision could be based on the hosts’
current load, information that the controller retrieves periodically from the control modules.
Having selected a host, the controller then instructs the control module to install the requested
processing module. Once this is done, the controller configures the switch’s flow table so that
the corresponding flows are directed to the right processingmodule.

With all of these components in place, a Flowstream architecture provides a powerful plat-
form for flow processing. The fact that it is built upon commodity yet, as shown in previous
work [2, 3], high performance hardware should result in significant cost savings. In addition,
a Flowstream setup can be easily expanded and contracted dynamically by adding or removing
module hosts, something that cannot be easily accomplishedon conventional routers or mid-
dleboxes. Further, when required, the isolation provided by virtualized module hosts allows

3 / 5 Volume 17 (2009)



Flowstream Architectures

(a) Parallel processing (load-balancing) scenario.

(b) Serial processing scenario.

(c) Flow splitting scenario.

Figure 2: Basic platform usage scenarios.

several different flow processing operations to be performed simultaneously while minimizing
negative interactions. The controller can also migrate modules as required to ensure that a pro-
cessing task does not significantly degrade the performanceof others. Last but not least, using
general-purpose processors and allowing operators to install their own flow processing modules
yields great flexibility. So long as modules have access to well-defined flow APIs, a Flowstream
platform can accommodate a wide range of existing and even future network applications. It is
precisely the usage of the platform that we discuss next.

2.2 Usage Scenarios

In the most basic case, the operator places a request to a Flowstream platform’s controller asking
it to apply a certain processing module to a subset of the traffic being forwarded. The controller
then chooses a module host with appropriate load levels and installs the module on it, also config-

Proc. WowKiVS 2009 4 / 5



ECEASST

uring the switch’s flow table. The flow then travels from the switch to the module for processing,
before being sent back to the switch and then out onto the network.

Beyond the simple case, there are two more interesting usagescenarios, depending on whether
modules act on flows in parallel or serially. In parallel processing (see figure2(a)), flows are load-
balanced, pushing different flows to different module hostsbut processing each of them equally.
In serial processing or pipelining (see figure2(b)), the operations performed on flows are split
across several module hosts and done one at a time. Combinations of serial and parallel are
certainly possible.

A more complex usage scenario isflow splitting, whereby a processing module is used to split
a subset of traffic from a flow aggregate to another module for further processing (see figure
2(c)). As long as its capabilities are sufficient, the switch can also be used to split traffic.

2.3 Module Migration

Flowstream architectures fit firmly into the trend of using arrays of cheap and potentially unreli-
able hardware, but providing robustness in software. To provide such robustness, we need to be
able to migrate modules between hosts, both to manage changing load and to adapt to failures.
It is perhaps this ability to migrate processing functions between hardware while simultaneously
re-plumbing the switch’s flow table to match, that perhaps best illustrates the flexibility of Flow-
stream architectures. This flexibility can even be used to power down underused module hosts
during quiet hours to save on electricity costs.

3 Conclusions

We presented Flowstream, a new class of system architectures for in-network processing plat-
forms that has emerged from the confluence of the commoditization of switch and x86 server
hardware. Because they are inexpensive, very flexible, scalable and failure tolerant we believe
that such platforms can be used to implement the functionality of the middleboxes that are cur-
rently required for the Internet to operate, as well as future ones.

Bibliography

[1] Open Flow Switch Consortium. Open flow switch.http://www.openflowswitch.org.

[2] Norbert Egi, Adam Greenhalgh, Mark Handley, Mickael Hoerdt, Felipe Huici, and Laurent
Mathy. Towards high performance virtual routers on commodity hardware. InProceedings
of ACM CoNEXT 2008, Madrid, Spain, December 2008.

[3] Norbert Egi, Adam Greenhalgh, Mark Handley, Mickael Hoerdt, and Laurent Mathy. Virtual
router project.http://nrg.cs.ucl.ac.uk/vrouter/.

[4] Eddie Kohler, Robert Morris, Benjie Chen, John Jahnotti, and M. Frans Kasshoek. The click
modular router.ACM Transaction on Computer Systems, 18(3):263–297, 2000.

5 / 5 Volume 17 (2009)

http://www.openflowswitch.org
http://nrg.cs.ucl.ac.uk/vrouter/

	Introduction
	Flowstream Architectures
	Description of a Platform
	Usage Scenarios
	Module Migration

	Conclusions

