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Foreword

This book presents the text of an introductory course on finite element methods. As
such, its primary objective is not completeness, but a suitably structured form in a concrete
frame. A second aim is to be concept-oriented, not only a compendium of recipes.

In chapter 1, a brief historical sketch is provided, in order to situate the finite element
emergence in the frame of the older matrix structural analysis. It is then stated that the finite
element method is a particular form of the more classic Ragleigh-Ritz scheme, which is

introduced on a very simple problem where it is possible to compare approximate results to an
analytic solution.

At this stage, it is useful to develop the variational principles of elasticity, which form a

consistent basis for the following. It is the subject of chapter 2, whose deductive exposition
follows Fraeijs de Veubeke's views.

1t is not possible to develop a constructive theory of finite elements without knowing
some general procedures of matrix structural analysis. These procedures may be isolated from

any typical finite element problem by considering the simple case of a bar truss. This approach
is followed in chapter 3.

Having now these tools in hand, one may enter upon one of the fundamental aspects of
the finite element method, that is the field discretization within the element. The second aspect,
which is interelement connection, is naturally avoided with beams which are treated in chapter
4. The polynomial expansion of a field may be represented by two ways. The first one, which is
the most usual in literature, is based on the shape functions. The second one makes use of a
monomial basis and a connection matrix. Although both approaches are in this case equivalent,
the second one is of a more general nature and is developed first. But shape functions are also

. introduced.

A comprehensive discussion of the connection problem, including the possibility of so-
called bubble modes and spurious kinematical modes, is given in chapter 5, devoted to plane
elasticity. The general exposition is based on the monomial approach, but shape functions are
also widely developed. The chapter ends up on the deceipting result that the possible shapes
with the polynomal approach are limited to triangles, rectangles and parallelograms only.

The above restriction is a good motivation to go a step further, and introduce in
chapter 6 the isoparametric elements. Here appears naturally the necessity of a numerical
integration. This procedure is duly discussed, including the problem of spurious kinematical
modes that may be implied by a sub-integration.

Plate elements are the subject of chapter 7. It is necessary to first introduce plate
theories. The adopted approach is a variational one, and starts with moderate thickness plates.
Kirchhoff conditions are set next, and the boundary condition problem with Kirchoff's theory is
treated. Turning to finite elements, it is immediately recognized that a conforming thin plate

_ triangular element is not possible with polynomials. The question is thus to find remedies,

which are the use of moderate thickness elements, more than conforming elements, or



i

assembled elements. The idea of abandoning strict conformity also directly arise, but at this
stage, the corresponding rules are not yet developed.

Chapter 8 is thus an appropriate time to introduce nonconforming elements. After a
presentation of old elements of this type, the patch test is introduced as a conmsistency
requirement on equilibrium, which is proved to be equivalent to an incompatibility work. This
leads to the zero-interface work version of the patch test. After a verification of this test on the
abovementioned elements, a way is shown to specially taylor elements in order to verify the
patch test. It is another strategy to circumvent the difficult problem of plates and shells.

The dual analysis concept, one of the older convergence tests, is developed in chapter
9, in its generalized version which works whatever be the boundary conditions. Equilibrium
finite elements are not presented in the present text, but its observed that equilibrium
approaches may be obtained in the displacement form by using stress functions.

The last chapter briefly exposes the frontal solution algorithm.

As can be seen, this text, as being an introductory course, by no way constitutes a
complete treatment of finite element methods. The lacks are too numerous to be listed. It is
author's hope to publish a second volume containing complements, including equilibrium,
hybrid and mixed models, dynamic analysis, and other useful questions which are beyond the
scope of the present lecture notes.

At this stage, it is for me a duty and a pleasure to thank all members of the Aerospace:

Laboratory who first teached me finite elements and later accepted me as a co-worker. The
whole book is strongly influenced by their general philosophy.

I am indebited to Mrs Piffet who patiently typed the text. Finally, truly thanks to my
wife for her encouragings.
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CHAPTER 1

INTRODUCTION TO THE FINITE ELEMENT METHOD



1.1. Historical sketch

The finite element method appeared first in the frame of the analysis of aeronautical
structures.

1.1.1. - From a long time, structural analysis made use of some hypotheses concerning the
diffusion of forces or the kinematics of the deformation of the structural parts. As an example,
the classical NAVIER theory of beams is based on the following assumptions (fig. 1).

a) The stress state is unidimensional
b) Orthogonal sections remain plane during deformation
c) Furthermore, they remain orthogonal to the neutral axis.
The first assumption leads to the simple St form of Hooke's law
o=Eg (.1

The second one implies that the u- displacement varies linearly in terms of y.

u(x,y) = a (x)y ' 12)

. dh
From condition ¢, the value of a is related to the angular deflection of the beam Ev by the

condition

v
a+—-=0 (1.3)

(Remember that we are here confined in the frame of the so called small displacements or more
properly speaking, of small strains and small rotations). The solution obtained by this theory
does generally not coincide with the exact solution of the elasticity equations, but for
sufficiently long beams, the difference is small, if one excepts some narrow zones near supports
and loads (Saint-Venant's principle).

1.1.2. - Another celebrated case of approximation is the articulated truss. Physically speaking,
the truss is componed from beams, it is to say that each truss component is able to resist to
some flexure. The articulated truss idealization consists to consider that each bar only works in
stretching and that it is articulated at its extremities (fig. 2). If then g is the force acting on the

bar and q; and g, the displacements of extremities 1 and 2 respectively (fig. 3), the bar obeys to
the relation

g=k(q,-q,) 1.4

where k is the bar stiffness. The connections of bars are called nodes. At each node, the
displacement of each bar may be decomposed in a structural frame (fig. 4) as
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g =ucosa +vsina (1.5)
and the force has two components

X =gcosa, Y=gsina (1.6)
Now, assembling the different bars may be performed by two ways :

(i) Express that the displacement of each node is uniquely determined and then find
the value of the nodal displacements which leads to equilibrium. This is the
displacement method.

(ii) Express that the sum of forces at each node is zero (or eventually, equilibrates the
applied load). The solution of these equations is undetermined, depending on
arbitrary self-stresses whose number is equal to the hyperstaticity index. The self-
stresses are then adjusted to ensure the uniqueness of the displacement at each
node. This is the force method.

Both methods lead to a matrix system to be solved.

1.1.3. - Aeronautical structures largely use panels and stiffeners. A classical approximation
consists to consider that a panel only résists to shear, an that this shear stress is constant along
the panel (in fact, this is the case if buckling of the panel occurs) (fig. 5). Stretching is then
supported by the frames. Associating displacements to the shear forces, one is also leaded to a
matrix system to solve.

1.1.4. - All these idealizations are parts of the so-called matrix sfructural analysis. The first
complete treatment of this subject is due to ARGYRIS (1954) [1]. At this stage, it may be
considered as an exact solution of a structure which is idealized on a physical basis. In fact, it
is true that a structure is really composed of frames, bars, panels. And in each element, use is
made of classical hypotheses which permit to evaluate their stiffness with confidence. Matrix
structural analysis is thus only a systematized way of solving a structure.

~1.1.5. - In 1956, TURNER, CLOUGH, MARTIN and TOPP [2], working on thin walled

structures, thought of a new procedure. Subdividing arbitrarily each wall in triangular
elements (fig. 6), they supposed that in each triangle, the displacement is linear, say

(1.7)

U= +o,x+a,y
v=o, Fox+agy

It is then possible to express the ay's in terms of the displacements of the corners (nodal
displacements). Furthermore, in each element, stresses and strains are constant, in such a way
that is is easy to reckon the force corresponding to any nodal displacement. Finally, connecting
the nodal displacements ensures compatibility on each interface.
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This was the starting point of finite element methods. This idea that, following oral
tradition, the authors hesistated to publish, judging it of trivial nature, had such resonance in
engineer's world that in 1959, a first finite element congress took place in Aachen (Germany).
However, some reluctance emerged in scientific milieus, from the fact that finite elements
seemed not to have any justification.

1.1.6. - A further step was the recognition of the fact that the finite element method is nothing
than a particular form of the well-known RAYLEIGH-RITZ procedure. As is well known,
Rayleigh-Ritz procedure consists to define a basis of functions and to seek the coefficients of
these functions which minimize a given functional. In fact, finite elements lead to a particularly
appropriated basis.

1.1.7. - From this time, large progresses have been made in finite element techniques and in
their analysis, which proceeds from functional analysis (SOBOLEV Spaces). In this course, we
will restrict ourselves to some techniques whose choice is by some extend arbitrary, but which
cover essential needs of structural engineers.

1.2. An introductory problem

1.2.1. - To illustrate the different ideas which conduct to finite elements, let us consider the

very simple problem of a string taut by a force N. If p(x) is the transversal load by unit length,
the differential equation of the displacement is (fig. 7)

dZ
- N;;iu-= p(x) (1.8
p(x)
Xz 0 \‘/ ‘l’ \l’ > X
H(x) x=l

Fig. 7



with the boundary conditions u(o) = 0, u(l) = 0. The first step toward an approximate solutions
is to find a variational principle which is equivalent to equation (1.8) with the given boundary
conditions. For this, let us first note that every candidate for the solution u is equal to zero at
both ends. Such a displacement field will be called a kinematically admissible displacement. A
kinematically admissible displacement variation 8u is then defined as an arbitrary difference

between two admissible displacements. It is therefore equal to zero at both ends. Now,
multiply equation (1.8), written as

2

d‘u
‘-Nﬁ2 _p(x)':o

by such a displacement variation, and integrate from 0 to 1. One obtains
1 d*u
Oz_L —NECTc?u—p(x)é'u dx

Integrating the first term by parts leads to

d*u du dou
—j N—é‘ dx = {NULY u] +j N:{;E——dx

From the fact that Su(o) = Su(l)=o, this-reduces to

du dé 1 du’
[ Nl—zidr—aéj:N(i—j dx

Therefore we obtain
5[ |+w ) la=o
o |27 (&) P -

0F(u)=0

or

(1.9)
with

g(u):-%ﬂN(%] e~ [ puds (1.10)

This is to say that the solution u of problem (1.8) renders the functional # (u) stationary.



1.2.2. - The classical RAYLEIGH-RITZ method consists in seeking, among all superpositions
of given functions u, the combination that renders (1.10) stationary. Let us, as an example,
develop u in the form

2 k
u=ZA,,sin-—7% (1.11)
k=1

and suppose, for simplicity, p(x) = p = ct. One has
*n

1 n k 2 m I
F@)= N4 p) (-0 4, =54,..4,)
[ k=l KT .

To find the stationary point, we have only to derive by respect of A, ..., An. One obtains

oF k*n? 1 r
=N4,———-p—I-(-1)"|=0,
T p-l-c]
so that
47 . ’
4 =N P Ykisodd (L12)
0 if kiseven

The displacement at x = /2 is then

I apPl. 1 1 1
u[i]:A‘—AJ +A5"A7...= 2N |:1*'?;3—+5—3—7—3] (113)

This gives the following table :

m Nru(l/2)
4pl*

1 1

3 0,9630
5 09710
7 0,9680
9 0,9694
11 0,9687
13 0,9691
15 0,9688

The exact solution is obtained from (1.8) :



du_ p
dx? N
du px
A T
px’
u=—W+CX+D
and
u(0)=D=0
__ P
u(l) = 2N+Cl-0,
from which
_ P
C=+n
and
Y
u—zN( x° +Ix)
So,
pl* 4apl* o’ apl*
[y =P AP _ 1.14
u(l/2) SN - N 32 0,9689 N ( )

As can be seen, the displacement at x = /2 converges to the true value as m— o. More
interesting is the work of the load p,

9=_‘:pudx

Its true value is

2 2713
pr 2 pl
T=P_[ (b - x*)dx = 1.15
2N-L( X= N (1.15)

The approximate values, from the above Rayleigh-Ritz process, are

273 m 273 m
el s 1 _pl %65 1 (1.16)
z*N &Kk 12N & r

odd odd
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as indicated in the following table

m 1 3 5 7 9
12N, 0,9855 0,9977 0,9993 0,9997 0,9998
273
pl

from which it is clear that a very fair convergence exists. We will prove later that this is a very
general result.

1.2.3. - The finite element method consists to cut the interval ]o,I[ in subintervals Jxi, X[
(i=o, .., n-1), where it is posed

X = X X—X

= + 1.17

ux) = X; — X e Xiny —%; (.17
(linear interpolation between nodal values u; and u;.,, see fig. 8).
Xi Xi+1
Fig. 8
" One has thus

du u,, —u
s 2 e 118
dc x,, - X (1.13)

In each subinterval, which is called an element, one calculates

2 2
lJ‘xH'l N[gli) dx“:l % 7 Uin = | e
2 % dx 2 i X, —X

i+ i



)

11

and

Xi4] siel XX siel XX
[ puds=u,[™ p=— deru,, [ p
& X X H

dx

X —%;

Summing on all elements, one obtains a function of n variables

2
2 exn | 1 Uy, — U, X—x, XX
I (u,,..,u,)= ZL |:'2-N (x : _x ] -p ("i * : Uy ]} dx

i+ T X i Xig Xisp — %

which can be minimized.
Note that it is a Rayleigh-Ritz method where the basis functions are of the roof-type
(fig. 9),

u(x) = il M, (x) u,
i={

?4
()
93
Fig. 9
with
[0 if x<x,,
X—X,_ ;
;?x—l“ {f Xi <x$xi
M,()=1" "%
—— lf X; <xsxi+l
X — X
L0 i x>x,
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It may be proved that the nodal values are exact in this approach [3], but this is a special
property of one-dimensional finite elements. . o

Note finally that for the piecewise linear approximation which is used, the original
differential equation has no sense. The variational principle, however, is well defined. This is a
specificity of finite elements : the approximate solutions are just able to ensure the existency of
the variational principle, not of the local differential equation. In this direction, note that not
regular functions are not unusual in engineering practice. As an example, if the string is
submitted to a concentrated load (fig. 10), the solution is precisely of the roof-type.

Fig. 10




CHAPTER 2

VARIATIONAL PRINCIPLES IN ELASTICITY

13
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2.1. Introduction

Variational principles are the key of developing approximate solutions of elasticity.
They form also the basis of Rayleigh-Ritz approximations, including finite element methods.

Let us consider an elastic body whose volume will be denoted V (fig. 11). Its boundary
may be splitted in two parts S, and S,, with prescribed displacements #, on S, and imposed
surface tractions £,dS on S,. Moreover, volumic forces £idV are applied inside the body. In
what follows, it is always assumed that fixations are sufficient to ensure displacement unicity.

The general equations between the stress field o, the srain field €, the displacement u,
field, and the data are as follows.

- Compatibility equations

2
u; =1, on S,

{g,.j =YD, +Du)inv 21

- Constitutive relations : it is assumed that the body is hyperelastic, that is, there exists a
function W, called the strain energy density, such that

_ow
O-'j—ﬂé'ij

(2.2)
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and that for each field 6 ¢, # 0,

W :
-0 &, 0 23
7s, agklé'a,j de,> 23)
In the linear case, one has simply

0, = Ciuty ’ 2.4

where Cya is Hooke's tensor, and condition (2.3) reduces to

Cijkj 58;5 oe, >0

2.5)
- Equilibrium equations
Do, +f =0inV
7 J_(' (2.6)
no; =1, 0ns,

Each variational principle will be equivalent to some of these equations, the other ones
having to be verified a priori.

2.2. Minimum total energy principle

In this principle, compatibility equations and constitutive relations are verified a priori.
An admissible displacement field u is by definition a displacement field verifying.

{l W(Du) dx < o o

u, =1, on §,

where the notaion W(Du) is used to recall that the strain energy W(e) is computed from

displacements. Now, an admissible displacement variation du is the difference between two
admissible displacements. Consequently, it verifies

Su=ul ~u® =u, -#=0 on S, (2.8)

This being admitted, let us multiply equations (2.6) by an admissible displacement variation du;.
This gives

Su,(D,o,; +f)=0 inV
du;(n;o, ~1,)=0 onS§,.
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Integrate the first relation on the volume, and the second on S, and make the difference. One
obtains

- [6uD,o,dV - [ FouaV-+ [no,6udS - [16udS=0 (2.9)
v v 52 52

Jon

The first term of this equation may be transformed as follows. First, an integration by
parts leads to

J

-[6uDo,dV=-[no,8udS+[c,DEudV
v s v

Now, on the surface, du; = 0 only on S,, and the term on S is balanced by the third term of 2.9.

. . 1
It remains the term on the volume. In this one, note that o, = o; = :2-(0,.1. +0,)

1
[oxDou dV =—[(0,+0,) DS udy
14 v

Here, indexes i and j are summation indexes and may therefore be replaced by other ones. So,

o;; D;j 8u; = o1 D, Suy
Gii Dj 6._,; = Ol Dk 5U|

and
1 1
5(0',7. +0;)D;0u, =0y, E(D,ﬁ wy,+Dou)=0,05,=0W,

where use is made of the compatibility equations and the constitutive relations.

Finally, (2.9) transforms in

a{j W (ou) - Fu,]av - J't“,.uidS} =0 (2.10)

or
6E=85(U+F)=0 .11
where

% = [W(Du) dv (2.12)
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is the strain energy

&= fudv - [fuds ' (2.13)
v 52

is the potential energy of the loads, and

E=U+P (2.14)
is the fotal energy. We have thus established that at the equilibrium, the total energy is

stationary. The fact that this stationary point is a minimum results from the positive
definiteness of the second variation

58 = f oW

v OE;08y

S6,06,dV >0

which is a consequence of assumption (2.3).

2.3. Equivalence of the minimum total energy principle to equilibrium

Up to now, we have proved that equilibrium implies the stationarity of the total energy.
But is the converse true ? Let us suppose that the total energy is stationary. This is to say that
for every admissible displacement variation, &= 0. But

& = [o,D sudv - | fsudv - [6uds
v

v 8§

= [o,n,6uds ~[(D,o, + J) SudV - [t5uds
s v S
and, owing to the fact that du; = 0 on Sy,

i

st = [lon~1)ouas- [0, +T)ouav =0 @19

Here, a particular result of integration theory is needed. This result is as follows. Let @(V) be
the space of functions @ that are indefinitely continuously differentiable, and whose support
(i.e. the set where @ #0) is a compact included in the open set V (It is to say that ¢ = 0 in the

neighborhood of the boundary). Then, if g is a locally integrable function such that for each
g € V),

jg(odV:O
v

one can deduce that g = 0 almost everywhere in V.
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Let us consider the subset of admissible displacement-variations 8¢; such that d¢;
(V). For such variations,

s&=-[(D,o, +F)dpdv =0
v

(because d¢; = 0 on S), and, from the citated theorem, this implies
Dio;+f,=0aeinV (2.16)
i.e., internal equilibrium. This result being known, it is clear that for any variation Su;,

[(Dj0, +F)ou av=[0.6uav=o0,
v 14

so that (2.15) reduces to

I(O',jnj ——t‘,.) duds =0

S2
and, from the arbitrariness of du;, this implies
oyn; =1, onS, ) 2.17)
The equivalence is thus proved.
However, this equivalence holds only if the stresses are sufficiently smooth so that local
equilibrium equations can have a meaning. In particular, Djo; must exist to make sense at these
equations. In contrary, 6& exists whenever o is square-integrable, a condition which is by far

less strong. In fact, the variational formulation is more general than the local one. In
mathematical theories, the expression §&= 0 is called the weak form of equilibrium equations.

2.4. The general principle of elasticity

In the minimum total energy principle, compatibility and constitutive equations are
satisfied a priori. One says that they are essential conditions. The result of the variation, also
called natural conditions, is the equilibrium. Is is possible to obtain a general principle where
all conditions are natural. To do this, we start with the total energy where we suppress the a~

1
priori condition that & = E(D,.u i+ D].u,.),
&(e,u)= [W(e) dV - [ fudV - [fuds (2.18)
v v Sy

We then add [6] dislocation potentials of the form (Lagrange-multiplier x condition)
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Q}(A,u,@:fﬂ,}.{ (Du;+Du,)- e}

(2.19)
for the internal compatibility, and
@(u,u)= [ 1@ ~u) dS (2.20)
5
to relax the kinematical conditions on S,. Now, we express that
OH=0(E+Q+%)=0 (2.21)

where variations are taken on u, gA,u, without any restriction. This principe is generally
associated with the names of Hu and Washizu, who published it independently in 1955. It has
however to be pointed that this functional had been derived and published four years earlier by
Fraeijs de Veubeke [52]. Let us examine the responsabilities of each variation.

a) Varying the strains leads to the condition

| [g—"fna jaaijdr/zo

v &y

and, due to the arbitrariness of g,

ow

_o"‘_s—:ﬂr'j inVv

i

The field A may thus be interpreted as energetical stresses, i.e. stresses that are obtained
from the constitutive equations.

b) Varying A; leads to the conditions
1 .
5 (D,.uj +Dju,.)— & =0inV,

which express internal compatibility
¢) Varying y; gives the S; —compatibility.

u, =% onS,
d) Varying the displacements leads, after an integration by parts,

~le A+ f, 5udV+j Ay - )5udS+_fnl 4 — 1) Su,dS
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and, by the same way as in section (2.3), this gives

DA; +f,=0 inV
ni; =i onS,

ni; =W  ons,

The two first equations express equilibrium, Ay being interpreted as stresses. The last one
permits to interpret the surface multiplicators y; as the reactions on S;.

As can be seen, all elasticity equations are contained in this general principle which
theoretically could serve as a basis for complex approximations. However, it is seldom used for
two reasons. Firstly, one can hardly conceive approximations on the constitutive equations
(except, perhaps, numerical integration). Secondly, simultaneous restrictions on several fields
require consistency conditions which are eventually difficult to express. Practical applications

are thus developed from less general principles that we will obtain by assuming some a priori
conditions.

2.5. HELLINGER-REISSNER's principle

This principle is obtained by imposing in the general principle an a priori verification of
constitutive equations.

oW _
de; Y

where we use the notation oy in place of A;; for the arbitrary stresses, as is traditional. The two-
field function

A(o,8)=0,8,-W(¢) (2.22)

which appears in the principle has the following properties :

a4
=-&;-whatever be g
d oy
dA 724
=0, -——
o8, ' dg
Let us define the function
®(0) = max4(o,e) (2.23)

€

This is a function of the stresses only, whose derivatives are :
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0@ J4
=L =g 2.24
Go, oo, " % (2.24)

In the case of linear constitutive equations,

W (&) =2 Cyut;6u (2.25)

and

1
A (O', 6‘) = G-ij 6'lj 2 Cykl 81] 6'Id

To obtain @ (o), one eliminates & from the maximum condition

o; = Ciu &
which leads
el
& = CyOn

The result is

1
D (a)= P uklg Ty (2.26)

We thus take the maximum of the general functional 5# by respect to €, and obtain the
functional

R(u,o,p) = j( ~(Du, +Du,)- @(o-)—ﬁu,.]dV—J-t'iu,.dS’+J'p,.(z}“,.——u,.)dS (2.27)
S1 5

whose stationarity express HELLINGER-REISSNER's principle [5]. In this principle, the
variation of stresses is responsible of the compatibility equations in the form

=)

I

which combines them with stress-strain relations. Varying w;, one obtains as precedently the
S| ~ compatibility

=ui

Finally, the variation of displacements leads to the same relations as in the general principle, it
is equilibrium.,
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Hellinger-Reissner principle is widely used in theoretical approximations and also form
the basis of so-called mixed finite elements.

2.6. FRAEIJS de VEUBEKE's principle

Another principle may be obtained from the general principle by a priori imposing
equilibrium, in its weak form, i.e.

[0y 3(D,3u; +D,6u) av - [ f6uav - [£:5udS - [ duds =0
v v 52 5

Noting that here, no restriction is made on the displacements on S,, displacements themselves
are admissible displacement variations, so that

v

Ia‘,i —;—(D,uj +Du,) dV—-J‘f,.uidV - jt",.u,.dS-— J',u,.u,dS‘ =0
v Sy 5

Moreover, equilibrium implies on S,
Hi= 1; Gji
This all leads to the following principle
0% (e,0) =0 (g arbitrary, o in equilibrium) (2.27b)
with

F(5,0) = [(W(6)-0,6,) AV + [n,0,7,dS (2.28)

J it

This principle is due to FRAEIIS de VEUBEKE [6]. The variation of the strains gives the
constitutive equations

ow
gg, 0

i

Stresses may not be varied independently, so that it is not possible to derive here a local
equation. The only condition that may be obtained is

- [5,60,dV + [n,60,idS =0 (2.29)
14 81

for every self-stress field. In fact, equilibrated stresses verify
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D.o.=0inV

Jdi

- 2.30
no, =t onS, } (230)
An admissible stress variation will then be the difference of two equilibrated stress fields,

YO B o)
§oy =0, —0;

each of these verifying (2.30). Consequently,

Do, =0inV
njé' O-ji =0on SZ (23 1)

in other words, 8oy is a self-stress field. Condition (2.29) is the weak form of compatibility
(internal and on S,).

2.7. Complementary energy principle

If we now eliminate € from FRAEIIS de VEUBEKE's principle by a priori taking the
minimum of (g, ¢) by respect of &, one obtains

msin.@(s, o) = jmﬂm (W(a) —0,E; ) av + .fn].aﬁ.ii,.dS
14

5

=-[®(c) aV + [n,0,7dS

JgiTi

Changing the sign, one is leaded to

6%(0)=0 (2.32)
where

B(o)=v(o)+2(0) (2.33)
is the total complementary energy composed of the complementary strain energy

¥(0) = [ ®(c)aV (2.34)

v

and the potential of prescribed displacements

2(0) =~ [n,o,wdS (2.35)

5

The principle contains the compatibility conditions written in the form
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J-ﬁd)

y 90

So,dV - [n,60 ,@,dS =0 (2.36)
S

for every self-stress field 6o

2.8. Note on the weak compatibility condition

In what follows, we restrict ourselves to the linear case. Let us note E the space of
square integrable stresses oy, with the scalar product

(o,7)= J‘Ci;kll 0Ty dV (2.37)
v

A compatible stress field will be defined as a stress field of the form

oy = Cvk,sk, ) (2.38)
where u is an admissible displacement field, i.e.

[Cut, e @)V < (2.39)

;i =7, on S, (2.40)
A compatible stress variation is of the form

) o; = Cijk,ak, (Su)

where 0u is the difference of two admissible displacement fields, so that (2.40) is replaced by
511; =0 on Sl (2-41)
Compatible stress variations form a linear vector space C,. It may be proved that, equipped

with the scalar product (2.39), C, is complete and thus, closed in E. Note that if we know one
—displacement-field ug such that uz=-#; on-Sy;-any compatible-displacement-is-of the form -

u=1u, + Au ' (2.42)

where Au is an admissible displacement variation (Au = 0 on S;).

Let us derive the orthogonal complement S, of C,. It is defined by the condition

[oye,dr =0
v

for each g5 € C,. The condition is
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1
lo;.j S (D u; +Du)dv =0
and expresses that Gy is a self-stress. S,, the set of self-stresses is the orthogonal complement

S, of C.. As C, is closed, the orthogonal complement of S, is also C,.

Now, let us consider a stress field verifying (2.36), i.e.

[Coudo,dv - [nso,mds =0 (2.43)
v

5

for each self-stress §oy;. Let u, be a displacement field such that #,, =#, on §,. One has

1
[&;,)00,av = | - Dty +Dju,) 5o,V
14

Joi
14

= [n,60 u,dS+ [n,60,u,dS - [ D,écu,dV
Sy 8§y v

Jivof

because the two other therms vanish for a self-stress. Condition (2.43) is thus equivalent to

.{ [Ci;;zo'm - Eij(ua)] So,dV =0

14

or

Oy = Cl(lij & (u,) eC,
But this is to say

Oy = Cyy8;(4,) + Cyy 5, (A w)
or

Oy = Cyy; (1, + A )

which is precisely compatibility.

2.9. Particular cases

The preceeding considerations concerned the general case of elasticity. Similar

variational principles may be developed for specialized theories, such as beams, plates, bars, by
two ways
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®

(it)

Set in Hellinger-Reissner the corresponding hypotheses. By this way, it is possible to
develop particularized theories. We will follow this way in the case of plates.

Directly use known expressions of energy. To illustrate this, consider the case of a

Navier beam which is clamped at x = 0 and submitted to a lineic load p(x) (fig. 12). The
curvature is

d*v
if v is the displacement field. The bending moment M is related to the curvature by the
equation
M=EIy

where E is Young's modulus and I is the inertia modulus. The lineic energy density is
thus given by

8W = M5y, = Ely5y, W =EI ZT
2 . P(x)
7 L
_
Fig. 12

So, the strain energy is

- %f o

The potential energy of the load is given by

P = -J': pvdx

The equilibrium of the load is then obtained when the total energy

E=U+P
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is minimum.

Show that §& = 0leads to the well known equilibrium equation

Suggestion : A double integration by parts has to be performed. Variations at the end of the
beam give statical boundary conditions.
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CHAPTER 3

FINITE ELEMENTS OF BARS

29
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3.1. Introduction

In this chapter, bar trusses will be envisaged. This very simple case will be used to
illustrate the different steps of a matrix structural analysis, avoiding complications related to a
more complex problem.

3.2. Bar element

Consider (fig. 13) a bar element of section A, Young's modulus E, and length L If the
displacements at the ends of the bar are ¢; and g, the strain energy of the bar is given by

1 EA
%=-—(0-a0f 3.1)

Fig. 13

" This may be written

k —k|
U = [qlq2]|:_k k } [Z‘] (32
with

EA
k==

(3.3)

The matrix
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kook 3.4
Kalocz_k k . ()

is called the element stiffness matrix in local axes. The three last words refer to the fact that
the displacements are expressed in the axis of the bar. Note that this matrix is singular. In fact,

il

This is not troublesome but perfectly logical, because a displacement of the form g = [1,1]
corfesponds to a rigid body motion which does not produce strain energy.

3.3. Bar stiffness in global axes

Assembling the different bars of a truss supposes the use of an unique axes system at

each node. The simplest one is given by displacements u and v along axes x and y. The
transformation is (fig. 14)

q=1u cosb + v sin®

(3.5)
q
v
0
u
Fig. 14
at each node, and or the bar number e,
u,
g, | |cosf sind O 0 ||y (3.6)
q, | o 0 cos@ sind||u, ’
[t S -~ |
de, loc Te v,
oyt

9de, s
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where index e refers to element e, and S means structural. The element strain energy is thus
given by

1 1
U = —2— qZ‘,S];TKan:I;ch = 5 aSKeSan (37)

This defines the element matrix in structural axes

cos’* @ sin8 cos@ —cos’@  —sind cosd
sin® cos@ sin? 8 —sinfcosf -sin* @
Ke=T'K,.T=k ) 3.8
o8 7 Te Theloc Te ~cos’d ~sinfcosd cos’ @ sin @ cosf 38
—~sin@cosf  ~sin? @ sin@ cosd sin® @

This matrix is of the same rank as K. 1o, it is 1. In other words, it admits three independant
singularities, which are :

w =1,y =0, u;=1, v; = 0 : translation along x
w1 =0,vy=1,u,=0, v = 1: translation along y

u; =0, vi =0, u; = sind, v, = -cos0 : rotation round point 1.

These are the rigid body motions of the bar.

3.4. Assembling the different bars of a truss

To assemble the different elements of the truss illustrated in fig. 15, let us first define
the global displacement vector

T

q = {u,v, UV, UV, UV, usvs} 3.9

(S S ]
nodel node2

4 : node number
@ element number
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Each element has 4 displacements which may be indexed in the global displacement vector by
an element localization vector |., defined by the relation

5= q (L)) ' (3.10)

a fact that is illustrated by the following table

Element |podel |node2 | I(1) [ 12 | .B) | L&
1 1 4 1 2 7 8
2 1 2 1 2 3 4
3 2 4 '3 4 7 8
4 4 5 7 8 9 10
5 2 5 3 4 9 10
6 3 5 5 6 9 10
7 2 3 3 4 5 6

(To find the numbers of d.o.f, note that at node i, uy;=#2*i- land v;=#2 # i)
The strain energy is then

U= 0Kty =520 O Ky 0D @3.11)

so that the structural matrix is assembled by the following algorithm (N = number of d.o.f))

fori=1,Nandj=1N
K@ip)<«o0
endfor
For each element e
Fori:1l,4andj=14
l K(L(), L)) « K{q), 1)) + Ke(,j)
endfor
\ endfor
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The following drawing represents the contributions of each element in the matrix

1 2 3 4 5 6 7 8 9 10
1|00 00|10 |0 © |0
2|00 0|0 (O © O
3@ @ |0 |00 ® | |06 |6
00 |00 @ |@
4|1 |@ |00 |00 ® |0 | |6
O |60 |©® |@
5 @ @ 60|60 ® |®
6 @ |©@ |00 0 ® |®
7 @ |0 o3 00 |®@ (@
®@ |@®
8 @ |0 o0 |00 |6 |@
®@ |@
9 ® 6 & (® 0® 66
10 ® L@ ® |©® 0® 0®

As can be seen, all diagonal elements of the matrix are non-zero. In contrary, a lot of
non-diagonal elements vanish.

3.5. Solution of the elastic problem

Let us assume that, as illustrated in fig. 15, there is a load F in the direction of (-v) at
node 2. So, the load vector will be g" : [0,0,0,-F,0,0,0,0,0,0]
We have to solve the equation

Kq=g

taking account to the fact that uy =0, vi =0, v =0, itis q; = 0, gz = 0, qs¢ = 0. This may be

taken in consideration by suppressing lines and columns of K corresponding to these degrees
of freedom. In other words, the final system will be



35

Ky Ku Ky Ky Ky Ky Ky i —qs 1707
Ky Ku Ks Ky Ky Ky Kool qs ~-F
Ky, Ko K5 Ky Ky Ky K|l gs 0
K Ku Ky Ky Ky Ky Kipl|lg,(=| 0 (3.12)
| Ky Ku Ky Ky Ky Ky Ky || 45 0
| Ky Ko Ky Ky Ky Ky Koy || 95 0
| Kios Kioa Kios Koz Kios Kios Kiowo|[90] L O ]

3.6. Return to bar loads

Having solved system (3.12), one knows the displacement vector q.
Then, in each element

8 = k(qe1-Ge2)

with, at each node,
qc = u cosd + v sing

from which element loads are easy to compute.
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CHAPTER 4

BEAM ELEMENTS
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4.1. Introduction

This chapter, devoted to beam elements, will give us the opportunity of present in a

simple context general methods of finite elements.

4.2, Navier beam

A Navier beam is characterized by the hypothesis that normal sections remain normal
during deformation. In other terms, shear deformations are neglected. Let x be the longitudinal
coordinate of the beam, and let v(x) be the transverse displacement at coordinate x. Then, the

curvature is given by

The bending moment p is related to the curvature by
p=EIx

E being Young's modulus and I, the inertia. The strain energy is thus
o =1[ Enia
2o
The potential energy is of the form
P= ——j' pvdx

where p is the transverse load by unit length.

At the end of the beam, displacements v and rotations ¢ = v' have to be connected.

4.3. Monomial basis

(4.1)

(4.2)

(4.3)

Owing to the fact that a beam element must been connected at both ends by 4 values
v(0), ¢(0), v(1), o(l), the simplest polynomial interpolation between these values will have four

parameters. This requires at least a cubic interpolation of the form
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a
v=a‘+a2x+a3x1+a4x3=|Lx,x2,x3] s 4.4

a,
M(x)

where a is the vector of parameters and M(x), the basis matrix, which is here composed of
monomials. From (4.4), one obtains

vi=M(®x) a=[0, 1, 2x, 3x*] a
v'=M"(x)a=[0,0, 2, 6x] a

and the strain energy may be calculated as

0
0
%zlJ’EIV--n&:laT [Er| . \bo26x]dc|a
2do 2 o 2
6x
00 0 o
1 ,lp |00 0 o0 1,
_L =—a’J 4.5
2“IaE[oo412xdxa2aa “-3)
0 0 12x 36x°

where ] is called integral matrix. For constant El, it is given by

00 0 O
00 0 O

J=EG o w6 (46)
0 0 6* 128

This matrix is two times singular, the singularities being given by the following vectors of
parameters :

a' =[1000] (v=1, rigid translation)
a'=[010 0] (v =x, rigid rotation)

Let us now turn to the potential of the loads. One has

P = —_C pvdx = ~J: pM(x)a=-b"a “.7

where
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b= M ()pa

are the generalized loads conjugated to the parameters a. In the present case,

bT: (Bla ﬁza B3a B4) (47b)

with

f=[ ot p= prasp=[ piasp=[ pra @9

4.4. Connection

We have now to use generalized displacements which automatically ensure continuity
of the displacement and the slope. Such displacements will be

Q1 = v(0), 42 = 9(0), g3 = v(), g4 = (D) (4.9)

and are related to the parameters by

q, M(o) 10 0 O
q M'(0) 01 0 0
qg= qz = M) a=\ ; pp a=Ca (4.10)
3
q, M 0 1 2/ 3°

where C is the connection matrix which is here square and invertible.
Inverting this relation, one obtains

a=C'q 4.11)

from which it is possible to express the strain energy as

1 7 | -1
261 a 2q q
it is
02&:—12~qTKq (4.12)

with the stiffness matrix

K=CcTJC (4.13)
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which, as J, is two time singular. In the same way, the potential energy may be written as
P=-b"a=-b"C"q
or
F=-g'q (4.149)
where
g=CTb (4.15)

is the vector of generalized loads conjugated to the displacements q.

4.5. Stresses

Suppose now that the problem is assembled and solved, so that displacements are
known. It is theoretically possible to obtain local values of the bending moment from

p=Ely=EI M"(x)a=El M"(x) C'q | (4.16)

but these values are ordinarily poor approximations because the convergence of derivatives is
not so fast as that of the displacements. However, equilibrium is verified for the generalized
loads of the form (4.15) and it is therefore logical to use stress values which are related to
these loads. Let us consider the loads conjugated to the parameters a,

b=C'g=C"Kq=C"KCa=Ja .17
One has
8% =6a" Ja=5a” || M"(x)" EIM"(x) adx
=5a"[ M) p ds ~ (4.18)
sb that
] ! » ] !
b=[ 0paeb, =] Opdeb=[ 20 decb, =] 6xp de (4.19)

A special confidence may thus be attributed to the two means b; and by. The last one is
generally not used and it is a common practice to use the mean value

b

3

F=2% (4.20)
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To obtain this value from the results, one has to store at the element generation level the so-
called stress matrix such that '

E=Tq ' 4.21)

As
i = = [third line of J)a =~ [third line of J|C"'q
21 2l ’
one has
Lo oo -

T=7 [third tine of J]C™! (4.22)

4.6. Shape functions

Shape functions are an alternative to the preceeding developments using the monomial
basis. The idea is to directly write

v(x) = N (x)q, + N, (x).qz +N;(x)g, + N, (x)q, = N(x)q ’ (4.23)

where ), q2, qs, gs have the same meaning as before (see (4.9)). This is theoretically
equivalent, as

v(x)=MX)a=M(x)C'q (4.24)
so that
N(x) = M(x) C*! (4.25)

However, the most popular way consists to directly write the shape functions Ni(x). To
perform this, note that if q; = q,= 0, one has

v(x)=x*[4+B(-x)] , o (4.26)
from which

v()=14, A= !}f—) (4.27)
Now,

V(x)=2x A+ 2k -3x*)B



and

o(y=2I14-B

v() _e()
B=2705""p

So,ifq1=g2=0,

v(x) = v(l)’,‘-%z"l‘# % ~x3>—i’;2—” (e —x°)

= f_z___ fa_ ﬁ_xz
_V(l)[:’:lz 213}+¢(l)\:12 l:\

Similarly, if g3 = q4 = 0,

v(x) = (I - x)* [4+Bx]

from which
Wo)=14, A= "(")

Since

Vi(x)=2(x~1) [4+Bx]+(-x)B,

one has

p(0)=-2I4+I’B, B= ¢’l(0) v;ao)
and, if g3 = qz = 0;
v(x) =v(0) =%~ A ) +2v(0) ———— x(l x) ¢(0) x(l - x)*

x _x* 2 2
="(0){1~47+572- 3 }MP(O)[JC 2~—1—+12J

Summing results (4.29) and (4.33), one obtains
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(4.28)

(4.29)

(4.30)

(4.31)

(4.32)

(4.33)
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[ 2 3
N,(x) =1—3§2—+2’;—3
2 3
N,(x)=x-22+2
4 U (4.34)
X p
NB(x) = 31—2“2—1‘*3-'
¥ ¥
L N4(x)=‘l‘f"7

To construct the stiffness matrix, we have now to write

v'=N" (x)q, + N", (x)q, + N"; (x¥)g; + N", q, =N"q (4.35)
so that
1 T d () 1 l T
%=—q [ EIN N'deg=—q'Kq (4.36)
with
!
K=[ EIN" N'dx (4.37)

This is of course more direct than the preceeding formulation, but N" is not so easy to
compute as M" so that errors are more likely.

Compute K explicitely

4.7. Computing generalized loads from shape functions

The potential energy is now
J ]
P = —L pvdx = — L PN (x)dxq
so that
!
g=[ N"(x)pd (4.38)

or explicitely,
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p(x) [1 312 +25 Jabc

w
\_/

[ o (s-2%
(o5

p(x)

: —J
1 x*  x*
g =], p(x)-[,—ﬁ—,—] ds
It is interesting to compute these four values in the case p = ct. Then,

3 2) pl
& = ”1(1"3 4)" 2

1 2 pl* pl*
=pl| —-=+ 6-8+
&, =P [2 3 4] —( 3)= )

3 Z) pl
8= Pl(3 4" 2

11 pl?
r(3-3)=-5
8. =P (473 12

At this stage, it is highly recommended to verify that these loads give the correct value of work
for rigid body notions. This permits to avoid most errors.

a) Translation q; =1, q2=0,q3 = 1, q4 =0
g =pl

[ pl
g = gl+g2—%+[;

b) Rotation about the mid-point x=1/2,9,=-1/2,q9, =1,q, =1/2,q, =1
I =0
/ l pl* pi* pi* pI* _
F=-—g +g,t—g,+g, =——t—t—
28’, g, 233 g4 4 12 4 12
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4.8. Comparison monomial basis versus shape functions

Shape functions are more popular than the monomial basis. However, the monomial
basis is by far more flexible and permits the development of some elements which in the shape
function frame would be unthinkable. Moreover, the procedures with the monomial basis may
be automatized (see appendix) avoiding the high risks of algebraic errors which are common
with shape functions. For this reason, the author largely prefers the use of the monomial basis,
even if it seems not so direct a method as the shape functions.




CHAPTER 5

FINITE ELEMENTS FOR PLANE ELASTICITY
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5.1. The two plane states in elasticity

Recall that there are two plane states in elasticity, which are plane strain and plane

siress.

a) Plane strain is characterized by the assumptions

§;=0,8;=0,u;=0

Taking account of the last one, the two others give

D3U1 = -D1u3 =0
D3Uz = -DzU3 =0

So, hypotheses (5.1) are equivalent to

up = u(Xy, Xz), Uz = u(Xy, X2), U3 =0

Now, in the isotropic case, Hooke's law is given by

1’4
O'ij =2G I:&‘ij +E€"é‘ijj|

where G is Coulomb's modulus. From this follows

2G
oy, = 12w [(I—V)&'” +V€22]

2G
Oy = E [(1 ~V)Ep +VE, ]

2G

Oy = =2y [V(En +azz)]= v(o,, +05)

7, =2G &, = Gy,, withyia=2ep

(5.1)

(5.2)

(5.3)

‘[13=123=0

The strain energy density is then
1 T
W= 2 (0116 + 08y, +1,7,) =e He

with the strain vector

e = (&1, B22, V12)

(5.4)

(5.5)



and the Hooke matrix
G 1-v v 0
H (plane strain) = ——| v 1-v 0
1-2v 1-2v
0 0
2

The derivative of the energy density by respect of the strain vector is the stress vector
s=He

witﬁ
s’ = (o1, 022, O12)

Relation (5.7) represents Hooke's law for plane strain.

b) Plane stress is characterized by the assumptions
63=0,053=0,053=0

Using inverse Hooke's law

E,.j=

[(1 +v)oy; — vcr,,é,.j],

==

one obtains

1
&y :'E‘ [01: ~VO‘22]

1

Ep = z [O'zz —VO'”]

I+v 2(1+v)
&y = E Oy, OF ¥y = E 12
&3 =6,=0

1
&y = = ["' v(oy, +Gzz>]

This may be inverted as

49

(5.6)

(5.7)

(5.8)

(5.9)
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E
oy =":;7 (& +vey)

E
Opn = 2 (e, +ve,)
1-v

__E _E 1-v
Ty Ty e

012

that is (5.7) with the following Hooke's matrix :

1 v
H (plane stress) = I E -|v 1 0 (5.10)
v
0 0

At this stage, it is interesting to compare these two matrices. A mean stiffness index
may be the trace of each matrix whis, as is well known, is the sum of the eigenvalues of the
matrix. In the case of plane train, one has

5
trace H (plane strain) = 26 [(1 -V +(1-v)+ (-]- - v)] = M
1-2v 2 1-2v)
and, taking account of the fact that
_ E

2(1+v)

this leads to
E [; - 3v]
trace H (plane strain) = m (5.11)

In the case of plane stress, one obtains

trace H (plane stress) = " _b;z [l +1+%~ %} = 1—-Evz [%—lﬂ (5.11b)

The ratio between these two values is
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5
_ trace H(plane strain) (§~3V) . I-v (5.12)
" trace H(plane stress) [i _ VJ 1-2v ‘

2 2

In the classical case v = 0.3, this gives

25-09 07
m —— —— oz
A 25-015 04 L191

This means that plane strain is on average 19 % more siff than plane stress for v = 0.3. The
ratio A strongly depends on Poisson's ratio, as indicated in the following table

v 0 0.1 0.2 0.3 0.4 045 | 049 | 0499 | 04999| 0.5

A 1 1.010 | 1.056 | 1.191 | 1.696 | 2.780 | 11.65 | 111.6 | 1112 ©

When v — 0.5, both behaviors completely diverge. This is due to the fact that in plane
strain, incompressibility imposes

gy ten=0.

Treating incompressible materials in plane strain or in 3-dimensional elasticity requires

specialized formulations that go beyond the scope or the present course. For the interested
reader, see (8,9, 10, 11, 12].

5.2. Triangular elements

Triangular elements will be first considered, as they are the simplest ones. The

monomial basis method will be followed because it is the most general one. Shape functions for
these problems will be developed later.

5.2.1.- P-development

We will call Py the space of complete polynomials of degree k, which are as follows

oLy + 00X + o3y + QX + OLsxy FOLXY” + Qi + oK’y + OloXy” + QoY +
degree 0 | degree 1 | degree 2 | degree 3

+ 01.11X4 + ot;zx3y + (1.13)(2}’2 + a14xy3 + 0(.15)'4 + ... etc ...
degree 4
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The terms of each strict degree are arranged in descending order for x and corresponding

ascending order or y. As can be seen, a complete polynomial of degree k depends to
coefficients whose number is

na=Z":(i+l)=[l+(k+l)].(k+l)=(k+1)(k+2) (5.13)

2 2

5.2.2.- Displacement expressions

In each element, an expression of the displacements will be chosen, which is a complete
polynomial of degree k. So, at degree 2,

u; = 0oy + 0pX + ozy + oc.;xz + asxy + 0L6y2
Uz = 0Ol7 + OlgX + Olgy + Clmxz + o ixy + thyz (5. 14)

or, equivalently,

2

u:[zl]=M(x,y)a | (5.15)

with, in the case (5.14)

a’ = [ou, Oz, 013, Ols, OLs, Olg, Oy, Olg, Olg, Olig, Clyy, OLiz] (5.16)
and
1 x yx* xp» y» 000 0 0 0
M(x,y) = 5 2 (5.17)
000 0 O 0 1 x y x xy
It is clear from (5.13) that for a degree k, displacements depend on n, parameters, with
n = 2*%@ (5.18)

5.2.3.- Strains

Strains are related to displacements by

en =Dy
€22= Douy
Y12 = Dyuz + Doy



and this may be systematized in the form

& D 0
Uu
e=|gy, [=| 0 D, Lj]:o”u
Y D, D ?

where 3 is the differential operator

D,
o=

O b o

0
D, D
Applying this operator to the displacement expression (5.15) leads to
e=gMa=Ba

where B = 3 M will be explicitely, for a second-degree displacement field

D 0

2 ? 0 0 0
I S A A
D, D, Xy x o xy
or
0102« y 0 000 0 0 0O
B=[0 00 0 0 0 001 0 x 2y
0 0 0 x 2y 01 0 2x y O

5.2.4.- Strain energy

The strain energy is now given by

%=1J'eTHedV,
2V

where H is Hooke's matrix. Using expression (5.2) of the strains, one obtains

Y = laTJa
2

where

53

(5.19)

(5.20)

(5.21)

\ -
(5.22)

(5.23)
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J=[BTHBav (5.24)
14

is called the integral matrix of the element. This matrix is three time singular, due to the fact
that the strain is zero for the three rigid body displacements

u =1, u=0 (rigid translation along x)
up = u=1 (rigid translation along vy)
=y up = -X (rigid rotation round the origin)

5.2.5.- Connection. What has to be connected ?

All preceeding developments concerned one isolated element. Now, the structure is
componed by a lot of adjacent elements which have to be connected in some manner. Here lies
the main originality of the finite element method, which is to choose the weakest connections
that ensure a correct definition of the strain energy. To obtain the proper criterium, let us note
that the strains are obtained from the displacements by applying the differentiation operator 0
which is in the general case of order m (here, m = 1, but for plates, it will be 2). Strains appear
as squared in the strain energy, and the H matrix is constituted of bounded terms. So, existency
of the strain energy requires that the displacements and their derivatives up to the order m are
square-integrable, a fact that may be written

lel = | [uz + 2 D)’ + 2Dy’ + ] v < (5.25)
174 ° i
— up to order m

The space of functions that possess this property is known as SOBOLEV space of order m and
is generally noted H"(€)) [13,14]. When is this property verified ? A correct proof has been
given by CIARLET [15], but here, an intuitive reasoning will be used. In each element, the
displacements are of the C” class, because they are polynomials. Let us adopt a progression
line which is transverse to the interface I of two adjacent elements e; and e, (fig. 16). If a C°-
continuity at this interface is assumed, the derivative along the progression line will be
discontinuous but nevertheless square-integrable. But the second derivative exhibits a Dirac
measure on the interface, which is not square-integrable (fig. 17).

From this, we induce the following rule, fo ensure that u & H™(V), it is necessary to
impose u e C™'. This is the conformity condition.

Elements that are of the C'-class are said

- strictly conforming if p = m-1

- non conforming if p < (m-1)

- more than conforming if p 2 (m-1) and derivatives of greater order than (m-1) are
connected.



55

Fig. 16
Ou/ox
> X X
I
&u .,
ou/ox 2 (Dirac)
Fig. 17
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Nonconforming elements are violating variational rules and, except some special cases,
do not converge if the mesh is refined. More than conforming elements are admissible, but in
problems whose solution is not very regular, their convergence is slowed down by the excess
of conformity. This may be illustratd by the simple case of a solution of the roof-type (fig. 18)
which is exactly represented by two C°-elements and necessits, with C' elements, a lot of
elements to be correctly approximated.

The best strategy is thus to ensure a strict conformity, in each case where it is possible.

5.2.6.- Defining connectors

The general method to ensure conformity consists to define some degrees of freedom
on the interface whose connection puarantees the correct connection. These degrees of
freedom are called generalized displacements or connectors. In the present case, field u; and
u, are independant and may thus be treated separately.

The connection strategy for triangles is a consequence of the property of complete
polynomials of degree k to be such polynomials in any cartesian system, orthogonal or not. The
trace of a complete polynomial of degree k on any straight line is thus also a polynomial of
degree k of the current coordinate of this line. So (fig. 19),

(i)  First degree — Connection at the three nodes ensures C°-continuity
(ii) Second degree — On each interface, a 2d-degree field necessitates 3 values to be

uniquely defined. We have thus to add to the nodal values one other one on each
interface. The classical choice is the mid-point value.

(ili) Third degree — Add to the nodal values 2 other ones on the interfaces, logically at
1/3 and 2/3 of the interface length.

(iv) Fourth degree — Three supplementary values on each interface.

And so on. Thus, the number of required connectors for degree k is

Mg =3+3 (=1) =3k

for each field. As we have here two fields u; and u,, the number of connectors will be

n, =243k (5.26)

5.2.7.- The connection matrix
Adopting the order of connectors
q'r = [ul ViU Vo ... Uz ng].

The relation between the connector and the parameters may be written from (5.14)



Roof function Interpolation by Interpolation by
e H! two C°-glements two C'-elements
Fig. 18
degree 1 degree 3
degree 2
depree 4

Fig. 19 : Connections
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-uﬂ
g‘]“ M(xlayl)
2 M(x,,
g=|u, |= ———(——2—132 a=Ca (527
Z M(x5,Y3)
R

where C is the connection matrix. Let us first suppose that this matrix is square and invertible.
* Then, it will be possible to write

a=Clq (5.28)

and the strain energy may be expressed as
w=ta"Ja= —l-qTC”TJC"q
2 2
or
1 7
Y = -Z—q Kq . (5.29)
where the stiffness matrix is given by

K=cTic? (5.30)

Unfortunately, the connection matrix is not necessarily square, because the connectors
and parameters have been chosen independently. Moreover, even square, it could be singular
due to an inadequate choice of connectors. The connection matrix has n, lines and n, columns.
So, it will be square if and only if ny = n,. Noting that

n, =2%3k,

n, :2*% (5.31)

it is clear that n, generally differs from ny, as reported in the following table

K n, ng Ny-Ng
1 2*3 2*%3 0
2 2*6 2%6 0
3 2*10 2*%9 2*1
4 2*15 2*¥12 2*3
5 2%21 2*15 2*6
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Generally speaking, (n, - ng) is given by

na_nq=2*[(k+l)2(k+2)_3k] :2*[k2+3k2+~3—6k} =2*[(k—1)2(k—2)} (5.32)

the index + meaning "positive part" (i.e. if x < 0, x, = 0).

So, from degree 3, the connection matrix is of the horizontal rectangular type, that is, it
has less lines than columns. There are thus af least (n, - n;) solutions of the equation

Ca=0 ' ' (5.33)
Such solutions are called bubble modes because they represent polynomials which vanish on
the element boundary and have therefore the aspect of a bubble. Let n, be their number. If n, =
n, - g, the matrix C is of maximum rank ng. But it is conceivable that n, would be greater than
N, - ng. In this case, the rank of the connection matrix would not be n,, but ng - n,, with
rank = ny~ Ny = 1, - D,
it is to say

Ng=ng-n,+n (5.34)

A strictly positive value of n; would mean that there exists some dependency between the
connectors which can be expressed by k independent solutions of

cl=o0 (5.35)
In this case, it is known from algebra that the system
Ca=q
cannot have a solution unless the vector q verifies
Tq=0
for each solution of (5.35). Other displacement vectors, which are combinations of the n,

independant vectors 1, cannot be related to the parameters and may be interpreted as spurious
kinematical modes.

The question is now to find the exact number of bubble modes. Equation (5.33) means
that each field, which is a polynomial of degree k, vanishes on the element boundary. This
boundary consists in three straight lines whose equations are

c(xy) =0, ca(x,y) = 0, cs(x,y) = 0 (5.36)

€1, C2 and c3 being first-order polynomials. Any polynomial Py vanishing on the boundary is
necessarily of the form
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Pk= C;.Cz.C3.Pk.3 (5.37)

where Py is an arbitrary polynomial of degree (k-3). The number of bubble modes for each
field is thus equal to the number of parameters of a polynomial of degree (k-3), that is

[(k -2) (k-l)]
2 +

For two fields, the number of bubble modes is thus

n, =2% F"—’l-)-z(ﬂ} (5.38)

4

which is precisely equal to (n,-ng). The conclusion is that the connection matrix is here of the
maximum rank ng.

5.2.8.- How to treat bubble modes

Bubble modes are thus equal to zero on the boundary of the element. The classical way
to treat them is to define supplemehtary points inside the element and to add to the
displacement vector the displacement g at these points. The extended connection equation is

then
H [C] c (539)
« = m a=0,a .
7 U G,

The number of elements of q, has naturally to be equal to m,. The interior points have to he

choosen adequately, so that the new square matrix C. is invertible. The condition for this is
that

Ca=0
Caco[=2=0 : (5.40)
b - N
or equivalently, the double condition
{u isa bubble} 0 (5:41)
Su= )
9, =0

In the present case, a proper choice of points defining the bubblés is given by the
intersections of parallels to each side from the connection points (fig. 20).
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Fig. 20 : Interior points defining the bubbles

Relation (5.39) may then be inverted,

a=Cla. - | 5.42)

from which the strain energy becomes
a-= % 7 K.q. (5.43)
with

K. =CTJC (5.44)

5.2.9.- Surface loads

We have now to compute the potential energy of loads that are eventually reported
along the surface of the element. This energy is given by

& =~[(f, + f1,) dS = ~[ fTud$ (5.45)

Using the expression (5.15) of the displacement field, one immediately obtains
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P=- [ | fTMdS] a=-b"a (5.46)
with
b=[MT S , (5.47)

These are the loads conjugated to the parameters. Now, the connection relation
a=C'q,
or, when bubbles are present,
a.=Ci'ge,
leads to
P=-b"C'q=-g'qor #=-b"C]'q. =~glq. (5.48)
respectively, with

g=C™ or g=C" (5.49)

5.2.10.- Side loads

At the boundary, there generally exists side loads corresponding to a potential energy
of the form

& =—[(w +t,) ds = ~[Fuds (5.50)
r T

In most cases, there is only one side of each element which is concerned and it is common
practice to assume that it is the first side of the element (i.e. the side which corresponds to the

two first nodes of the element definition).

On this side, a local lineic coordinate s may be used. If k is the degree of the

displacement, its trace on this side will be a polynomial of the same degree in terms of's. So, on
the side,

{u, = a, + 0,5 + ST+ a5t

_ k
U, =0,y + Ay 35+ A0, .8

or, in condensed form,
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u= Msidc(s) - Bside (55 ])

Let gsige be the subset of connectors lying on the concerned side. One has thus a connection of
the form

Qside = Ciide aside . (552)

which is always square and invertible. Then,

&P =~[1'M ,dsa,, =-b,a
5

side™" side

with

by = [ M7t ds (5.53)

s

and, after inversion of (5.52),

P = -bL0,C iz = —8raelsice (5.59)
with

Zoze = Cateiiae (5.55)
The fact that qgq. is @ subset of q may be written

Qe =L q (5.56)
where L is a proper rectangular matrix. Then,

P=-8ula=-g"q

with

g=17 giae (5.57)

This generalized force vector has to be added to an eventual surface load vector.

5.2.11.- Stresses

When the elastic problem is solved for the displacements, it is necessary to return to
each element in order to compute the stresses. This work is prepared at the generation level,
where element stress matrices are computed and stored on a peripherical memory. After
resolution of the displacements, it will suffice to use these matrices to compute the stresses.
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Stress calculation is a very delicate problem because local values of the stresses do not
converge as fast as displacements so that in most problems, they are of poor quality, and
exhibit strong discontinuities at the interelement boundaries. This problem is the subject of
many researches at the present time, including a posteriori error measures, but such
developments go far beyond the scope of the present course.

As already said about beams, generalized loads g are in equilibrium, so that any stress
result coming from these loads may be considered with a good confidence. We know that

g=Kq=CTJaorg,=K,q,=C"Ja (5.58)

following the fact that there are bubble modes or not. So,

b=C'gorb=C"g (5.59)
respectively verifies
b=1Ja . (5.60)

Now, the variation of the element strain energy is given by

5% = js"o”ﬁudS = jsTBa:Sﬁa =b"Sa
s s .
so that

b=[B"sdS (5.61)
S

represents some mean values of the stresses. As an example, at the second degree, one obtains
from (5.22)

b =0

b, :Io‘” ds

b, = [0y, dS
b,=2[xc,dS

b, =j'(yo~” +x0,,)dS
b =2Iy o, dS

b, =0

b, :_[0',2 das

b, = [0, dS

b, = ZIx O, dS
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b, = I(x Oy +Y 0y,) dS
by =2[y oy, dS : (5.62)

In the simplest version, only mean values of the stresses are retained, which are

1

oy :sz
_ 1
Oy =74'b9
— 1
Oy ="be

where A is the area of the element. Since b= Ja

o)
§=|o, |=Sa (5.63)
Giz
where
. 2d line of J
§= " Oth line of J (5.64)
8th line of J

Now, using the connection matrix,

S=Tqor§=1gq, (5.65)

with

T=8C" or T. = SC' N (5.66)

5.2.12.- Condensation of bubble modes

Recall that the elastic problem consists to minimize the total energy &= %% +% The
total energy of the structure is the sum of contributions of each element. When minimizing &by
respect to a displacement, one obtains an equilibrium equation which relates this displacement
to the set of all other ones that are directly connected to it by an element. In the particular case

of a bubble, there is no direct interaction with other elements, and the minimization process
may be performed at the element level.
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The element total energy is of the form
1 1 .
€= K.+ 4 K.+ -0 Kt~ 8:9.~ 81 4, (5.67)

where q. represents connected displacement, and g, bubble modes. Varying these ones, one
obtains

o8

5;—,:: 5cq: +Kiq, — 8, =0

In this relation, the square matrix Ky, is positive definite because when the displacement
vanishes on the boundary, the strain energy which has the expression

1
Eqbr Kds
has to be positive. One may thus write
9, =K, 8, - Ky, K..q. (5.68)
Using this result, one obtains successively
9. Kod = 9. KoKy, 8, — 9. KKy Kog,
1 1 - _ 1 -
28Kt = 58 K, -8 K Kod. + 59 KaKy Kog,
~& % =8 K& + 8 Ky Kp.4.
so that
. 1 - . 1 -
ming = g; (Ko ~KoKpKi.) 4. (8. - KoKin8,) 4. - 81 Kn )
—aiR.q.-Fa.+4 (569)
whel_e vt U
Em = ch -Kd:Kb.b}Kbc
g =8 -K,K;g, ~.(5.70)
1 N .
& = ) g Z K8,

The term &, has no further influence on the solution of the problem, but has to be taken in
account when computing the energy.
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Concerning the stress matrix, the relation is

s=Tgq,+Tq,=T4q,-5,K,8, -1,K;K, 4.

or
o=Tg 45, (.71)
with
{Tc =T, - LKy K, (5.72)
s, =-LKy,g,

The last term s, represents the contribution of the bubble modes to stresses.

5.2.13.- Convergence

Finite element converge in an energetical sense. Let us define the energetical norm

Il = e (u) H e(u) av (5.73)

14

It may then be proved that, provided the exact solution has derivatives up to the order (k+1)
which are square-integrable, then the approximate solution u, veriries

e~ | < Cay. 1= (5.74)

where h is the largest element diameter and m is the order of derivatives entering in the

operator 0 (here, m = 1), If the exact solution is not so regular, say, it admits square integrable
derivatives up to a certain order | > m, then

ot~ | < CQuy B (5.75)

In the extreme case where | = m, one may prove that

“u-—u,, — 0 whenh — 0,

(5.76)

but no order of convergence can be guaranteed. These results suppose that no element has too
low on angle, a fact that may be taken into consideration when generating a mesh.

The boundary is in general curvilinear, so that the use of rectilinear elements induces a

supplementary error which is O (h*?). Therefore, there is no real reason to use elements of a
degree greater than 2.
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Note that in the present case, polynomials are used to represent the displacements. But
it is conceivable to use other functions. In such a case, the two following requirements are
known as completeness conditions.

Ist requirement : rigid body motions have to be present in the element
2nd requirement : constant strain nodes have also to be represented exactly

Strictly speaking, these conditions are only necessary in the limiting case h —0. But
experiences show that their exact verification improves accuracy. These conditions were first

stated by BAZELEY, CHEUNG, IRONS and ZIENKIEWICZ [16]. In the case of
polynomials, they are automatically verified for a degree k > m. '

5.3. Rectangular elements

5.3.1.- Connections

Let us first examine the required connections on a rectangle. For each field, if it is
assumed that the degree is k on each side, it is necessary to ensure the connection on each
node and on (k-1) points on each interface. This gives

ng=4+4(k-1)=4k : .17

connectors for each field (fig. 21).

degree | : degree 2 depree 3

Fig. 21 : Connections of a rectangle
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5.3.2.- Displacement field

The displacement field will be choosed to be of degree k on each parallel to axes x and

y. This condition is verified by so-called Q, polynomials, which are products of k™ degree
polynomials of x and of y :

Degree 1 : u= oy + aax + olzy + oLxy
Degree 2 : u= oy + 0% + 03%° + ¥ (0t + 0isx + 06X + y* (07 + otgx + 0ox’)
Degree 3 : u= ol + 0zX + 0l3x” + 04X’

+y (05 + dgX + Q7K + 0gX°)

+y° (Ol + alygx + o gx + olzx’)

+y* (o3 + olaX + aysx” + ouex’)

and so on.
The number of parameters of such a field is visibly
n, = (k + 1) (5.78)
and is in general not equal to ng. The difference is
n,-ng=k*+2k+1-4k= (k- 1)’

is the minimal number of bubble modes. To find these, note that the sides of the rectangle have
equations

a®)=(x-2)=0, c®)=(@F-b)=0, c®=(x-c)=0, cx)=(-d)=0
so that a bubble mode is of the form
Q=(x-a)(x-c)(y-¢)(y-b) Q.2 (x)

and the number of independant bubbles is equal to the number of parameters of a Qua
polynomial, that is

n, =k -1)?2 (5.79)
We may thus conclude that
N, =1ng-n,+ny=0

and the only question is now to define proper internal displacements. A correct choice is to use

the values of the displacement at intersections of parallels to x and y passing through nodes
(fig. 22).
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All other considerations about triangles apply here with obvious modifications.

t 1 '

i n————--———-?—-—--—-—-—-?—-——-—-—n
S— .(P- — |—-——-—-Q-————---¢- ------ *

| D S

‘“ A

Fig. 22 : Bubbles on a rectangle

5.4. Parallelogram elements

The case of a parallelogram may be treated similarly by using oblique axes x and y for
the coordinates (fig. 23). Each field is then of the form

u = 0+ 0gX + Olzy + 04Xy
at the first degree,
U= ol + 0% + osx>+ y (0l + olsx oex’) + y7 (o + otgx + olgx?)

at the second degree, and so on. This case is very similar as the rectangle, except the fact that
one has 1o compute

Fig. 23 : Parallelogram
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For this, note that

71

X =x+ycosh Y =y sinf
50 that
a(X.,Y) 1 cos@
= = 5.80
J a(x,y) [0 sin6 (.80)
and
ou_ouoX ou oy
8x X dx Y ox
ou_oudX ou ¥
dy 68X 8y oY dy
or
A o
Ix r| dX 1 0 ||8x
= =] 5.81
Ou ou [cose sin@ || Ju (81)
dy 17) 4 oY
from which
du Ju ou
“r e 1 0 1l =
X | _ ;| x| _ Ox
AT
oY 3y 5 Jy
From this follows
_oum _du
MTaxXT ox
522:_@2_:—6(“62"_2.*._1__6_&
dy dx smnb dy
V12 _gn , ou =—c0t9£zi'—+—,1 o o
oY oX dx sinf@ Jy Ox

it is, the operator & is given by
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2 0 ]
ox
g "1 @
= 0 -cot—+——— 5.83
0 dx sinf Jy (5.83)
N o
L Ox sinf oy ox i

Here, a technical problem arises, because the matrix B = dM is no more composed of
monomials, but of polynomials. Now, the procedure that automatically computes the matrix J
from pseudo-formal expressions of polynomials is based on the fact that B should be composed
of mononials (see appendix). To circumvene this technical difficulty, the following trick may be
used. Let us note that Hooke's law

oy H, H, H;| &
oy |=|Hy Hyp Hyl|| 7
Oxn H, Hy, Hy|| &y

may be written equivalently

[ ou, [ Su, |
oX, oX,
Oy H, H, H, H;|| u ou,
On | _ H, H, H, H,| &x, g oX, (5.84)
O H, H, H, H,|| % Ou, -
o, H, H, H, H,| %X X,
£ s Hyp Hp Hy ou, ou,
| FX, | | 0X, |
or
s =He (5.85)
where
s = (o, O12, O12, On) (5.86)
and
.,:(au, du, du, o”uz] 5.8
00X, 00X, 00X X, '

Now, the strain energy density is given by
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oW = 1 s7e" = 1 eTH"e"
\ 2 2

[

Furthermore,
[ o ] [ o |
2X, Ix,
g om
L lex, | VT 0 || ox,
€ = ou, ~[ 0 J'T:| o, (5.88)
oX, Ix,
ouy Ly
La"Xz_ | Ix, |
so that
_%_
ox,
aly
ou, du, Su, ou w| x
SW =| ZHL 0% Uy 04y | 2 5.89
I:axl Ox, Ox 53‘2] ouy 5
. Ix,
Guy
La"xz_

with the constant matrix

. H”:[J~l OI}H[IT 0} (5.90)
0 J 0o JT

| A similar procedure may also be used in the case of isoparametric elements, see chapt. 6.

] 5.5. General quadrilateral elements

The preceeding concepts do not give the possibility of developing a general
{ quadrilateral element. The only way is thus to cut the element in two triangles. However,
k general quadrilaterals may be obtained from an isoparametric transformation (see chapter 6).
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5.6. Shape functions

Up to now, the monomial basis was systematically used. There is however another way
to develop elements, by making use of shape functions. Our discussion will be made with only
one field, but this is by no means restrictive.

The fundamental idea is as follows. The combination of

u=M(xy)a
and

a=C'q
(with eventually bubbles contained in q) leads to

u=MC'q=Ngq
with

N=MmcC" (5.91)
Explicitely, for one field,
Uéqul + Noqz + Nags + ... (5.91b)
These Ny's are called shape functions. At point number j, one has

u (%3,¥5) = ¢ = Nu (3,y5) @ + N2 (goyp) gz + ...

from which follows
Ni (%3,53) = 8y (5.92)

This relation allows to find the shape functions by an inspection method. Let us illustrate this in
some cases. '

5.6.1.- Third degree shape functions on a triangle

Let us first consider the first degree polynomial ¢, (x,y) which is defined by the
conditions

¢ (xuy1) =1, 1 (%2,y2) =0, ¢1 (x3,y5) =0 (5.93)

This polynomial being of the form
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a(xy)=Ax+By+C
the three conditions are
Ax, +By, +C=1

Ax, +By, +C=0
Ax, +By, +C=0

The determinant of this system is

x » |1 X, » 1

X, Yo U=l =% yo—y 0=0x~x)s=y)—0—x) (- »)
X3 Y3 U |x-x y;-y 0

which is equal to + 2* area of the triangle. This system thus always admits a solution.

Function ¢, is equal to zero along the side 2-3 (fig. 25). On line 5-8, it is equal to 1/3,
and on the line 4-9, its value is 2/3.

One may define similarly ¢, and c;. These functions are called area coordinates of the
triangle. In fact, for any point P(x,y) of the triangle, one has (fig. 24)

1

PXxYy)
3
2 Fig. 24

) area P-2-3

[ =
ey areal-2-3
( )areaP—l—3
o (x,y)=————
2% areal-2-3
area P—-1-2

GG yY) ="

areal—-2-3
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s0 that

ci(x,y) + (%) T ca(x,y) = 1 (5.94)

These three functions make the research of shape functions easy. Let us consider (fig.
25) the third degree triangle.

Fig. 25

Node 1 :
N; =0 on 2-3 of equation ¢,(x) =0
on 5-8 of equation cy(x) = 1/3

on 4-9 of equation c¢;(x) = 2/3

We may thus write

1 2
N =ac,. a-3)1673)

o havinig to be fixed sothat ™

21 2
1=N,(x,,y,)=a.1.5~§=-§a

N, = gcl [c‘ - -1—] (cl - —2—] (5.95)
2 3 3

Finally,
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Node 4 :
N, is zero at points 1,5,2,9,8,3,6,7. It vanishes thus
on lines 1-3 of equation c; = 0

2-3 of equation ¢; =0
5-8 of equation c; = 1/3

N, =ac, (c, ~%} c,,

o being determined by the condition that Ny = 1 at point 4, where

So,

¢1 = 2/3 and ¢, = 1/3. This leads to

211 2
l=g=.2.2 =2
333 27
Therefore,
27 1
N,= —2—6, [c, —-5] c, (5.96)

The procedure is the same for the other shape functions.

Determine the other shape functions and draw them.

5.6.2.- Second degree shape functions on a rectangle

Let us first recall the classical theory of Lagrange interpolation. If f is a function whose

values are known at some points x,, ..., X, the unique interpolation by a (n - 1)* degree is
given by

f(x)=Z"‘Li(x) £(x) (5.97)

with
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];]i:(x_ xj)
L(x)= m . (5.98)

I

The n functions Li(x), which are knowed as Lagrange interpolation polynomials, verify the
conditions

Li(Xj) = Sij. (599)
Now, any rectangle of sides a and b may be transformed in the unit square by setting
x=ak, y=bn (5.100)

We are thus concerned with shape functions on the unit square. Let us consider the important
case of a second degree element. On the segment [0,1] (fig. 26), the three Lagrange

. . . 1
polynomials corresponding to the points 0, 2 1 are

1 1
¢-n(¢- ¢-0¢-
Iq(;)=———£——12], L@)=5=2E=0, g(g)=——-——( fj (5.101)
@-o[o-3) z)G) a-o(1-)
n
A
4 7 3
8¢ e 9 eb 1
1
1 5 2 >§

Fig. 26



The shape functions are then the following products

Point n" i Coordinates Shape function N;
1 (0,0 Ly(E)Li(m)
2 (1,0 La(©)Li(n)
3 (LY La(©)Ls(m)
4 ©,1) Li®Ls(n)

1

5 (E’O] La(E)La(n)
3

6 L3 Ls(&)La(n)
5

7 2! LyE)La(m)
(03

8 0.3 LiE)Lo(m)
(33

9 2°9 La(E)La(n)

Determine the shape functions of a 3d-degree rectangle with bubbles.

5.6.3.- Second degree shape functions on a rectangle, without bubble

It is also possible, by a more subtle choice of shape functions, to avoid the existence of

a bubble. The technique of determining such shape functions consists to (fig. 27)

a) Isolate the point O.
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b) The shape function is zero on each side which does not contain the concerned point
0.

c) Eventually, some points remain, where the shape function has to vanish. Join these
by a straight line.

N=0 =0

’§=0 =1 £=1

Fig. 27
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d) The shape function is then the product of the equations of the three lines defined in
b) and c), affected by a coefficient chosen to have the value 1 at the considered
point.

Explicitely

N =a(-8a-n(2--1)

1\/,(0,0):%:1, a=2

N, =20-¢) (l—n)[—;"-nf—ﬂ]

N, =aga-m(g-n-1)

N2(1,0)=52“-=1, =2

N, =2 (l—n)[é‘—vr'%]

3
N, =aln [5“7-5}
N,(1,1)=g—=1, a=2

N, =2 (5+n—%}

N,=a(-& 7 {n—-é——%}

[24

N4(0,1)=E=1, 2

o=
N, =20-8)7 [n-:—é—]

Ny=as(1-¢)(1-mn)
N, [»I—,OJ=E=1, a=4
2 4

Ny =45 (1-5) (1-n)

- Ny=atn(-n)

N{l,l]:E:L a=4
2)" 3%

Ny =4en (1-7)
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. N,=af (1-&)1
N,[l,ljz-‘?‘-:l, a=4
4

2
N, =45(1-8)7n
° Ny =a(l-g) 1 (1-7)
Ns[o,1J=—‘f=1, a=4
2) 4

Ny =4(1-& n(1-n)

Find the 12 shape functions of a 3d-degree square without bubbles
Hint : There exists a circle passing through all interface nodes.

5.7. Using shape functions to determine the nodal contributions of a surface
load

We saw in section 5.2.9. how to treat a surface load in the context of a monomial basis.
Shape functions give an alternative way. In fact, for a load f acting on a displacement u, the
potential energy is of the form

P =—IflldS =—Jf [ZM%] dS=_thqi s

from which

& =f{V.~f as (5.102)

This expression permits an easy computation of the nodal contribution of simple loads.

Let us consider the second degree rectangle with 9 nodes, submitted to a constant surface
load. From (5.101)

L) =2¢*-30 +1
L(5)=4(C-C)
Ly =2C-¢ (5.103)

and
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| n={ L@das—
1, =J'l L,©) d¢=% (5.104)

L=[ L=

Now,
[N.fdS = f[ [ Nabdedn,
S

and, using the table of shape functions of section 5.6.2, one obtains

g =fabll=fabl36

g =fabll, =fabl36

g=fabll=fab/36

g =fabll, = fabl36

g =fabll,=fabl9

g.=fabl,l,=fabl9

g, =fabl,l, =fabl9

g=fabll,=fabl9

g =fabl}=4fabl9 : (5.105)

Let us insist on the fact that any such computation has to be checked, because errors are likely.
The first check will be that the resultant load has the correct value,

., g1+gz+...+g9=fab.

Some symmetry may also be expected in the repartition.

|
|

1. Determine the 8 nodal contributions of a constant surface load on a 8-node second degree
rectangle (see section 5.6.3.). '

\ There is an artifex. Starting from the preceeding result, one has

1 1
\ Wy =’2“(w5+w6+w.,+w8)*z(wl Wy Wy +W,) (see §5.6.3.)

N R
)
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4 fab 2 fab ab
BoW, =-“g—w9 = J; (ws +wg +w, +w,)— fT ) +w, +w, +w,)
gt
4 fab
36

e e e _._fab 4fab_ 3fab_ fab
B1 =878 T8 =g 36 12

~ﬁ+2fab=3fab

8s=8c81 =85 9 9 )

Total :

-3 2 jab - fub = fab

~ 2. Do the same with triangles, using the formula

minip!

Ccr'C;)CldS =28 - ——m———
-[’ 2 (m+n+p+2)

A

(To prove this formula, note that

Jere;cras = zsjA (1-x-y)"x"yPdx dy =

1Y
28[xae [T(A-0)-y)ydy =
(1 _ x)nnpq-lj'j(l _ Z)m zpdy

(posez.-:_y.j
1-x

2S Bm+1lm+p+2)B(m+1,p+1)=
Tim+DI'(m+ p+2)T'(m+DI'(p +1))
I'm+n+p+3) I'(m+p+2)

25.

§.8. Interface shape functions and nodal contributions of an interface load

The same procedure may be used to determine the nodal contributions of an interface
load. The problem is here simpler because one-dimensional. We will treat any examples.
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5.8.1.- Constant load on second degree interface using the mid-point value of the
displacement (fig. 28).

Fig. 28

The interface being of length 1, the three degrees of freedom will be u; = u(o), u =
u(l/2), uzs =u(l). The shape functions are given by (5.103), with { = s/l, so that if t is the
reported load,

g =df Ld¢=dl, =u/6
g =d] L) d¢=il,=2/3

g =t LO)d =1, =16 - (5.106)

The correct value of the resultant is easily checked.

Same thing, 3% and 4* degree.

5.8.2.- Same problem, but replacing u, by the mean value of the displacement
(fig. 29)

Such a degree of freedom will be encountered in the following. So,
~ 1
u, =u(0), u,= 7-[ u(s)ds, u,=u(l).

The three shape functions are determined as follows (£ = s/l).
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o

u u, u, 0 tl

Qe

Fig. 29

a) Ny(£) verifies N;(1) = 0 and r N, dS = 0. From the first condition,

Ni=(1-0) (o +BC)

and from the second,

o™

0=af (- d¢+pl¢-¢Hdg =5+5,  p=a.

So,
Ni=a(1-6)(1-30)=a(l-4C+30)
and from the condition N;(0) = 1, o. = 1. Finally,
Ny =1-4(+3¢ (5.107)
b) No(£) vanishes at £ =0 and { = 1, so that
No=a (6-6)

The value of a is found from the condition

11
1=[ N2d§=a[5~§j=a/6.

Thus,
N2=6(-0) (5.108)
c¢) Nz may be obtained by replacing by (1 - £) in N;. This leads
Na=1-4(1-0+3(0-20+3)=-20+3C (5.109)

For a constant side load t, the nodal contributions will now be
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1

g =t Nd¢=0
1

g =t[ Nd¢=t

g3=tIJ:N3dC=O, (5.110)

a very pretty result.

5.9. Strain energy from shape functions

It is also possible to obtain the strain energy from the development
u, N 0O N, 0 N, 0 ..
= 5.111
Lz] [o N o N, o N, |7 G110
Applying operator 0 leads to

DN, 0 DN, 0 DN, O
e=\ 0 DN O DN, 0 DN;|g=Byg
D.,N, DN, DN, DN, D,N, DN,
(5.112)

an expression which seems more direct than the method exposed in sections (5.2.3.) and
(5.2.4.). However, each term of By is a polynomial whose coefficients have to be computed
analytically. Errors are here very likely and when existing, very difficult to detect in a written
program. In contrary, the monomial basis permits a complete automation of the computations,

avoiding so any risk of error. Moreover, there exist some complex elements in which the shape
function method is not feasible.
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CHAPTER 6

ISOPARAMETRIC ELEMENTS
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6.1. Introduction

Classical elements, as exposed before, suffer from severe limitations

a) There is no possibility to obtain a general quadrilateral element

b) The boundary, when curved, is badly represented by the polygonal approximation
which is unavoidable with classical elements. For this reason, second degree
elements do not converge as h’ but as h*2.

The solution of these problems may be found in coordinate transformations. Up to
now, linear or affine transformations were used implicitely. In fact,

- any triangle may be obtained from the unit rectangular triangle by the transformation
(fig. 30)

{x=x1+§(x2—xl)+n(x3~xl) A ©.1)
yE=n+E0, -+ -y) '

a fact that is often used in generation routines
- any rectangle may be obtained from the unit square by the transformation (fig. 31)

{x:xl+é’(x2~x1)+77(x4‘:xx) (6.2)

Y=+ =) +n(.-»)
- we already used oblique coordinates to develop a parallelogram element in section 5.4.

Is it possible to define a coordinate transformation from the unit square to a general
quadrilateral ? The answer is affirmative. One has to write (fig. 32)

{x=a, ra, b+ aun+a,ln 6.3
y=B+BRE+ B+ fién 7

with the conditions

x1 = x(0,0) = oy

% =x(1,0)=o; + oy

X3 =x(1,1)=a1 +(12+(l3+(14
x=x(0,)=o, + o3

from which

Ol = X1

Oy = X2 -~ X) (64)
O3 = X4 =~ X3

Olg = X3 - Ol - Olz- O3 = X3 - X1 = (X2 - X1) - (X4 = X1) = X1 - X2 + X3 - Xg,



~

91

2
0 >4 X
Fig. 30
n y
1
|
-
0 }‘g N5 X
Fig. 31
n y
/ N\
1
| 2
/
0 1 >§ > X




92

and similarly for y.

Moreover, a quadratic transformation permits to obtain a curved triangle from the unit
rectangular triangle (fig. 33). It is

X =0 + ot + oM + ol + osEm + oy’
Y= B1+ Baf + Ban + BaE? + Bstn + P’ (6.5)

The curved triangle is then defined by six nodes, and the parameters o; and B; are obtained
from the conditions

% =x(0,0) = o

X2 =%(1,0) = oty + otz + ol
x3 =x(1,0) =0 + o3+ 0

1 1 1
X, =X -5,0 =a, +T2—oz2 +Zoz4

and similarly for v.

In the same way, curved quadrilaterals may be obtained from the unit square by the
transformation (fig. 34).

X = 0y + 0f + otam + atf? + st + om0t n + o’
¥ =B+ Bof + Ban + Bal? + Bstn + Be*+ Botin + B’ (6.6)

where we let to the reader the task of defining the connection conditions.

6.2. General parametric elements

The fundamental idea is to write simultaneously the coordinates and the displacements
as functions of the reference coordinates (£,1), it is

X, =m (&)
T ©6.7)

ui = mu (5; 77) a

where r and a are vectors containing parameters. At this stage, three cases are conceivable.

a) Polynomials expressing the coordinates are less rich than those that describe the
" displacements. The element is said hypoparametric or subparametric.
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b) Coordinates and displacements are polynomials of the same form. The element is then
isoparameltric.

¢) Coordinates are polynommials more rich than those that express the displacements. The
element is then hyperparametric.

Recall that a convergence condition is that rigid body motions and constant strain mode

are represented exactly. This is equivalent to say that the following displacements have to be
present in the element :

u;
ui
ui

1
X,
X,
The first condition is fulfilled when the vector m, contains the constant function, which is

generally satisfied.

The second implies that the displacements can be equal to the coordinates, a condition which is
verified for hypo- and iso-parametric elements, but not for hyper-parametric ones. Finally, only
hypo- and isoparametric elements have to be considered.

6.3. Displacements and coordinates fields in an isoparametric element.

We will restrict ourselves to the description of isoparametric elements, which are the

most interesting ones and may degenerate in hypoparametrics by the proper geometrical
choice. We have thus

x, =m'(§,5)r ()

. (6.8)
U = mT(.fl,é) a (@)
with r(i) and a(i) of dimension n,. If Py, Py, ..., P,,q are the connecting nodes, let us note
and -
g6)" =, (P, (P, ) 7 (6.10)

The connection relation is
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m' (R)
y=| 1 |r@)=Cr() ‘ 6.11)
m' (P,)
and similarly,
q() = C a(i) (6.12)

These connection relations are of the same form as in classical elements, and it is conceivable,

although unusual in isoparametric elements, to use bubble modes for x and u. Supposing thus
C i:}vertible, one has

1(i) = C" y(i)
a(i) = C" q(i) (6.13)

6.4. Jacobian matrix

To compute the displacement gradients, the jacobian matrix defined by

9x 0%
. agl 652 614
i = 0x, 0x, (©.14)
9g 0¢

will be needed. One has

J' = [gradgxl, gradgxz] (6.15)
with, from expression (6.8),

grad,x, = grad,m” r(i) = Dr(i) (6.16)
where it is posed

D = grad,m” (6.16b)

Finally

1" =[Dr(1), Dr(2)] 6.17)

From this expression, it is possible to compute the jacobian det(J) and the cofactors cofj(¥)
which are necessary to obtain the inverse jacobian matrix by
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a1
b)= aay Y

6.5. Displacement gradients

Displacement gradients in terms of the &{'s are given by

grad: u =D a(k)

from which gradients in terms of the x;'s may be computed by

grad = JT gradeu, = 77 D a(k)

Let us define the pseudo-strain vector

. [gradxu,]
e =

gradxu2

One has

._[s™D 0 a 5

*Zl o Jp|la@|™™
with

B J'™D 0

| o J'D
and

a" =[a'(1), 2"(2)]

6.6. Pseudo-Hooke matrix and energy

(6.18)

(6.19)

(6.20)

(6.21)

(6.22)

(6.23)

(6.29)

The same procedure will be used as with the parallelogram in section 5.4. The classical

Hooke's relation

oy H, H, H,

s=\oy |=|Hy H,

5

) H, H, H,

(6.25)



97

is modified in
s=He , (6.26)
with
s = [o11 12 61202 (6.27)
and
Hl 1 H12 H 12 H 13
Hu - HZI HZZ HZZ H23 (628)
Hll HZZ H 22 HZB
H3l H32 H 32 H33
so that the strain energy density may be written
w =~1—s'Te" =~1-e'TH'e' =laTBTH'Ba (6.29)
2 2 2
The strain energy is now
W= [WdS= [W.det)dgds, (6.30)
5

Sraf

where S, is the reference element.

6.7. How to compute the strain energy ?

. The problem is now to compute the integrals that are involved in (6.30). In fact, the
functions I’ D which are contained in the development of e” (see 6.22) are of the form

%Z(—']-)—- , (6.31)
det J

it is, rational fractions. An analytical integration is thus not possible, and one has to use
numerical integration.

Any numerical integration formula is based on a set of integration points 1Py, IP,, ...,
1P, in the reference element and a set of corresponding integration weights IW,, ..., Wy, and
the integration scheme is of the form

| agde, =5 7GR (632)

S,-,zf k=
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The question to know what is a suitable integration formula will be discussed later. Let us
suppose that such a formula is available. We have to compute the matrix defined by

%= -;- " Ga (6.33)

which, from (6.29) and (6.30), is given by

G= [B"H BdetJd¢ ds, (6.34)
Sref

To perform this computation, a loop on the nip integration points is organized as follows

e SetG=0
e For k =1, nip
- compute the coordinates &y, £z of the point
- compute matrix Dy at this point
- compute Ji at this point
- compute det (Ji)
- compute (I
- compute By
- compute B H'B,
-set G < G +IW, B[ H"B,|det(J, )
endfor.

The only remaining task is to connect the element by the relation

[a(l)} _|c" o [q(l)} 635)
a(2) 0 C'|92) ’
T T
a c! q
from which
, ,,,az&:%_qrx:q (636)
with

K=CTGC™ 637
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6.8. One-dimensional integration schemes

6.8.1.- General considerations

A great majority of multidimensional integration shemes are based upon one-
dimensional ones, which have thus to be recalied here. Firstly, one may consider only one
reference interval ]0,1[ or ]-1,+1[, because

e by setting x = a + (b - a) £, one obtains

[ f@) de=@-a) fla+®-a) £1de (6.38)
e by setting x = 2 ;b +b_;g_ £, one obtains
‘[:f(x)dxzb;a.ljf[a;b—i-b;a.f]dé‘ 639)

Here, interval ]0,1[ will be used systematically.

The general idea of numerical integration is to replace the function f by some
interpolate f and to write

1=, fade~| Fae=T() (6.40)

The interpolate is in most case a polynomial of some degree n, defined by (n+1) interpolation
conditions

Fx)=fE) fx)=1(x,) (6.41)
the xi's being (n+1) points inside or at the boundary of the interval. The set {X,,...,%a} is often

called the interpolation support. From Lagrange's interpolation formula, one has thus

=2 L0 A (s (642
with
H (x~— xj)
L(x)= ﬁ—(?:-x—i (6.43)

J=i

From this follows
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[ Feyae= 2w s 0 | (6.44)

i=0

where appear the integration weights

W= L(x)de (6.45)

This is the general procedure.

6.8.2.- Degree of an integration formula

A good integration formula should be able to integrate sufficiently complicated
functions. It is customary to qualify this quality by the highest order of polynomials that are
integrated exactly. This is called the degree of the integration formula.

Any (n+1)-point polynomial formula is af least of degree n because any polynomial of

degree n is equal to its interpolate. But with some well-choosed supports, it is possible to

obtain a higher degree. Such formulae require thus less computations for a given degree, and
are therefore more economical.

6.8.3.- Numerical stability

When computing
T(H=], Feode=2mf(x),

any numerical error 5{(x;) on the computation of the values of the function leads to an error

5T (f),;iw,af(x,.) < i}]W,l 6fGe)

< g, this leads to

If |6 f(x,)

57| < 2| (6.46)

i=0

This result express the amplification of the error. Now, in the case where f(x) =1, one has
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I =T()=3W,=[ds=1 647)

i=0

so that the sum of the weights equals 1. Therefore, if all weights are positive,
2| =2 =1

and it follows from (6.46) that the error on the integral never surpasses the error on the

JSunction. In other words, formulae with positive weighis have o be preferred from a stability
point of view.

6.8.4.- Newton-Cotes formulae

Newton-Cotes formulae are characterized by uniformly distributed points, including
boundaries, it is,

degree 1 : x,=0, x;=1
degree2:x,=0, x, =

degree3 1 x,=0, x, =-:l—;~, ;cz-——

Note that these are the weights of an equally distributed side load with elements of degrees 1,
2o0r3.

Newton-Cotes formulae with an even number of points (nt+1) are of the normal degree
n. With an odd number of points, the degree is (n+1). This is due to the fact that any
polynomial of degree (n+1) may then be written in the form
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P =aH(x-—x,)+Rn_ a = scalar value

i=o

Polynomial R, is integrated exactly and when the number of points is odd, one has

[ TIe-xyd=0 and X7 [TGe-2)=0

i=o i=0
50 that the numerical integral of this polynomial has the correct value.

. From a given number of points, Newton-Cotes formulae exhibit some negative weights
and are therefore not stable.

6.8.5.- Orthogonal polynomials

For any degree n > 1, let us define the orthogonal polynomial of degree n, @y, as follows

e The coefficient of x" is equal to 1
e For any polynomial Py of degree k < n, one has

I (¢n,Pi) =0 (6.48)

a) Such polynomials exist. It is theoretically possible to construct them by the Schmidt
orthogonalization process

P, =1

1(x,0,)

AT e *

@ =x2_1(x27‘pa)¢ _I(x2’¢1) o
’ @) ™ g 7

and so on (practically, this process is numerically instable).

b) These polynomials are unique. In fact, suppose that @, and v, are two such polynomials.
Then

@, =x"+P_,, w,=x"+0_,
where P, and Q,.; are polynomials of degree (n-1). But this implies that

wn_'//nzl)n-! _Q—l =Rn——l’
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that is a polynomial of degree (n-1). Therefore,
o, ~v,Y |= 1@, ~vIR.)=Hp, R0, )~ (¥R, )=0
by the definition of @, and \y,. From which follows ¢, = w,.

c) All zeros of the orthogonal polynomials are simple zeros contained in the open interval

10.1[.

In fact, suppose it is not the case. Let us construct the function
g@=a]l&-x)

where I_[ is the product taken on all zeros of @, contained in the open interval which are

of odd multiplicity, each zero being only one time taken in account. With a proper choice of
a, it is possible to obtain

8(x) ®u(x) > 0 almost everywhere in 10,1[. (6.49)
Clearly, the degree of g(x) is lower than n. Therefore,

(pag) =0

But from (6.49) follows

I(¢ag) >0

which is contradictory.

Prove that ¢, =« i—n [x" 1-x" ], with a proper choice of coefficient .

6.8.6.- Gauss formulae

Let us use as an integration support the (n+1) zeros of @u.. This defines the Gauss
Jormula with (n+ 1) points which has very interesting properties
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a) The Gauss formula with (n+ 1) points is of degree (2n+1)

To prove this, let us remark that any polynomial Po,.; of degree (2n+1) may be written in
the form

Pont1 = Qa1 Qut+ Ry

where Q, and R,, the quotient and the rest of the division of Pz by @, are both
polynomials of degree n. Integrating, one obtains

I(Poe+1) = (@1 Qo) + I(Ro) = I(Rs) (6.50)

because @q; is the orthogonal polynomial of degree (n+1). Considering the numerical
integral, one also obtains

1) = I(pun 0.)+T(R)=T(R,) (651)
because the integration points are precisely the zeros of @,.;. Finally,
T(R)=I(R,)

because any polynomial integration formula with (n+1) points is at least of degree n.
So,

T(I)Znﬂ) =1(P,,,,)
which had to be proved.
b) All weights of Gauss formulae are positive

Les us consider the (n+1)-point formula. To point number i is associated the Lagrange
polynomial Li(x), which is of degree n. From the preceeding theorem, I, which is a
polynomial of degree 2n, is integrated exactly. But this implies

T2y =W, =I(1})>0

c) Gauss points and Gauss weights are tabulated in the litterature. Note that they are generally
defined on the interval ]-1,+1[. The correspondance is as follows. Let x; and W, are Gauss

points and Gauss weights on ]-1,+1[, and x; and W;, the corresponding points and welghts
on ]0,1[. The correspondance

-

.1
x=—+=x
2

leads to
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[r@a=if f(3rye) o

whose numerical traduction is
Sy = I b L)
- i il ™ 2 - i 2 2 ]

from which

(6.52)

6.9. Two-dimensional integration formulae

From Gauss formulae, it is possible to deduce high degree formulae in some simple
two-dimensional sets.

6.9.1.- Product formula on a square

On the square ]0,1[x]0,1[, one has

1=[ [ sy deay=| a fey) b

Using Gauss formula, one may write
1
I~ W] fx,0)d
and a second application of Gauss formula leads to
I=2 W2 W f(x,y,)= 2 W f(x,,) (6.53)
i ) i
With a (n+1) x (n+1) grid, this formula is correct for each polynomial of the Q.+ type.

6.9.2.- Product formula on a general quadrilateral

The general quadrilateral may be obtained from the unit square by the transformation
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X =0t + o€ + o + ot
y=p;+ B+ [3311 + BaEn

with (fig. 32)

{a, SX O =Xy — Xy, O =X =Xy, Ay =X~ Xy Xy — X, (6:54)

B=yi,B=y= Y. B=Ys= Y. B =0 =22+~ Vs
The jacobian of this transformation is

a, +a,n a,+a,

. detJ = B+An A +ﬂqj =(f - af) +(af - fay) E+(a b — ) 1 (6.55)

One has then

I= [ faeyydcdy= [fle@my Em)|detsdEdn

quadr square

and the numerical formula is
I=ww, f [x(é,nj), y(é,n,)] dim J (&,m;) (6.56)

Due to the presence of the jacobian which is a first degree polynomial, this formula is only
exact for polynomials of Q, type (one degree is loosed).

6.9.3.- Gauss-Radau formula on a triangle

A formula for the triangle may be obtained by setting in the preceeding one

Xg=xpand ys =y.

So, in (6.54)
{axthaz=xz"xna3=0=a4=x3"xz . (6.57)
B=yub=y-1.5=08=y;-y
The jacobian is now
detJ = (Cl4B2- B4(12) & (658)

The formula is formally identical to (6.56). This formula, of degree 2n, exhibits a very aesthetic
distribution of points (fig. 35), but it works.
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Fig. 35 : The a-esthetic distribution of Gauss-Radau points

6.9.4.- Other formulae

A lot of other formulae may be found in specialized books. Let us citate, on a triangle
of area S,

a) the one-point formula (barycenter, weight = S), which is of degree 1
{ b) using the 3 midsides, with weight S/3, one obtains a formula of degree 2

| ¢) the same degree is obtained with the points at 1/3 of the medians, starting from the
| vertices, each with a S/3 weight.

| Such formulae may be verified by trying to integrate 1, x, X%, Xy, y°, ... on a rectangular
triangle.

.6.10. What formula to choose for finite elements ?

| 6.10.1.~ Introduction

\ Exact integration of the stiffness matrix is not possible in the case of isoparametric
elements, because the functions that have to be integrated are rational fractions. Some
E integration error is thus unavoidable.
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At a first glance, the best choice would be to use very high degree formulae. But this
leads to a very expensive computation. The question is thus to define the necessary degree, it
is the least degree that does not destroy the results. This question has been investigated by
IRONS [18,19]. There are fundamentally two conditions, the first one referring to consistency
and the second one, to stability.

6.10.2.- Consistency condition

The idea of this condition is as follows. When the mesh is refined, stresses in an element
tend to be constant. To ensure convergence, it is thus necessary that for constant stresses, the
energy variation is calculated exactly. This conditions writes

6% =T (s" 6e) = I(s" 5¢) for any constant stress
or, equivalently,
T(Se)=I(e)

In other words, strains have to be integrated exactly. This condition is completely general and
applies to any element.

In the particular case of isoparametric elements, note that strains are certainly exactly
integrated if vector e defined in (6.21) is. Now,

Ouy oy O, 1 du,
aw =1 ag T aa N g
and
Ju, '
__.d —
ela;[enl 5xi S m]!cll d tJ i ﬁg dé
= [ COf,,(J) 5 dg o (659)
ref elt

Now, displacements and coordinates are of the same form, so that integral (6.59) is exactly
evaluated if and only if it is the case of

[ eafy(n=E a? d&ds, = [6,dets dg d, - (660)

refelt refelt

So, the integration formula has to be able to exactly compute the integral of the jacobian, that
is, the measure of the element (area or in three dimensions, volume).
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6.10.3.- Stability condition

The stability condition consists to require that the strain energy is positive for each
displacement that is not a rigid body motion. Let

Ty be the number of connectors
o be the number of rigid body modes (3 in plane problems, 6 in spatial problems)
njp the number of integration points
N, the number of strains (3 in plane problems, 6 in spatial problems).
Then, if all integration weights are positive, vanishing of the calculated energy requires ;=0

at each integration points, n;, * n, conditions. The number of these conditions has to be greater

than the number of straining modes, that is (ng - n;). So, a necessary condition for the positive
definition is

n,*n, zn, ~n, (6.61)
If not verified, there exists at least
no=n,—n —n, *n, (6.62)
spurious kinematical modes.

Note the crucial role of the fact that integration weights are positive. Negative
integration weights could also produce calculated strain energies that are negative | Therefore,
the use of positive weights formulae has to be considered as an absolute necessity.

6.10.4.- A celebrated example of spurious kinematical modes

Let us consider a rectangular element in plane strain, with displacements of the form

U= +ax+a,y+axt oy oyt +o,xty + oyt

— 2 2 2 2 (6.63)
V=0, + QX+ 0 Y + QX" XY Q)" + 05X Y + g XY

and using an integration formula with 2 x 2 Gauss points.

Displacement derivatives are given by

.= % +20,% + o,y +2a,%) + Ay’

du 5
;J;= o+ 0 X + 20,y + o, x” + 20Xy
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and similarly for v. These are second degree polynomials. The Gauss formula with 2 = (1+1)
points is able to integrate exactly polynomials up to degree 2*1+1=3, so that the consistency
condition is verified. What about stability ? One has

ng-n=16-3=13
np*n=4*3=12

from which, by (6.62), there is at least one spurious kinematical mode. It is relatively easy to
obtain this mode analytically. For this purpose, one may, without loss of generality, consider
the case of a square element and suppose that the integration points are x =% 1, y=* 1. We
have to found a strain mode that vanishes at these points. Let us try a solution of the form

Yy =0

£ =0 -1) gﬁ;f(x,y)
&, = -1) —j; 2(5y)

which visibly vanishes at Gauss points. One has

u=(y*-1) @), g;— =2y £ (x,)

Jv
v= (x2 - 1) g(x, ), e 2xg(x,y)

and the condition y., = 0, is verified by setting
fixy)=x, gkxy)=-y,

so that
u=x@y*-1), v=-yx-1),

a solution which is effectively of the form (6.63). This displacement field, which is represented

on fig. 36, is known as hourglass mode.
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Fig. 36 : Hourglass mode
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CHAPTER 7

FINITE ELEMENTS FOR PLATE BENDING
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7.1. Plate theories [23]

There are several plate theories differing by their hypotheses. However, all plate
theories have in common the a priori assumption

Gz =0 (7.1)

Bending being characterized by antisymmétry of the strain state in terms of z, two options are
common

- supposing that u and v are proportional to z and w independant of z. This is HENCKY's
theory [20], which in the frame of the preliminary hypothesis (7.1), may be considered as a
displacement model;

- supposing that G, Gyy, Gyy are proportional to z and verify equilibrium equations. This leads
to a true equilibrium theory, due to REISSNER [21,22].

Both approaches include shear deformations, which are known to be negligibly small for very
thin plates. We will thus refer to them as moderate thickness plate theories. The thin plate
theory, which was developed earlier by KIRCHHOFF [24], a priori supposes that shear strains
vanish. Kirchhoff's theory may be deduced from Hencky's or Reissner's one, by setting shear
strains equal to zero. This situation is illustrated by the following graph.

O=0
General hypothesis of plate theories

equilibrinum displacement
approach approach

| REISSNER's theory | [ HENCKY's theory |

ro shear effect

- |__KIRCHHOFF's theory |

Different theories lead to different finite elements. In this way, moderate thickness shell
elements may be conceived as an alternative to thin shell elements which are by far more
difficult to develop. For this reason, the following text will first develop Hencky's theory and
then, reduce it to Kirchhoff's theory.
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7.2. Hencky's theory

7.2.1.- General equations

The starting point is Hellinger-Reissner's principle in which the fundamental plate
assumption G, = 0 is set,

Ju av [611 av] (6’24 5w] (ﬁv ﬁw}
I[Ua—'*'cf Zar o | ot |+ T, o

y ox 7 3dy Ay Ox 8z Ox 8z By
1 1 1
“2E oL+o,— ZVO'HO”W)—EE;'T; —55732 -—Earyz |V + 2 star.
(7.2)
e Lo 0w

The absence of 6, in this principle suppress any condition on Er
Therefore, we are able to impose

w=w(x,y) (7.3)
Concerning displacements u and v, the following assumption will be made

u=zaxy), v=zpxy) (7.4)

This leads to

ou_,0a v 0 ou ov_ (08 o«
ox ox’ dy o"y ay x Jdy oIx
and

ou  Ow ow Ov 3w
—t—=a+

dz Ox ox Oz E)—/—ﬂ dy

Furthermore, the applied load will be supposed to be a normal pressure p, whose energy is

@ =~[ pwdS (7.5)

Let us first vary the stresses. One obtains the following stress-strain relations
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Ty (7.6)

Equilibrium conditions are then obtained by varying the displacements. Here, due
allowance has to be made to the fact that o,,w are functions of x and y only. If t is the
thickness of the plate, the weak form of equilibrium is

I[M ﬁ—gcﬁ M, %P [55%”%} [5 +@)+T [ﬁﬂ-»%;—w] PM]dSzO

s & @ & &
1.7
where appear the following resultants
112
M, o zdz
~112
/2
M, = 2 On? dz
2
M, o, zdz
-2
142
Y; = J.~r/2 T“’dz
/2 k o V
= J. 12 Yz (7’8)

The equilibrium equations are thus

oM, IM,

ot —> — Gy 5y +T, =
oM, oM,

B —>- dx 2y +L,=0
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(1.9

Derivating the equations, we supposed o = f§ = w = 0 on the boundary. Other cases will be
investigated later, To complete our analysis, direct relations have to be written between
resultants (7.8) and strains. For this, let us integrate relations (7.6). The following results are
obtained

£ oo 1
S P — WM
12 Jx E( = ”)
£op_1 )
128y E* ¥ =
£(da dp) 1
12[ﬁy+ax]'GM‘y
ox) G *
Jw 1 .
{ﬂ é,y] Ly, (7.10)

and admit the following inverse expressions,

3
v B (0, 0
120-v¥) \ ox  dy
3
M o=__E_[9B o
”o120-v)) \dy  ox
G (da 2P
L s e el
¥ o122 \dy ox
T. =Gt (a+@—J
ox
ow
T =Gt| p+— 7.11
’ (ﬂ 5y] 1D

It is also possible to write the complementary energy in terms of the resultants, as from
(7.6)
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— V—_—
1-v Ix dy
o = 0”,8 é’a _12z
” l-—v2 o”y Yox )T
da  Of) 12z
=G +
i [a"y a"xj i
ruzG[a+%J=?f
ow) T :
:G 4 = . 712
Ty [ﬂ o,,y] ; (7.12)
From this follows
112 [ ] t/2 T > 4 2 Ti_‘-z.;dz—
.[uz 2E 0= +0,, ~2v0,0, |dz + vz 2G +.[r/2 2G -
1 12 1
ME +M: —2vM —— ML +—\T?+T} 7.13
[Et( s ”M”) G 7 Gt(‘ ’)] (7.13)

This result leads to the following form of Hellinger-Reissner's principle.

J'[M % m a'B+M (ﬁ“ 5ﬂJ+T (aﬁl"—]w [ﬂ+ﬂJ}
3 Ox » 8y dy @& dx Ay

12

“_[th’ (MZ +M2 -2WM M, ) M;+—G!;(T3+T;)]dg-jpwdSstat
5

(7.14).

whose variations may be verified to lead to equations (7.9) and (7.11).

7.2.2.- Boundary conditions with Hencky's plates

Let us suppose that on a given part & of the boundary, w = o = § = 0, and that on%,,
loads are applied. What loads are compatible with the present model ? The answer is given by
the boundary terms resulting from varying w, o, B in (7.14), which are
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[[01n, + 0 ) S0+ (0, + M 0, ) 65+ (n.T, +n,T, Jow] ds
L) .

Therefore, it is possible to prescribe‘on S,

- Amoment M_ = M_n_+ M, n,, associated to dou

- A moment M = M_n + M n,, associated to 5B

Wy

-Ashearload T, =n,T, + n,T,, associated to dw

7.2.3.- Strain energy in Hencky's theory

Replacing in (7.14) Mg, My, My, Ty, Ty by their values (7.11), the following total
energy principle is obtained.

EF |(a BY . sadB| GPf(oa Y MY Y
S g 28 B 2 ol o5

stat. (7.15)

7.2.4.- Strain energy in Reissner's theory

Reissner's therory will not be developped here. For the interested reader, see SANDER
[23]. The only final difference is the replacement of the factor (Gt) in shear terms by a

5
somewhat lower one, it is (thJ . Otherwise, (7.14) and (7.15) remain valid.

7.3. Kirchhoff's theory

7.3.1.- Introduction of the so-called Kirchhoff conditions
For a given pressure field p, the equilibrium equations (7.9) implie
T,=O0(pL), Ty=0(pL) (7.16)
where L is a characteristic length of the plate. The moments My, My, My, are then of order

Mg = O(TL) = O(pL?) (7.17)
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From these orders of magnitude follow

M:,B -0 pz L4
e\ EF

TZ pZ LZ
a -0
Gt ( Gt

and, for a true plate (not a sandwich one!) where G/E = O(1), one observes that

2

— 2
M’ -O[Lz) (7.18)
Ef

This leads to the conclusion that when the plate is very thin, that is to say t*/L* << 1,
the energy due to shear loads is negligibly small, as compared to the bending energy.

Suppressing these small terms in (7.14) leads to
[|m. 22 m, 2 [ﬁ“ ‘9ﬂ]+T[a+iw-]+T[ﬂ+ﬁ—w]
T Ix ay dy Ox Ix dy
[ (M2 02 - 2an1\/1”) MZ ] ds - j pwdSstat (7.19)

where shear loads Ty and Ty appear as Lagrange multipliers associated to the following
conditions

6T, —>a+é’—w=0
dx

ow
57;—-),34-—&—};:0 (7.20)

which are known as Kirchhoff's conditions. It has to be realized that these conditions express
the vanishing of shear strains, not of shear loads! Shear loads remain different from zero and
equilibrium equations (7.9) continue to be valid, as it is easy to verify from (7.19).
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7.3.2.- Elimination of o and B

Conditions (7.20) allow the elimination of o and P in (7.19), which leads to

*w *w 3w [ 2 ]}
M 2 M Y o (M2 M2 -2 M ) ds
H & 7 > & 2| EP
~ [ pwas star (1.21)
5

Varying the moments now leads to the following relations

w12 :
AL N VY
ox* Ef ( = W)
P 12
ay* EP =
8w 12
-2 =oa My
&y Gt

which may be set in the inverse form

___.Eﬁ— (x +Vx )
=" a1-v7) A= A
M -—_l;_t?_( +y )
» S g—yy Hr TV
G
M, =T, (122)

where the following notations are used

Fw
Xx: = ax2
_ Fw
/‘Kyy - ayz
2

2, =2 ZC Of; (7.23)

The equilibrium equation is obtained by varying the displacement w in (7.21). The result is
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M, M, IM,
T ox*  “oxay 3y —P

=0 (7.24)

and is nothing than a combination of the three equations (7.9) where shear loads disappear.

7.3.3.- Boundary conditions in Kirchhoff's theory

Here lies the only true difficulty of the present theory. Due to conditions (7.20), it is no
more possible to prescribe independently w, o and § on the boundary. In fact, when giving w
on a connex part of the boundary, one implicitly gives its tangential derivative, and the only

derivative that remains independant is the normal one, éw/on. So, on S, only w and Sw/éh may
be prescribed independently.

In the same way, on S, the only loads that may be prescribed are the muitiplicators of

6w . . .
Sw and on A first integration by parts gives

2 2 2
.[ _Mno”iw_Myy56zw—2Mvé’5w s
5 ox oy Ixdy

6w 6w 26w aow
= —%_!; [Mzn, —(9T+M”,ny —Ey_+M‘yn’ 7y +M_n, g j ds

M, 86w M, 35w M osw OM, S5w
+ = + + + das
-[ [ dx Ox dy 8y dx Oy Jy ©Jx

=-] [(n M nM, )2

G

a6 1% Z
o b, ) 20 o] (1,227, 200 s

where account has been taken of the definitions (7.9) of shear loads.
Now, B . !

T
[ 1,9 7, 9%% ) s - jra wds — f T | swds
) x "’ dy Ox é’y
where

Ta=n Tx+ny Ty (7.25)

The last term will be equilibrated by the pressure. Terms on &, are thus
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| [naw (bt 00, ) 2 gow (n,M,y +nM,)o ‘5‘”} (7.26)

G

On the boundary, let m be the exterior unit normal and t the unit tangent vector oriented in
such a manner that (n, t, e,) form a dextrorsum referential. One may write

é’ﬁw_o”’é'w ﬁ5wt
&  an =VTar

é’é‘w_ﬁ&w a”é‘wt
& an v e

50 that

)2 _ 26w

o mM_ +nn M, )a"_+(n tM_ +nt M, )ﬁﬁw

(”an +n, M,

0w

28 55
(.M, + nyM”,)—;yz = (M, + M, ) ud

(ntM +ntM)

and the sum is equal to

déw oéw
M, on T an
with
M, =M_n? +2M_nn, +M,n’ (normal moment)
M, =M.nt +M,(nt, +nt)+M,nt, (torsional moment) (7.27)
This reduces (7.26) to

I[W_M"@_M",z@_}ds
& on ot

The boundary may be supposed to be composed (fig. 37) of a certain number of regular arcs
with corners. One has

55 nade(i+i ni
- IMnl —E—tl dS' = ~§ {[Mnlﬁw]na:; : _l.ﬁw ‘ }

@ arc
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Fig. 37

g — 35

~ dMnt

Fig. 38

Tee— w3
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oM
=+ 3 [Mnt(l-i-) -M,,(-) ]6w +j6w ﬁtm ds

r.
n i

so that one finally obtains
I[K Sw—M -&s—w}ds-;. % Z6m, (7.28)
@l a comars
where
oM,
= 2 7.29
K,=T+" (729

is the Kirchhoff shear load and
=M,()-M,(G) (7.30)

are corner loads. So, in Kirchhoff's theory, it is only possible to specify the normal moment,
the Kirchhoff shear load and corner forces.

7.3.4.- Thomson-Tait interpretation of the boundary conditions

This situation, however obtained mathematically (and our exposition is precisely
Kirchoff's one), is somewhat surprising. A physical explanation has been given by THOMSON
and TAIT [25]. As represented on fig. 38, due to Kirchoff's condition, a torsional moment is
equivalent to a couple of shear loads. A distribution of such couples is the equivalent to a
distributed shear load equal to the derivation of My, and two-end loads.

7.3.5.- Strain energy

Eliminating the moments in (7.21) with the aid of (7.22) leads to the following
expression of to total energy

EP 2\? 2,,.\? 2 2. \?
j aw 22 2T ROW vy | 2
2512(1-v?) oy ox” dy oxdy

] JdSw’ (7.31)

where use is made of the relation

__E
2(1+v)
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An equivalent form, which is often citated is

3 2 2,,\? ‘ 2., \? 2., 22
g=L]EL 22, 0W] 2q-n|| 22| -222% ) as+o (1.32)
2512(-v*) |\ ox* dy oxdy) Ix* dy

7.4. On the difficulty to generate conforming thin plate elements

The strain energy of thin plates containing second order derivatives of the
displacement, C'-connections have to be obtained. In other words, not only w but also

aw ow .
—and —— have to be continuous.
dx oy

. ow dw
Let us first consider a triangular element. Suppose that w, E’_ﬁ; are connected at

-the nodes (fig. 39). Then, on an interface, w is determined by 4 values, w;, w,,
17 17 ,
(a—:’] ,[—0,,—‘:] , the two last ones being consequences of the nodal gradients. The
1 2

displacement is therefore at least of degree 3. But if w is a complete 3d-degree polynomial,
Ow/on is of degree 2 and its connection necessitates 3 local values. The nodal values are thus
not sufficient, and a supplementary value, at the midpoint of the side, is necessary. The
connections are finally represented in fig. 40.

Generally speaking, a conforming triangle of degree k > 3 possesses the following
connectors :

- Nodal values of w : 3

- Nodal values of derivatives : 6

- interfacial values of w : 3(k-3)
a

- interfacial values of —ﬁ% : 3(k-2)

-~ This leads toa number-ng-of connectors
ng=9+6k-15=6(k-1) (7.33)
Now, the number of parameters of a complete polynomial of degree k is given by

n,= (k—+l)~2(k—+—2-)- (7.34)

but they could exist bubbles which are not connectable. These bubbles, being polynomials that
vanish with their derivatives on each side, are of the form



1 ” >
Fig. 39
e = displacement
—> = slope
> ‘|L P >
Fig. 40
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w=C!CIC2P, (7.35)

where C; = 0, C; = 0, C; = 0 are the equations of the three sides. The number of bubbles is
thus

n, =0 ifk<6

n, = ﬁﬁ.‘lz("‘_“) ifk>6 (7.36)

The following table may thus be established

k 3 4 5 6 17 8
1, 10 15 21 28 36 45
np 0 © 0 1 3 6

Ny 10 15 21 27 33 39
Ty 12 18 24 30 36 42
T 2 3 3 3 3 3

The number of spurious kinematical modes n, = ng- (n, - n) is visibly always positive. For any
value of k 2 6 it is given by

n, =6k——6—%(k2 +3k+2)+%(k2 —Ok +20)=3.

It is therefore impossible to construct strictly conforming elements of the triangular shape with
complete polynomials.

7.5. First remedy - Use of moderately thick plate elements

A first way to solve this difficulty consists to use moderate thickness plate elements.
Here, w, oe and B appear in the energy as first derivatives, and a C°-continuity for each field is
~—sufficient; The normal way is to use a polyinioiiial of degree K for w and polynomials of degree
(k - 1) for o and B, which must be close to derivatives of w.

The element of degree 3 for w is represented at fig. 41. It possesses 21 connectors and 1

bubble-mode for w, in place of the 12 connectors of a Kirchhoff element. Such elements are
thus more expensive. '

Such a supplementary expense could be supported if there were no other problem. But
precisely, for very thin plates, these elements are ill-conditioned because the stiffness
combines terms O(t) and O(t*) which are out of proportion.

Moderately thick plate elements are thus not a complete answer to the problem.
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-

Fig. 41

7.6. Second remedy - More than conforming elements

Another possibility is to use more than conforming connections. In this way, let us
citate an element which is often attributed to ARGYRIS [26] but seems to have been obtained
independently by a lot of authors [17]. The idea is to connect at each node of a triangle not
oty w, 22 %yt aiso T _TW_ O

YW ax oy B0 5 e ey a0

ow
On each side, the displacement is thus defined by two values of w, two values of —— and two

2

78 ow .
values of _5-th , that make 6 values. W has thus to be of degree 5 at least. For —0,,-"-, which is
aw @ w ) ..
then of degree 4, one has 2 values of —— and 2 values of , that is, 4 conditions only.
on andt

17
One supplementary value of ﬁ—: has thus to be added at the midsides. This leads to 3 x 6

nodal connectors and 3 midside slopes, i.e. 21 connectors. But this is precisely the number of
parameters of a 5th-degree polynomial (fig. 42).

This element is clearly more than conforming, as second derivatives are connected at
the nodes. This extra-conformity has no bad effect when the solution is very regular. But in the
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case of irregular solutions, which are common with concentrated loads or when the thickness
of adjacent elements are different, more than conforming elements converge slowly.

w00 ow v Fw Fw
iﬁl@’&216x@]1@12

—_— slope

Fig. 42

7.7. Third remedy - Assembled elements

7.7.1.- FRAEIJS de VEUBEKE - SANDER quadrilateral

Suppose that on each side of a quadrilateral element, the displacement is of degree 3
and the normal slope of degree 2. The exactly conforming connection, as represented on fig.
43, requires 16 connectors. This is not possible with a unique third degree polynomial. But it
becomes possible by a assembling 4 subelements in a special way.

Complete polynomials may be defined in any cartesian system, even in.oblique axes. Let.
us choose the two diagonals as axes. These diagonals cut the quadrangle in 4 triangles (fig.
44). In triangle 1, a complete third degree polynomial will be used,

Wi = 0Ly + 0K + Oy + 0Lgx® + 0lsXy + Olgy” + otsx + o2y + aloxy” + cliey” (7.37)



131

B A

> ” . .,

Fig. 43 Fig. 44

The conformity condition between element I and II imposes the continuity of w and its
derivatives. Consequently, if wyis also a complete third degree polynomial, it is of the form

wp = wy + yz (otrs + olizx + agay) (7.38)
Similarly, on triangle III, the only admissible form is
Wi = Wy + X* (014 + OlisX + CLigy) ’ (7.39)

On triangle IV, two conditions have to be fulfilled. The first one is conformity with triangle II,
which imposes

wiy = wy + X (B1 + Bax + Bay) (7.40)
The second condition is conformity with triangle III, from which

Wiv = Wi + ¥7 (71 + ¥a% +73) (7.41)
But these two conditions are fulfilled by the following expression

Wiy = Wi + ¥ (0l + oax + usy) + %7 (Clia + olisX + oLigy) (7.42)
(and one easily verifies that this is the only solution). Finally, one has obtained a composite

field which on each side is of degree 3 with 2d-degree normal slopes, and which possesses

eactly 16 degrees of freedom as required. This pretty element is often referred as CQ element
(Conforming Quadrilateral).



132

7.7.2.- Practical generation of the CQ element

Practically, it is by far more easy to use cartesian coordinates. The strategy is then as
follows (fig. 44bis).

subelement

Fig. 44bis

(i) In each subelement, use a complete cubic, and as connectors, the displacement and the

slopes at each node, and the normal slope at the exterior side only. This makes 10
connectors, for a 10-parameter field.

(i) After assembling, express the three interior values w,, Wy,, Wy, t0 obtain continuity of the
slope on three interior interfaces, say interface I-II, interface I-III and interface III-IV.
The slope continuity on the 4th interface will be automatically satisfied!

This procedure requires of course some justifications. First of all, is the connection matrix of
each subelement invertible 7 As it is a square matrix, we have only to prove that the condition
q = Ca = 0 implies a = 0. Let us take the internal node as origin of the axes. The equation of
the exterior interface is of the form (fig. 45).

Fig. 45
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Cixy)=1+Ax+By=0

with A = 0, B = 0. Due to the fact that all connectors on this interface vanish, the displacement
is of the form

w=CHa, +a,x+a,))

We have thus at the origin
C,(00)=1; [éﬁj =4; (é-c—‘] =5
dx ° \ 5-)) 0
and
w,=q

W = [ZCIA(a, +a2x+a3y)+C,za2]a =24a, +a,

W, = [ZC,B(a, X+ a3y) +C? a3]a =2Ba, +a,
from which
0L = Wo, O™ Wyo-2 AW, 03 = Wy - 2 Bw,

It is clear that W, = Wy, = Wy implies o = oz = 03 = 0, that isa = 0.
So the connection matrix is a regular one.

The second question is to prove that the connection of the midside slopes on three
internal interfaces only is sufficient. Let us suppose that this connection is made on interfaces

I-II, I-HT and II-IV. Reasoning in oblique axes, one has thus exact compatibility at these
interfaces, so that (fig. 44)

wn = wi + y* (0 + ox + 0lzy)
wm = Wi + X% (0ls + OisX + Olg)
Wiy = Wi + X (07 + QaX + Oley) = Wi + ¥ (0t + 00X + 0ay) + X (07 + otgx + clsy)
and we have to prove that the compatibility between triangles III and IV is achieved. One has
Wiy - Wi = X" [(0t7 - 0te) + (0tg - ts) X + (0tg - 0tg) Y] + ¥ (01 + 0zX + tay)

and this function should vanish with its derivatives on the interface III-IV whose equation is
y = 0. Firstly, connections at the central node and at node A implie the continuity of w and

S .
5 X 0,
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(Wn - Wy =0 = X [(ot7 - 0lg) + (0lg - 0ts) X] =0

whatever x, and this implies
Ol7= 04, Olg ™= Ols

7
We have now to consider the jump of —5-% , which is

é’w", ﬁww ) )
[ oy dy M"[" (@ — o) +20,y + 20,39 + 32y ]

=0

=x* (2, — )
But at point A, x = x, and the slope is connected, so that

S ACELAELY

e e . ow
which implies ol = o, it is to say that -a—; is connected.

7.7.3.- Assembled triangle of HSIEH, CLOUGH and TOCHER [29], fig. 46

This element, sometimes referred as the HCT triangle, consists to subdivide the element
in three triangular subelements. The procedure is the same as described in section 7.7.2., and
the three values w,, Wy, Wy, are choosed to obtain slope continuity on the three interior
interfaces. It seems that this element, hower simpler than the CQ element, was discovered
later.

Fig. 46

- P
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7.8. Fourth remedy - Non conforming elements _

The last way to overcome the difficulties encountered in plate elements consists to use
non conforming elements. Very effective elements have been developed in this way. Their
study will be made in chapter 8 where the general theory of nonconforming elements is given.

7.9. The singularity theorem

Confronted to very sophisticated elements as the CQ or the HCT, the reader probably
will ask the following question, is such a complication really necessary 7 The answer lies in
the following singularity theorem, which says that it is impossible fo generate a conforming
plate element with a displacement field which is of the C*-class within the element.

In fact, consider (fig. 47) a node A of a conforming plate element. Adjacent sides AB
and AC will be taken as axes. Due to conformity, on AB, dw/8y may be imposed to be equal to

any function @(x). Similarly, we may suppose that on AC, dw/dx = y(y). No correlation exists
between ¢(x) and y(y). But this implies that

Z (dw
-onAB, 2| 2 |~ p
on ’5x£ﬁy] @'(x)

2 { ow
- AC, — | — =y
on ’o"y[a”x] ')

Fig. 47

and, at point A,
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g (ow)_ |
5[5;}-(0(0)

sgy(ow) |
2(%)vo

Due to the fact that @(x) and y(y) are independent functions, one obtains

o (ow)] [o(ow
Ix\ dy . Loy Ix )|,
so that w is not of the C?-class. This is why an element subdivision is necessary to obtain strict

conformity.




CHAPTER 8

NONCONFORMING ELEMENTS
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8.1. Introduction

The classical Rayleigh-Ritz code imposes conformity between elements. From this
point of view, nonconforming elements may be considered as "variational crimes"”, as said
STRANG and FIX [32]. However, due to the difficulty to ensure conformity in some cases,
e.g. in plate elements, various nonconforming elements were experimented. The overall result
was that nonconforming elements may and may not converge. The fact that some elements do
converge was not explained until B. TRONS presented his now celebrated patch test [31]
which permits to determine if convergence will or will not occur. This was the starting point of

“the development of a wide class of useful elements.

8.2. ADINI's element [36]

It is a rectangular plate element with the following displacement field
W=, +aX + Y + X+ axy + oy + o’ + apxty +agyt +agy + o Xy +apxy’

8.1

174 74
The connectors are the values of w, ——%and —5-1;— at the four nodes (fig. 47bis), and their

number is thus twelve also.

'

N7

vV

Fig. 47bis

On each side x = ct or y = ct, the displacement is a third degree polynomial, and is

at

dw ..
connected by two values of w and two values of ——. Thus, the continuity of the E
displacement is guaranteed. This is not the case for the slopes. In fact,

Sy~ +2a,X + agy + 30, +2a,xy + a,y° +3a, X7y + a,p’

and for a constant x, this reduces to
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w 2 2 2 3
e (&, +2a,x +3a,x%) +(@; +2a% + 30, X7 )y + @ )° + @,y 3.2)

ow
dx

of a side (x = ct) cannot ensure a unique value of the slope. So, this element is not conforming,

but experiences show that it always converges in the rectangular shape (not for a general
quadrilaterat).

that is a third-degree polynomial of y. It is clear that the two nodal values of at the ends

8.3. WILSON's element [35]

In contrast with Adini's element which was nonconforming because exact conformity is
difficult to obtain with plate elements, Wilson's element is basically a conforming element in
which nonconforming modes are added to improve the results.

Y777

Fig. 43

The idea is as follows. When using first degree (Q;) elements to represent a beam
submitted to transverse loads (fig. 48) very bad results are obtained, because these elements
cannot reproduce any curvature, so that vertical displacements are necessarily related to shear.
And it is well known that with beams, shear effects represent only the small part of the
deformation (this effect is now referred as shear locking). A solution will be to use second
degree elements, but this leads to a greater number of degrees of freedom. Moreover, the use
of interfacial degrees of freedom involves a greater sophistication of the software. For these
reasons, Wilson added two internal nonconforming modes on each field, writing (fig. 49)

u = oy + ox + oy + olexy + Bix(x - a) + Bay(y - b)
V=05 + oleX + oty + otexy + Pax(x - a) + Bay(y - b) (8.3)

The “internal" parameters Bi are then condensed such as bubble modes. Surprisingly, this
element converges when rectangular, and leads to very better results than the original Q,
element. It does not converge for other quadrilateral shapes.
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Fig. 49 : The nonconforming modes of Wilson's element

8.4. MORLEY's element

A very simple triangular plate element has been proposed by MORLEY [37], in which
the displacement is approximated by a second degree polynomial,

W = 0l + 00X + Ozy + 0LX” + OlsXy + Oy’ 8.4)

The connectors are (fig. 50) w at the nodes, at the mid-sides. Here, the displacement

w
an
itself is discontinuous. This element also converges, although exhibiting for coarse meshes an
excessive flexibility.

It has however to be said that this convergence result caused no surprise because this
element may be re-interpreted in the frame of the equilibrium approach.

w
2d degree

Fig. 50 : Morley's element
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8.5. Conforming and nonconforming parts of displacement traces on an
interface

Considering the interface between two elerients (fig. 51), the traces on this interface of
the displacements of each element are different. However, partial connections always exist. Let
us define the conforming part of the displacement v; as the simplest interpolation of the
connected values. It will be noted ¥,. It may be considered that ¥, is connected between the
elements. In contrary, the difference

Av, =y, -V, (8.5)

differs from one element to the other. It will be called the nonconforming part of the
displacement.

Fig. 51
Some examples will make these new concepts perfectly clear.

a) In the case of Adini's element, the displacement is continuous, so that w =W, Aw = 0.
Concerning the slopes, nodal values are connected. On a glven interface, say a vemcal one,
the slope may be expressed from (8.2)

@ =B+ Bay + Bay” + Bsy’
The two nodal values, correspondingtoy=0andy = b are

Qa1 =P
@n2 = P1 + Bab + Bab® + Bsb?

The simplest interpolation is thus
=B +By+Bby+Bby
This is the conforming part of the slope. The difference
Ap, =0, -3, = B, ~by)+ A ~b7)

. is the nonconforming part of the slope.
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b) In the case of Wilson's element, one has on a vertical side, from (8.3),
u=y1+vy+By(y-b)
and this displacement is connected at y = 0 and y = b. Here, the decomposition is trivial,

U=y +yy
Au= B,y (y—b)

c) In the case of Morkey's element, both w and @, are discontinuous on the interfaces. If s is a
local coordinate on an interface, varying from o to |, one has

w =Py + Bos + Pas”
with connections at the two nodes, where the values are

wi =P )
wy = B + Bl + Bsl?

The conforming part of the displacement is
W=w, +§w2 =+ A5+ Blis

and its nonconforming part is given by
Aw=w—-#= B (s* -sl)

Concerning the slope, its general form is
P =V VS

and the only connected value is

I
¢12=¢n(1/2)=71+7’2_2'

The conforming part of the slope is here constant,

- 1
P =" ‘*“7’25

and the nonconforming part is

~ /
A¢n =Wn~¢n 27/2 (S__Z_J
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8.6. Applied loads on interfaces

Here, the only simple way is to apply the interface loads not on the total displacements
but on their conforming parts. The work on S, will thus be

[ti.as, (8.6)
S2
and not

J'Zu,.dS
S2

As an example, a constant normal moment on a side of Adini's element will be reported in two
equal values at the end nodes of the side. This is the easiest way and we will see, when
discussing the patch test, that it is the only correct one.

8.7. The patch test

The question of convergence’ of nonconforming elements remained obscure until
B. IRONS [31] proposed the patch test. This test will be introduced here as a necessary

condition of convergence.
8.7.1.- What kind of convergence may be expected ?

Engineers are generally concerned by a stress convergence. Finite elements never
guarantee a local convergence, but a root mean square convergence. That is to say, a finite

element stress field o, coming from elements of side h approximates the exact stress field o,
at an order A"if

172
-V -ei)a] <

with some constant C not depending on h. Using the L’-norm notation,

ol = [oy0ua7 .
v

the above condition writes
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"0' - o*""y <CH'VV? 8.7

8.7.2.- The nonconforming equilibrium equations

In a nonconforming finite element model, whose displacement variations du!' will be

noted v/’ for brevity, the stresses o, are obtained from the weak equilibrium conditions (e =
element)

Zja"D vidy — ZJ' fiviav - jz VS =0 (8.8)

If the displacements were conforming, these equilibrium conditions would be exact, that is,
also verified by the true stress field. But with nonconforming elements, the weak equilibrium
equations are perturbed, and this is why the solution may or may not converge. The
equilibrium error as computed by

ZJ'O',JD]v"dV -Y [ fvlav - [i5'ds (8.9)
LA 57
is a measure of the disturbance due to non conformity. It may be interpreted as a consistency
error of the model.
8.7.3.- Necessary condition for convergence

Let us suppose that the approximate stresses 0',;.’ converge to the true stress field o;; at

an order r. From Schwarz-Cauchy inequality, this implies for each v*,

zj o, —ol)Dvray <|o-o"|, |pv'|, <crv|ovi,

where use is made of the notation

|pvifl => [DytDyiav .
Now, from the weak equilibrium conditions, this reduces to
Elo,v")<C hV Dy, (8.10)

that is a condition on the equilibrium error. It may be proved that this condition is also
sufficient, but the proof will be omitted in the present text.
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8.7.4.- The equilibrium error as an incompatibility work

The first term of the equilibrium error may be integrated by parts in each element (recall
that v/ is discontinuous at interelement boundaries), leading to

zja,;'D,v"dV Zjaunjv, dS - zjv"D o dV (8.11)
Now, in the boundary term, v/' may be decomposed in conforming and nonconforming parts,
J.aunjv, dS = Z j o,n'dS +Zja n, AvhdS (8.12)

The element boundaries may be on S;, on S;, or interelement boundaries I, so that

jo—,, n,vds = Io‘u n, ds+javn,v,"d5+):j[ oyn,) +oym,) |ords  (813)

where on interfaces, indexes + and - are used to note the two adjacent elements. Assembling
results (8.11) to (8.13) and taking in account the equilibrium equations

Do, +f, =0inV
n,o, =t onS,

(n;0,), +(n;0,)_ =0 on the interfaces

«

and the kinematical conditions ¥ = 0 on S, one finally obtains

Elo,v") j oAV = (8.14)

that is the work of incompatibililty on the true stress field. This work has to converge to zero
when the mesh is refined.

8.7.5.- The element patch test

How is it possible to verify this condition ? Here appears the patch test. Suppose that
Jor each element, the incompatibility work vanishes for each stress field &, which is a
complete polynomial of degree (r - 1),

j'crn AVidS =0 Y&, eP,, (8.15)

One says that is passes a patch test of order (v - 1).
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Then, supposing that o; is of class C", take as 6’,, the (r-1) order Taylor development of o;
round a given point of the element. It is well known that

n -
|o*ij. -o‘,.j| <Ch ine,

and this implies

< +

J' o, n,Av}dS|
e

[(o; - 6,)m,av}ds
e

[6,n,8v}aS
&

h

fc,n,avtds
e

where a h' factor effectively appears. This is the fundamental idea of the patch test.

8.7.6.- A more complete proof

The above argument is not complete, as doubts may remain on the actual order of h. In

fact, the number of elements is ¢ (—h}{J for plane problems and & [ZIB—J in space, so that by

summing the element contributions, the #(#") could well be destroyed. Fortunately, it is not
the case, at least under certain conditions which are generally verified.

a) Firstly, one may write

Cymyav| < (CamCim, )2 (aviavt)” < c,(aviav)” (@

b) Let us now consider Av" . It is the difference between v and its interpolate ¥ which is of
the form

‘7'_,, = Zquk

where [, are interpolation functions and ¢, generalized displacements verifying
< C h
lqk| 5L, max v,

so that
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~h
|v, | <

2L
k

C, max
e

v,"l =C, max
¢

Ul
v

and finally,

|Avi”| < \v,"| + |Vi"§ <+ Cz)mcax

v,'" =C, m?.xlv:‘ \ (®)
that is, A is a bounded operator for the L"-norm.
This, however, is not sufficient. One has to assume that Av! =0 whenever V! is a
constant on the element. This is generally the case in practical applications. Then, choosing
some point P, in the element, one has

avy = APl v (B)

and from (b),

[avi < Cpt =9 (R

But it is clear that

vk = v (B)| < 1 max |grad vf| < h max(D,vD !}

so that
‘Av{" <C, mcax(Djv,."Djv,.")/2
and
(aviav)™ < C,3 max(DyD )" = C; max(D v D) ©
We now use the fact that the set of displacement variations v/ on the element is a finite

dimensional space (that is v' depends on a finite number of parameters). It is a classical
result that on such a space, all norms are equivalent. So,

/2
max(D,v/D,p! )" SC{%I va:'va!’dVJ =cr. ), @

where the dimensional factor ¥, ''* is necessary in order to obtain a C; constant which
does not depend on h.

) Assembling results (a) to (d) and integrating on the element boundary, one obtains
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[cnavias <C v Dy .S,
e

L]

where S, is the measure of the boundary. Now, for reasonably shaped elements,
Sh<CV,

so that
K [Cyn,AvidS < V!> |Dv'|,

. [:5]

Finally, summing on the elements leads to

g = CshrZ(V:Iz”Dvh

V’

12
2] =GV |Dv*

el (2

which is precisely the requirement (8.10) for a #” — convergence of stresses.

8.7.7 .- The case of fourth order prdblems

The case of fourth order problems, which arises with Kirchhoff plates, may be treated in a

similar way. The only difference is that Aw” has to be zero for any linear w”, which is also the
most general case.

8.7.8.- Applications
Practically, two cases are possible.

a) The patch test is verified at the element level, due to a compensation between different

~—interfaces-(element patch test): We-will-see-that it is-so-with-the elements of Adini-and

Wilson. In this case, the patch test depends on a particular shape of the element (here
rectangular) and is not passed for other shapes.

b) The patch test is verified interface by interface (inferface patch test). In this case, the shape
of the element is arbitrary.

[A third case also exists, where the patch test has to be made on a patch of elements. This rare
case has no really useful application, because it leads to severe restrictions on the obtainable
structural shapes (Zienkiewicz element, [17])].
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Note finally that the due work compensation on S, leading to (8.14), necessitates that
surface tractions 7, are applied on the conforming part of the displacement, as prescribed in

section 8.6.

8.8. Patch test on ADINI's element

The first step in verifying a patch test is to isolate the nonconforming part of the
displacement. In Adini's element, the incompatibility is only relative to the slopes. On a vertical

side, the slope is by (8.2)

w 2
e (e, +2a,x +3a,x?) + (@ +2a,x + 32, x*)y + ay* + a,,)°

It is connected at both ends, it is, at y = 0 and y = b. These connections imply the continuity of

L . aw .
the linear interpolation of ey which is

~

= (@, +2a,x +3a,x* )+ (a, +20,x +3a,,x2)y + a,by + b’y
ax 2 4 7 ] 8 11 9 12

Consequently, the nonconformint part of the slope is

ew Ow oW 2 3
—— e e = - ~-b*
Aﬁx ox Ox a,(y* -by)+ o, (y y)

Similarly, from (8.1),

ow _

oy =% +asx +2a.y + oy x® + 20,5y +3a,, )" +a,,x° +3a,%9°
and, on a horizontal side, this may be written
w 2 2 2 3
—0,,—))— = (o, + 20,y + 30,y ) +(a; + 20,y + 3,y )x + o X" + oy x

If the side is of length a, the linear interpolation, which is connected, is given by

a3y (@, +2a,y + 30,07 ) + (o + 20,y + 3,17 )x + apax + a, a’x

and the nonconforming part of the slope is

(8.16)

(8.17)

(8.18)

(8.19)
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7] ow
ow _2ow oW = a (x* - ax) + @, (x* —a’x) (8.20)

Considering a constant moment field '(Mxx,‘ M,,;, My), let us compute the
incompatibility work, with the aid of fig. 52.

4 T 3
\ I
n n
bl <] =~ s
a
Y
X |
1 l/ n 2
Fig. 52
a) Interface 1-2
n=(0,-1) M,=M_nl+2M nn +Mnl =M,k

PEANNA

dn dy

ds =dx
g, = —EMW [ag(x2 -ax)+a,, (¥ —-azx)]dx (8.21)
b) Interface 2-3
n = (1,0) M, =M_

dw_ ow

- dn -~ dx

ds=dy
(8.22)

Fy = [ M, 0 - by +a, (v - 57p)] dy

c) Interface 3-4

n=(0,1) M, =M,
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aw ow
dn =4A dy
ds=-dx

g, = —j: M, [cz8 (* —ax) +a, (x* - azx)] (~dx) = j: M, [a8 (x* —ax)+a, (x° - azx)]dx

=& (8.23)
d) Interface 4-1
m= (-1,0) M, =M,_
aw ow
Aon Aox
ds=-dy
Fy =~ M, ey 0" ~0y) + 2, (v -5 (-d) = -2, (8.24)
Consequently,
T=F,+3,+F, +9,=0 (8.25)

and the patch test is passed. Analyzing this resuit, one finds that it is due to the fact that the

. - 17 . ow
incompatibility Aﬁ—j does not depend on x and symmetrically, A—a-; does not depend on y.

8.9. Pach test on Wilson's element

In this case, the nonconforming parts of the displacements are

- on a horizontal side :

Au =By x(x - 2) Av = B3 x(x - 2) ‘ (8.26)
- on a vertical side :
Au=PB,y(y-b) Av=B4y(y -b) (8.27)

Considering a constant stress field (o, Oy, Ty), the incompatibility work may be
computed as (fig. 52)
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a) Interface 1-2

n=(0,-1) tx = MOy T DyTuy = = Ty
ty = NTy + 0,0y = - Oy
ds=dx
%y =~[Te B+ 0,8.] 5~ a) a (8.28)

b) Interface 2-3
n=(1,0) tx = Ox

ty = Ty
ds=dy

Ty =~[ o, + 7, 8,190 -8) &y

(8.29)
c) Interface 3-4
n=(-1,0) t = Ty
ty=oy
ds=-dx
Gy = —Jj [Txyﬁl + O'yﬂx]x(x —a) (~dx) = -4,
(8.30)
d) Interface 4-1
n=(-1,0) te = - Ox
fy = - Ty
ds=-dy
,,,,, % =[lopreplste-0) )=,
(8.31)
Summing these four contributions,
T =, + I+ T, +, =0 (8.32)

and the patch test is passed. Here also, the success is due to a compensation of the
contributions of opposite sides.
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8.10. Patch test on Moriey's element

Here, an interface patch test may be done. Considering a constant moment field (M,
M, Myy), the corresponding boundary loads are

- the comner loads Z; = A(M,,)
- a constant M, on each side
M,

-azero K =T +
n n at

The incompatibility work on an interface 1-2, say, is

o

F=Z,0w, +Z,Aw, + M, [ A
o

ds (8.33)

But precisely, Aw;= Aw, = 0 as the displacement is connected at the nodes. Furthermore, as w

aw
is of degree 2, M is of degree 1, so that at the midpoint of the interface, the connected value

is

[@] -1 @mow
on midpaint 112 ® on

from which follows

j‘”A@ ds=0
M Jn

and an interface patch test is passed. Comparing to the two preceeding examples, one can see

that here, the work is zero for each interface, not from a compensation between different
interfaces.

8.11. Systematic development of nonconforming plate elements which pass
the patch test

Systematizing interface patch-tests, FRAEIIS de VEUBEKE developed a very effective
family of nonconforming plate elements [33].

8.11.1.- Elements passing a patch test of order 0

Considering a constant moment field, the side forces are
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- corner forces Z,
- constant normal moment M,

The work of incompatibilities of an interface 1-2 of length 1 is then

o
Z,0w, + Z,hw, + M, [, Aﬁ—:ds (8.34)

It vanishes if and only if

Aw; =0, Aw, =0

A——ds=10

1w
-L on

and these conditions are fulfilled if the following connectors are used

- nodal displacements

. 1pdw
- mean interface sl -} —ds
mean interface slopes IJ: o

These connections may be defined whatever the degree of the interior field, loeading to a O(h)
convergence. The triangular element of this family, FDVTO, is represented on fig. 53 (— are
mean values of the slopes). It requires at least 6 internal d.o.f, it is, a second order field. It is
equivalent to Morley's element. More interesting is the quadrilateral version FDVQO (fig. 53)
which, having 8 connectors, requires a 3d-degree displacement. There are in this case two
bubble modes, whose definition is somewhat difficult. This question will be considered later.

Fig. 53



8.11.2.- Elements passing a patch-test of order 1

The side forces corresponding to a first order moment field are
- corner forces Z;
| - linear normal moment M"=(1-§JM"1 +§M
f - constant Kirchhoff's load K,

On an interface 1-2, the work of incompatibillities is then

ZAw,+ Z,hw, + K, [ Awds + M., j'(1——)A?;lds M, ";A%w—ds
o n

Its vanishing supposes

Aw; = 0 — connect w,
\ Aw, = 0 — connect wa

! 1p
L Awds:O—)connect;Lwds
ﬁw 1 Bw
\! L (1 —I-J A_a" ds = 0~—>connect—l—_[ (1__] _a_n_dg

[I;—A%vzds 0 — connect- I “;?:

There are then 5 bubble modes.

| I S | ® . local vatue of w  F DVQ1
i $ $ o] mean value of w
_— - FDVT1 ~-©~>  mean values of the slope

Fig. 54
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(8.35)

| Elements of this family exhibit a O(h’) convergence, comparable with CQ and HCT elements.
E The triangular version (fig. 54) makes use of 12 connectors. A fourth-degree displacement

field (15 parameters) is thus necessary, and implies 3 bubble modes. The quadrilateral version
| involves 16 connectors, so that a Sth-degree displacement field (21 parameters) is necessary.
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8.12. Plane shell elements

Plane shell elements are obtained by combining a membrane element to a plate element.
In order to obtain 3-dimensional connections, it is first necessary to convert the plate slopes in
rotations, by the following rule (fig. 55)

ow aow
v =_Z2¥ 8.36
- dy P dx , (8.36)

Unfortunately, conforming plates and conforming membranes are not suitably
connectable at a right angle. Fig. 56 illustrates the possible opening of such a connection which
is by no means compatible. The reason is visibly the use of node rotations in the plate elements.
This very discouraging result was the state-of-the-art before the development of the
nonconforming elements described in the preceeding section (if one excepts one mixed element
due to IDELSOHN, [39]). Precisely, these elements have displacement connections that are
not very different from those of membrane elements. This was the starting point of the
development of nonconforming membrane elements by SANDER and BECKERS [34].

8.13. Non conforming membrane elements

Here, the simplest interface patch-test, corresponding to constant element stresses, is
on an interface 1-2

t, [' Au, dS =0 (8.37)
with
4 = njo;

It is trivially verified if the mean displacement value

_ g
i = -I-L u, ds - (8.38)

is connected. However, as illustrated on ﬁg"."57, such a connection is insufficient, as the
possibility of scissor-like displacements remains. Ellipticity, it is the fact that the energy is
positive except for rigid body motions, is thus not guaranteed.



157

z
/1\
ow y
oy
ow
Ox S
/:> Oy -
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Fig. 55 : From slopes to rotations

2

£

W
J

Fig. 56 : Possible opening between plane shell elements
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(/)

9

MV

Fig. 57

The easiest way to ensure ellipticity is to connect the nodes. So, if node connections
are combined with mean interface values, an element will be obtained which simultaneously
guarantees ellipticity and passes the patch test. Comparing with finite difference shemes, the

patch test may be viewed as a consistency condition and the elhptlcxty is to be interpreted as a
stability condition.

The triangular element SBTO aobtained by this way is represented on fig. 58. ts 2x 6
connectors require displacement fields of degree 2 at least. At the second degree, this element
is conforming and exhibits a O(h®) convergence. At higher degrees, it is nonconforming and its
order of convergence reduces to O(h), from it passes a patch test of order 0.

The most interesting fact is that.a quadrilateral element can be developped by the same
technique. As illustrated in fig. 59, its 2 x 8 connectors implie the use of a 3d-degree
displacement field (2 x 10 parameters). There are thus 2 x 2 bubble modes. The convergence is
O(h). This element will be called SBQO.

Elements passing higher order patch testes could be envisaged, but were never coded.

8.14. How the use of nonconforming plate and membrane elements solves the
problem of angular connections of plane shells

Figure 60 illustrates the fact that FDVQ! plates and SBQO membranes, as assembled,

lead to consistent connections of plane shells. This is perhaps the most spectacular result of the
.-theory.of nonconforming elements.— »

8.15. Morley's plate as a stabilizator of membrane idealizations of 3-
dimensional shells

For cost reasons, it is a common practice to idealize a shell with membrane elements.
However, the fact that membranes have no normal stiffhess leads to a lot of kinematical or
quasi-kinematical modes. This can be remedied by adding to the membrane a Morley or a

FDVQO element, which only implies one supplementary rotation on each interface and
guarantees ellipticity.



Fig. 58 : Element SBTO

$O>~ >

Fig. 59 : Element SBQO

17,

Fig. 60
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8.16. Automatic bubble detection

As emphasized in the preceeding sections; nonéonforming elements involve a lot of
bubble modes whose shape may be very difficult to imagine. It is therefore useful to develop an
automatic way of treating bubble modes.

8.16.1.- Permutation matrix

Let us consider the square matrix

i i
.
1 1i i
R 0. :
P~ 1y
j 3 P .‘ ...... o 1
11
(8.39)
where all undefined elements are zero's. If A is a given matrix of columns ¢,
A=Tci, ..., G
One has
AP(, j) = [C1,.-+,Cjy--,Ciy---Cal (8.40)
T 1

]

it is to say, columns i and j are permutated. One says that P(i,j) is a permutation matrix. The
fundamental properties of P(i,j) are

{P(i, Do=PG,j)
PG, J) PTG, ) =1

Furthermore, a pre-mulltiplication of P(i,j) on a matrix A leads to the permutation of lines i and
jof A.

Let us now consider the matrix

P =P(1, it) P, i2)..P(n-1, in1) (8.42)

(8.41)
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AP is thus the matrix obtained by successively permutating columns 1 and i3, 2 and iy, ..., (n-1)
and i,.;. It is easy to verify that

PPT=1 , P'P=1
Considering any invertible matrix, one has

A’ = (APPT)! = (APP)! = P(AP)!
=P, i) ... P(n-1, ip1) (AP)"

So, if a matrix A has been inverted afier column permutations, the lines of the obtained inverse
(AP)" have to be permutated in the inverse order, it is, [(n-1), in.1] at first and [1, i,] at last.

8.16.2.- Connection with bubble modes

In the case of non conforming elements, bubble modes have no simple analytic

expression and it is not easy to find internal displacements that render the connection square
and invertible in every case.

Another way consists to solve the equation
Ca=q . (8.43)

with C rectangular, with ng lines and n, columns. C is supposed to be of maximum rank n. It is
therefore possible to find a system of column permutations P so that

C=cpr=[¢ ¢,] ' (8.44)

with C’, square-invertible. System (8.43) is then equivalent to

CPPTa=gq
or
Ca=q (8.45)
with &
=P (8.46)

System (8.45) may be set in the form
Ca +Cya, =q

from which
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~ ~ ~

a,=C'q-C'C,a, (8.47)

In this relation, d,, may take any arbitrary values, independently of the connected values q. 4,
is thus a suitable definition of the bubble modes, and one may set

Qs = n (8.48)
This leads to the system
{[ii = éf'q— éfléuqb
4, =q,

or, in matrix form,

\:ﬁ, ] - |:é;l — é!_léu [ q ] (8.49)
dy 0 I U

The general solution of (8.43) is thus

ar
a=pPa=p|C ~CiCu|l 9 (8.50)
0 I q

and the connection problem is solved, with an automatic definition of the bubbles.

8.16.3.- Relation with Gauss inversion

Gauss inversion may be presented in the following manner. Let

Xy Yu

g X
b4 X
¥ y B ) Xy
AW || =77, 4@) | X |=| 2 ),
x" y” -
x" y"

It is clear that
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3 4 X
A= |=

yn xll

that is to say that A(n) = A", Supposing that we are at a certain stage of this formation, we
have thus transformed

Agp Agg || %0 [ Ve
in a system where yp and xp are permutated. This system is easy to obtain. From

Appxp + Apgxq = Yp

one immediately obtains
¥p = AppYe — ArpApg¥y
The second equation reduces then to
Agp Azpyp — Agp Anp AppXy + Agpxy = ¥y

so that the equivalent system is

Azp = Appdrg [y "] - [x"] @.51)
Agp Ay Agp = AppArpApy || %0 | | Ve

Let us apply this result to the permutated connection matrix completed with (n, - ng)
lines of zeros, it is

¢ ¢,
. 8.52
[O ; (8.52)
After n, pivoting operations, one obtains from (8.50) the matrix
Al AaA
[Cl Cl C]]il (8.53)
0 0

to which we have to add a unit matrix at the right bottom side to obtain (8.49). The Gauss
algorithm is then stopped, and the inverse permutations are made classically.

This algorithm, developed by the author, is adopted in the SAMCEF code [40] for
nonconforming elements.



164

Suppose that a hexagonal membrane element has to be developed. Show that this is possible in
the frame of nonconforming elements passing the patch test. What is the necessary degree of
the displacements ? How many bubble modes will be encountered ? What is the order of
convergence ?




CHAPTER 9

DUAL ANALYSIS
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9.1. Introduction

After computing an approximate solution by finite elements, the question arises of what
is the accuracy of the computed solution. Among the numerous responses which were
temptated to this important question, a special mention is due to dual analysis. This method,
introduced by FRAEIJS de VEUBEKE [41], and applied by himself and his co-workers [42 to
46}, consists to compare two analyses of the same problem, the first one, of the displacement
type and the second one, of the equilibrium type, and to deduce from the respective energies an
useful error bound. FRAEIJS de VEUBEKE's analysis was however restricted to particular
boundary conditions, i.e. zero prescribed displacements or zero applied loads. These
restrictions were due to a point of view where energy bounds played a central role. More
recently, DEBONGNIE, ZHONG and BECKERS [47, 48] reformulated this question in a
more general way, where energy bounds do not play the central role. The result is a dual error
bound which is valid whatever be the boundary conditions. The former results of Fraeijs de
Veubeke are then particular cases of the general theory. The present chapter follows this way
which, incidentally, is probably the simplest one.

9.2. The displacement approach

Admissible displacement fields are those displacement fields that satisfy a priori the
boundary condition »; = # on Sy. An udmissible displacement variation du is then defined as
the difference of two admissible fields. Consequently, one must have

5u;=00n S[ ' . (9.1)

The displacement approach consists in finding, among all admissible displacement
fields, the particular field u that minimizes the total potential energy

E(u) = U(u) + P(u) 9.2)

where

W) = [y @) 6 ) Y | ©3)

is the strain energy, and

D)=~ fu,dV - [tu,dS 9:4)

is the potential of prescribed loads. Varying functional (9.2) with respect to u leads to
equilibrium equations. In other words, the exact equilibrated solution u of the elastic problem
is the only one verifying the condition
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8 &(u;u)=0 (.5)

for any admissible displacement variation Su.
Let us now denote U the set of admissible displacements and 86U the space of
admissible variations. Rayleigh-Ritz approximations and in particular, conforming finite

element methods, consist to select some subset U, of U containing displacements u, and

consequently, a subspace §Uy of displacement variations. In a strict displacement model, the
kinematical conditions

uy, =1, ' (9.6)

have to be verified exactly. In other terms, uy, has to be strictly admissible. A Rayleigh-Ritz
solution is defined by the condition that

) 8(uh; 5[11-,) =0 (97)

for any 8uy, € 8Uy. But for the following developments it is not necessary that uy should be a
Rayleigh-Ritz approximation.

Let thus upbe any approximate displacement verifying (9.6), and let us define
Au=uz-u . (9.8)
where u is the exact solution. The total potential energy admits the following development
&(u,) = &+ Au) = 8(u) + 58(u; M) +%- 528(Au)
(9.9)

where

528(Au) = j Cou€y (Au)g,d (Au) dV (9.10)

in the second variation of & But, from (9.8), Au is an admissible displacement variation, so
that equation (9.5) is true, it is
36 (u; Au)=0 0.11)

Therefore,
&(u,) = &) +~;- 5%&(Au) (9.12)

8¢ (Au) is an energetic measure of the approximation error, namely, twice the energy of the
variation Au. This fact will be reflected by adopting the norm notation |Au|*. The result is thus
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jAul* =2 [e ) - &) (9.13)

9.3. The equilibrium approach

Statically admissible stress fields are those stress fields ¢ that satisfy the equilibrium
equations

Do, + f 0 inv
no, =1 on S; 9.14)

On eventual discontinuity interfaces, if index + denotes one side and index - the other one, the
condition is

(njo;3)- + (njoy).-= 0 ~(9.15)

A statically admissible stress variation 8 is defined as the difference between two statically
admissible stress fields. This implies

Dj 5(5_,, =0 iII‘V
n; Eo'ﬁ =0 onS; (9. 16)

Condition (9.15) is maintained. The set of statically admissible stresses will be noted E, and for
the space of statically admissible stress variations, the notation 8E will be used.

The equilibrium approach consists in choosing, among all statically admissible stress
fields, the particular field o that minimizes the total complementary energy

“o) = Ao) + &o) (.17)

where

V()= Jw ooud/ L)

is the complementary strain energy and

2(0) = ~In10'],u ds (9.19)

is the potential of prescribed displacements; It is well known that this principle leads to
compatibility conditions. The exact solution o thus verifies the condition

0% (o, 8o)=0 (9.20)
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for any statically admissible stress variation.

Rayleigh-Ritz approximations consist to adopt a restriction Ey of E, from which
naturally derives a subspace 8E;, of 6E, and to choose oy € Ej, such that

8% (op; Bow) =0 (9.21)
whatever be 8oy, € 8E;. In a strict equilibrium model, equilibrium equations (9.14) have to be
verified exactly by the approximate field o. In the same manner as in displacement models, this

is the only property that we will require, and it is by no means necessary that oy, will be a
Rayleigh-Ritz approximation

Setting

Ang = O ~ Oy (9.22)
leads to the following development of o)

C(0,) = C(o +Ac) = C(0) + 5C(5;A0) +-;- 5*C(Ao) (9.23)
with

8C(Ao) = [CpiAc Ao, dV (9.24)
v

As both & and oy, satisfy the equilibrium equations, their difference Ac is a statically admissible
stress variation, so that the first variation vanishes and

C(o,) = C(o) + %EZC(AU)

8°# (Ac) is an energetic measure of the error, that we may note ||Ao]*, from which results

lao|’ =2[C(o,)-C0)] (9.25)

9.4. The general dual analysis
Displacement and equilibrium approaches lead both to the same solution

oy = Cyjegg (u)

so that
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1 1
U)= ch,ﬂ‘, &, (u)e, () dV = Eja,,.a,,j (u) AV
14 14 ’

e .o
= EJ-C,.J,Z, 0,0, =7(0) (9.26)
v
Furthermore, an integration by parts leads to the relation

i}

J;cr,je,j(u) dv = £nj0'j,.u,. dS-_;[u,D‘o“ dv

and, taking into account the prescribed values of the displacements on S; and the equilibrium
equations on Szand in V, one obtains

_[o‘ijaﬁ(u)dV = J'njaﬁﬁ,.dS + Itiu,.dS' +_[ fudV 027
14 St Sa v

The first member of this relation may be re-written, from (9.26),

[o,6,@)dV =)+ 7 (o)

so that the solution verifies
) + Ao) = -A0) - Au)
or, equivalently,
&u) + &o) =0 (9.28)

From this, it is now sufficient to add relations (9.13) and (9.25) to obtain the fundamental
result of dual analysis

|Aul’ + Aol = 2leq,) + ©(s),)] (9.29)

A more refined analysis [47] allows to show that this sum of square errors is also the
square of the energetic distance between the two approximations, but this result is of less
practical interest.

Practically, it is preferable to work with the square root of (9.29) and to compare it to
the energetic norm of the true solution

[22@)]"”? =[27(0)]" ~[#@,)+7(,]"

S0 as to obtain a relative error measure
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(A (Hesreel)”_(stw)eoe) )" s
e+t e +¥(@)]) \ %)+ (o)

It is interesting to note that the evaluation of this relative error only requires very simple
computations from the results. One may naturally object that two finite element analyses are
necessary to obtain such an error measure. But the present proof never used the assumption
that u, and oy should be Rayleigh-Ritz approximations. The only requirement is that uy and oy
are admissible. As an example, after a displacement finite element analysis, one may imagine to
construct a statically admissible oy, field, inspired from the displacement analysis, and use the
preceeding results. This way was followed by LADEVEZE [49 to 51] and leads to one of the
most rigorous methods of a posteriori error evaluation.

9.5. Bounds on the extended total complementary energy [53,54]

9.5.1. General case

Let us now define a new functional, the extended total complementary energy &*, as
follows

e For any statically admissible stress field o,
€ (0,)=%(o,)

 For any kinematically admissible displacement field up,
€ (u,)=-8(u,)

Then, it follows from (9.28) that at the true solution, €"(#) = €" (o) . Moreover, one
has

C@)2EE),  €O)-CE= ool
and
CWECW,  €wW-¢w)=u-uf

This leads to convergence curves of more and more refined models, the equilibrium models
converging to the exact value of @* by decreasing, while the displacement models converge to

the exact value of @* by increasing. The distance between the two curves is a measure of the
convergence (fig. 60bis).
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9.5.2. Fraeijs de Veubeke's particular cases

The classical dual analysis, as proposed by Fraeijs de Veubeke, was derived from the
following supplementary assumptions which guarantee the existence of upper and lower
bounds of the energy.

(2) One type of boundary conditions is homogeneous
(b) The approximate homogeneous field is obtained by a Rayleigh-Ritz procedure.

There are thus two cases that have to be considered separately.

(i) Homogeneous prescribed displacements, #, = 0

In this case, the solution u is itself an admissible displacement variation, from which
follows

= 58(uu) = [ Cpye, e, (u) AV +P(u) = 206u) + P(u) = 0,

that is,
29Qu) = -Au), &u) =-2u) °
The same is true of the Rayleigh-Ritz approximation uy,
220uy) = -Au), Kuy) = - Uhu)
As a consequence,
- WUuy) = &uy) 2 &) = -24u) ©31)

In the equilibrium model, the potential of prescribed displacement vanishes, so that, for
any statically admissible stress field oy,

Ho) = Uo) < Aow) = Kow) (9.32)

Applying the relation (9.28) gives

WUun) < 2U;u) = -&u) = €0) = Uo) < Hok) (9.33)
that is upper and lower bounds of the energy, and the error measure becomes

lad|* +jac|’ =2 [e@,) +@(o,)]=2 [ (0)) - 2,)] (9:34)

In this case, the error is thus measured by the difference between the two obtained values of
the elastic energy.
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(ii) Homogeneous equilibrium, f =0 and ;=0

In this case, the solution o is itself a statically admissible stress variation. The same is
true of the Rayleigh-Ritz approximation oy, so that

= 6€(0;0) = [Cpi0,0,dV +2(0) = 27(0) + 2(0) =0

that is,
2%o) = -%o), “(c) = -Uo)
and; similarly,
2°Hon) = -HCn), @ow) = -How),
As a consequence,
Hon) < Ao) : (9.35)

As the potential of the prescribed loads vanishes, any admissible displacement field u,
verifies

&u) = 2u) £ &uy) = UAu) (9.36)

The upper and lower bounds of the energy are now

Uow) < Uo) = 2Uu) < WUuy) 937)
and the cumulative error is given by

|aaff + Ao = 2[eq@,) + (o) = 222, - 7(a))] (9.38)

The error is also measured by the difference between computed elastic energies, but
with the reversed sign.

9.6. The stress function approach

Equilibrium elements were developped by Fraeijs de Veubeke [6] and others, but their
description goes beyond the frame of the present course. However, if body forces vanish, an
equilibrium approach may be performed with displacement elements, by using the stress
function formulation [45].



9.6.1.- Airy function for plane stress

The general solution of the equation

ﬁo‘x +5Txy
dx By

=0

is

d4 d4
O, =5, T, =

T oy T ox
The second equilibrium equation

o, Jo,
ax Ay

0

admits the general solution

B éB
T, = =

2 5y T ax

The equality of the two expressions of t,, necessitates

o4 0B
dx dy’

an equation whose general solution is of the form

From this follows the general form of internally equilibrated stresses, namely,

_Jp '

s 2y T axay T T oxay
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(9.39)

(9.40)

(9.41)

(9.42)

The compatibillity equations may be obtained by minimizing the total complementary

energy, whose variation is

[(e.80, +e,60, +7,67,) dS - [ [a(n60, +n,62,) +3(nb7,, +n,60,)]ds

s
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The surface term is

f{ FSp oo %y:j
)

& éy* T o REFTTR

Fe Fe &y
= boundary terms + 6q)[ g —2—y z
'L‘ ay* 7 ax* "?Taxdy

The internal compatibility conditions are thus

2 2 2
aa; ﬁszy__o”ny -0 (9.43)
dy*  ox*  Jxdy
Finally, the strain-stress relations are
1
g = E(a‘ vo,)
1
g, = E(G’ -vo,)
2(1+v) )
= TT"’ (9.44)

Al these relations are similar to plate equations, where

= Z;‘;’ = f’;y‘;’ -1, =E% (9.45)
.= 1221?;) (z,+vz,)
y = 1221?‘3,2)(%’ , Z")
77 12{1?;) 2-v 2{21 040,

and

2 2 2
aM"+ﬁMy+ZﬁM‘7=O (9-47)
ox* Iy oxdy




The analogy is given by the following table

To impose boundary tractions, note that

Plate Stress function
w P
Az Oy
Ky Ox
; 1 -T
Pl "
; Mx Ey
' M, Ex
2Myy “Yxy
Ef 1
| 12(1- %) E
i v -y
\
|

2 2
\v szo‘xnx+rxyny=nxﬁ f—ny ¢
ay oxdy

and, from the fact that n,=t,, n, = -t,, one obtains

i 2 2
‘ Tx=ty0”f+tx——a——¢—=é- @
| 2y Ixdy Ot\dy

Similarly,

T,=t,n to,n, ==-

2 2 2
g e__,%9_,

177

(9.48)

n +n =
r *oxdy 7 ox? *at

stress.

i 9.6.2.- Southwell functions for a plate

equation
\ 57;+-57; =0
dx  dy

2
00 __ 919 949)
Y oxdy o\ ox

1t is thus possible to use plate conforming elements to obtain an equilibrium model in plane

For a plate with a zero pressure load, the equilibrium of shear loads is expressed by the
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whose general solution is

a0 74 9)
AL A : 5
8y’ L x (50

The equilibrium equations

M, M
x+ o4 T
ox | dy =

may thus be re-written in the form

M,
ox

2
2 M, -0)=0
+0,,y( » )

bl oM
—M_+ ) +—>=0
ax 7 oy

The general solution of these equations is

(9.51)

or

av au av U
M, =L M, =L = LT
gy oxT® Léx é’y]

oV oU

~5x_ﬁy

The bending moments are thus similar to strains calculated from a displacement (U, V). The

complete setting of the analogy with a displacement formulation of plane stress is leaved to the
reader.
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9.7. An example of statically admissible analysis

A very instructive example of statically admissible analysis is given by a beam submitted
to an uniformly distributed and shear force T, = -q (fig. 61). Most authors say that this problem
is an ill-posed one, because it does not conform to the general reciprocity condition of shear
stresses. Such a conclusion cannot be retained as definitive, as the present loading is perfectly
regular. The problem is that it implies a discontinuous solution. In the frame of the stress

Fo
dxdy
(section 7.9) which says that no conforming element can be developped with continuous

crossed derivatives. In other words, a solution may be found in the use of a CQ element which
precisely exhibits discontinuous crossed derivatives at the nodes.

function approach, 7, = and we are precisely confronted to the singularity theorem

Traduced in terms of Airy's function, the boundary conditions are given on fig. 62, and
made more precise on fig. 63, where use is made of the fact that any substraction of a
polynomial of degree 1 to Airy's function has no effect on the stresses. The solution will be
constructed as shown in fig. 64. But a fundamental simplification is obtained by noting that
boundary conditions are antisymmetric in terms of y. 7 is thus reasonnable to think that the
same behavior will be found for the function ¢.

Let us begin by element 1. The boundary conditions, at x =1, are
7 .
_0 2% _ 9.52
¢=0, = =@ (9:52)

A particular solution to these conditions is obtained by solving the second condition, which
leads to

Opar= q xy + C(y)

Taking the condition @ =0 at x =1 in account, one obtains

qly + C(y)=0
that is,
Cly)=-qly.
and
X
0 =ats=Dy =gt (1= 059

To obtain the general solution in element 1 satisfying (9.52), we only have to add a solution of

7
®=0, Eg- =0 which should be antisymmetrical in terms of y. Such a function is of the form
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(9.54)

In element 2, the solution will differ from ¢, by a muitiple of the square of the equation

hx
of the line y = e that we also suppose to be a multiple of y. The only form of this difference

is

2
o —p = 22X
W,=@,— ¢ azh[h IJ

From this,

2 2
y(, x Ny,  y(y x
g2 [1-% 4 [1-%] Lig 2[2_X
P2 =4 h[ 1}”‘[ J 7 azh[h Ij

and

2 2
ﬂ—=——th[l~£}+a, [l—fj +a, [X—ZC—J +2a
) ] I P,

At the upper boundary, y = h and one must have

2 2
x b of X b
=—ghl[1-% SE g 1-E) = —gu[1-2
P = [ IJ”"'(I lj “"-[ IJ 7 ( 1]

from which a; + o = 0. Moreover,

h

and, as o + oz =0,

One has thus

2 2
0="2%_— _qn 1-f-]+a, 1-Z| +a, 1—-"-) +2a2[l—-£]=0
”"[XJ l l l I

(9.55)
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y x) ghly xY
=—qhl =|1-=|-L=L|1-= 9.56
7 =—q h( lj 2 h[ J : (9.56)

and

(9.57)

In element 3, the complementary term y; must be a muliiple of the square of the
equation of the line 2-3, and we suppose it to be also multiple of y. These considerations give

2
X
V=@ — @, =04 %(‘i“*‘?} (9.58)
So,
y(, x\ ghly x} y[y x}z
g2 [1-X]_9% 2[4 r(r, X
%q(JZh[l *hw\h 1

and

I, x\ gqhl xY y xY yly x

=—qhl|1-= -T2 1-2| e, | =+ | 420, 2| 2+
5[};] 1) 2 l h I h\h 1
At the lower boundary, y/h = -1 and

—rgn[1-%)+ 2L 1—fz~a 1-% " mif1-%
9= ()7 U0TT) TR TT) T 1

from which

@, =+i— 9.59)

One has only to verify that

2 2
o¢s =~th[1—£]—q—hl(l—£] +q—h£(1—5) +th[1—£)=0,
a(lj 1) 2 l 2 ] !
h

which is the case. The solution is thus




i

Element1: ¢, =_thl[1_f]_q_h£2’_[l__

Element2: @,=¢ +y,
Element3: ¢@,=¢, +y,

Element4: @, =¢ +y, +y,

Stresses are now easy to compute from

_52¢___L g

O'x—-a z"hz 2

h

o 2Z0_1 I
2

This gives

Element 1

9B __ %— qlh 2 [1‘-— 1)

i
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(9.60)
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and

L T et E

)

(9.61)

(9.62)



R

Element 3

N _ gl z(£+z]

1) \n
and
ax=o+q—1[3—y+2fj=q—l[3l+zfj
nln 1) nCh T
ay=—%+%y-=0
X x y y
=qlE-2|-q|Z+22|==2¢[2Z+1
i q(i ) q[l h] q(h ]
Element 4
0'1:0+11-[3—'y-—~2£)+q—1[3—y+—2—xj=§-q2£
AV AV
.9 9 9 D
GETTYTIYTT
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(9.63)

(9.64)
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As a verification, at the clamping end, x/1=-1 and 1, =-q
which is the correct value. Concerning o, it is a linear function whose moment is

h 6ql 2
[ oyd= i =4qlh=(2qh) .2

This also is the correct value.

Compute the energy % and the final displacement given by v = -i%f— where T = 2gh.
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CHAPTER 10

SOLUTION ALGORITHM
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10.1. Introduction

~ In chapter 3, the principle of assembling and solving the system of equations was
exposed. However, such a procedure where the stiffness matrix is assembled in the central
memory, is limited to very small models. Assuming that a given idealization possesses n nodes
with say, 3 d.o.f. for one node, the stiffness matrix contains 9 n” numbers. As an example, 1000
nodes lead to 9 * 10° numbers. If a double precision representation of these numbers is used,
this is to say 72 * 10° bytes ~ 72 MB. Moreover, such a storage is uneconomical, because a
large amount of terms of the stiffness matrix are zero's.

1t is thus necessary to find a method where

- the stifness matrix is never assembled
- account is taken of the great amount of zero's.

These exigencies are fulfilled by the so-called frontal method, which is described in the
following.

10.2. The frontal method

Consider the structure represented on fig. 65. It is possible to split it in successive
substructures SS1, SS2, SS3, ... limited by successive fronts front 1, front 2, ... Let us
assemble the first substructure (fig. 66). Deplacements lying on the front will be called
remaining displacements qg. Other displacements of the substructure may be fixed (qr) or not

(qc). These last ones are called condensable. The stiffness matrix of the substructure may then
be ordened in the form

Kiw Kpe Ker
Kssy =\ Ker Kee Ker (10.1)
KFR KFC' KF'F
and the corresponding force vector is
,.g;m,:,[gg gl ~g£]~ , e e (102)

Note that except Kgg, all submatrices of Kss; are completely assembled and will not be
modified later if the whole structure is assembled. The same is true of g. and gr. Consequently,
it is possible at this stage to express the condensable d.o.f. in terms of the qr's and the gf's. In
fact, the second line of the system

I_{RR Kre Kie ||4r 8r
Kew Kee Ker||9c |=| & (103)

K Kpe Kp]|49r Er
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where incomplete blocks are overlined, is
Kergr + Keede + Kerge= ge,
from which
9c = ~KeeKendr — KeeKerqr + Kec8e (10.4)

In this relation, fixed values qg are known. Setting this value of qc in the first line of system
(10.3) gives

(K—RR - KRCKE‘CKCR) qr +(KRF - KRCKE'(I.'KCF) 9r =8r — KRCKE(‘.‘gC

or
(K:RR - KRCKElCKCR) 9z = 8r "(KRF ’KRCKEZ'KCF) qr — KRCKEégC
itis,
Kodr = B (10.5)
with
o K—I:R = ERR —chKc:cl:Kcn . } (10.6)
8r = 8r ™~ (KRF - KRCKCCKCF)qF ~KpeKcc8e

In the second substructure, I?,;R and g,, as defined here, will be considered as the

stiffness matrix and the load of a "superelement" which is the first substructure represented by
its front. The procedure is repeated successively in subsequent substructures, and the last one,
all non fixed displacements are noted qg. This last system, of the form

Krrar + Kgrqr = gr
Krrqr + Kerqr = gr

_may be solved. This is the end of the first stage or. condensation process. We. have.-now-to
restitute all condensed displacements by returning successively to preceeding substructure, in
the reverse order. In each of them, gc's are obtained from relations (10.4). This, of course,
implies that matrices K;.K., and K;.K and vectors K;.g. have been stored on a.
peripherical unit during the condensation process.



i

1186 21

217 22

3|8

4|9

5
<—front
516]|7 10
Fig. 67

front

191



192

10.3. How to cut the structure in substructures ?

The easiest way to define substructures is to assemble the elements in their order of
appearance in the element list. This procedure has two main advantages

1) Node numbers are immaterial, being only labels
2) Element numbers also.

Beginning by the first element in the list, a pre-processor adds other elements and computes
the resulting qc's, qr's and qg's, stopping when there is a sufficient number of condensable
displacements (e.g., 30). It also computes the total memory which is necessary to assemble
successive substructures and verifies that it is compatible with the total allowed memory. This
is the essential limitation of the process. It finally depends of the number of remaining
displacements, it is the front width. As illustrated by fig. 67, the front width is the lowest when
elements are presented in the direction of the least dimension. It has to be noted that in
complex 3-dimensional structures, a correct choice of the order of the elements is a crucial
problem in terms of feasability and, unfortunately, often a difficult problem. Special ordering
programs exist for this purpose and are used at the stage of data preparation.
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Appendix : The automatic monomial-based generation procedure

The following procedure, which was extensively used in the SAMCEF software, is

based on a pseudo-formal treatment of polynomials. The basic idea is due to P. Beckers
[7,7bis].

1. Polynomal representation
Let us consider a polynomial of the form

U= +UX+ QY +0,X +aXy+ Ay’ + o +agX Y+ axy’ ).
It may be written as

u=ma

with
mT = (l’x’y’xz"x:)),yz’ "‘)

a’ =(a,,a,,a,,..).

The monomial matrix m' may be represented symbolically by three vectors, namely a
coefficient vector cm,

em” =(11,..)
an x-exponent vector ixm,

ixm” =(0,1,0,2,1,0,3,2,1,0,...)
and a y-exponent vector

iym" =(0,0,1,0,1,2,0,1,2,3,...).

As is easily realized, these three vectors verify some systematic rules which may be
used to generate them automatically. These vectors being generated, one has

u= Z a,cm(i).x * *ixm(i).y * *iym(i) .
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2. Derivation
The derivation of a polynomial leads to two derivatives
ou . . . e
o > a,emx(i).x % *ixmx(i).y * *iymx(i)

and

% = Z a,emy(i).x * *ixmy(i).y * *iymy(i)

whose coefficients and exponents are obtained by the following rules for %ux_’ say,

For each value of i,
If ixm(i) # O, then

ixmx(i) = xm(@@) -1
iymox(i) = iym(i)
cmx(i) = cm(i) * ixm(i)

else,
ixmx(i)=0
iymx{i)=0
cmx(i)=0
endif.
Endfor

A similar procedure leads to Qu_

3. Strain matrix

The strain matrix B, relating the strain vector e to the parameter vector a, may be
obtained by assembling vectors of the form cmx, ixmx, iymx and so on. In standard cases, each
element of B is a monomial, so that it is possible to represent B by the three matrices CB
(coefficients), IXB (x-exponents) and IYB (y-exponents), that is,

B(i, j) = CB@, j)x**IXBG, j)**IYB(, ).



4. Hooke matrix
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In the case of variable thickness membrane or plates, the Hooke matrix varies as a

given power of the thickness. This lead to the following expansion

H(, j) =3 CH(, j,k)x**IXH(, j.k).y **IYH(, ], k)
k

5. Integral table

One has first to give or to compute the integral table defined by

1G,j)= [x"y"tde dy

This table will make the following computations very easy.

6. Computation of the stiffness integral matrix
Recalling that

J,; = [B"HBAS,

one has first
(B"HB), =Y B,H,B,
kil
so that

J, =3 CB(k,i)CH (k,1,m)CB(, j).1(iL,i2)

7
with

i1 = IXB(k, i)+ IXH (k,l,m) + IXB({l, j)+1
and

12 = IYB(k,i) + IYH (k,!,m) + IYB(, j) +1.
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As one can see, this procedure is perfectly systematic. It was the base of SAMCEF
families of elements of variable degree.

In nonstandard cases, where some elements of B are no more monomials, this
procedure does not work as such. However, artifices are often possible, as seen in chapter 5
with parallelograms.
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