
1 INTRODUCTION 

1.1 Background 

Limiting anthropogenic GreenHouse Gas (GHG) 
emissions is a great challenge being faced by society 
today. Society, through the United Nations Frame-
work Convention on Climate Change (UNFCCC), 
and actors like the EU, is applying pressure on all 
industries, including the shipping industry, to reduce 
CO2 emissions. 

 
Global temperature increases above 2°C are ex-
pected to dramatically increase the risk of catastro-
phic global consequences, and are likely to occur if 
the concentration of CO2-equivalents in the atmos-
phere exceeds 450 ppm. The EU has adopted 
the 2°C stabilisation level as a goal, and is working 
towards a global agreement on this, Walker et al. 
2008. In order to achieve stabilisation at 450 ppm, 
GHG emissions need to have been reduced by 50%-
85% in 2050 compared to today’s level, IPCC 2007. 
However, all scenarios indicate significant increases 
in GHG emissions up to 2050, which means that 
achieving the needed reductions will be very chal-
lenging. 
 

1.2 Ship emissions 

Historically, ship emissions have not been regulated, 
but the International Maritime Organisation (IMO) 
and EU have recently implemented requirements for 
ships. Focus for these regulations have been mainly 
on NOx and SOx emissions, but as international 

shipping is recognised as a significant contributor to 
global GHG emissions, pressure is mounting on 
shipping to contribute reduce these emissions. The 
IMO is currently working to establish GHG regula-
tions for international shipping, and is under pres-
sure, e.g. from the EU, to implement regulations 
with substantial impact on emissions, IMO 2008. 
 
For shipping, there is an ongoing debate regarding 
how much the sector could be expected to reduce 
emissions and how the reduction could be achieved. 
As for the global GHG emissions, growth is ex-
pected also for shipping and achieving significant 
reductions will be challenging, Eide et al 2009. 
 
However, a certain number of technical measures are 
available for shipping to reduce GHG emissions 
such as ship speed reduction, wind power, air lubri-
cation, turnaround time in port, weather routing, op-
timization of the ship main dimensions, scantling 
optimization and use of lightweight structures, re-
duce ballast, etc. Longva et al 2008. 
 
This present contribution focuses on the deep study 
of one of these previous solutions which is the opti-
mization of ship structures but before to dive in this 
challenging topic, it is necessary first to review the 
links between “Design” and “Optimization” and 
secondly to define the place of “Ship Structure Op-
timization” within the general framework of a “Ship 
Optimization”. 
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ABSTRACT: Limiting CO2 emissions is a great challenge being faced by society today. Society, through the 
United Nations Framework Convention on Climate Change (UNFCCC), and actors like the EU, is applying 
pressure on all industries, including the shipping industry, to reduce CO2 emissions. This paper presents a 
way to decrease the GHG emissions by ship scantling optimisation, i.e. decreasing steel weight and keeping 
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Optimization”. Then, the LBR-5 ship structure optimisation software is presented. It is based on a convex lin-
earization coupled with a dual approach and is based on a rational assessment of the ship structures behaviour. 
Few applications of structures optimization are then presented. 

 



2 SHIP DESIGN AND SHIP OPTIMIZATION  

2.1 Links between “Design” and 
“Optimization” 

It is impossible to talk about optimisation without a 
clear definition of the design stage(s) which are con-
sidered during the design of a ship. If the target is the 
conceptual design stage, the optimisation (tools and 
objectives) will be completely different of an optimi-
sation performed at the detailed design stage. 
In many teach books, “Ship Design” is usually pre-
sented through the “Design Loop” or “Design Spi-
ral” (Fig. 1). We identify easily various technical 
tasks, often achieved by different teams: 

- Main dimensions 
- Hull form and Resistance 
- General arrangement 
- Propulsion 
- Structure (material, scantling, hull section 

modulus, weight, gravity centre) 
- Stability and manoeuvrability 
- Cost 
- Safety (Class rules, IMO, SOLAS, etc.) 
- Production (block size, etc.) 
- Etc. 

 
Each of these design tasks is mandatory to, at the 

end; obtain a reliable design of the targeted ship. 
None of these tasks can be missed or discarded, 
whatever the design concerns a large cruise vessel, a 
cargo ship, a pleasure yacht, a tug boat, a barge or a 
fishing vessel. 
 

Figure 1. Typical Design Spiral as presented in various 

teach book, Eyres (2001) 

 
These design tasks can be achieved sequentially or 

simultaneously. In the past, these tasks were per-
formed sequentially but now, for the sake of produc-
tion efficiency and to reduce the delivering time, 
most of these tasks are achieved through a concur-
rent engineering process (Fig. 2). Challenges and 
benefits of the concurrent engineering are discussed 
in Caprace (2010). 

Everyone understands that as the design process 
progresses, more information becomes known, but at 
the same time it becomes more and more costly to 
make design changes. With better technical and cost 
information in hand, better technical decisions could 
be made. In addition, management could be invited 
to play a more significant role than it is traditionally 
the case. These ideas are reflected in Fig. 3, which 
depicts the decreasing ability to influence the out-
come of a design, see Ross et al. (2002).  
 

Figure 2. Concurrent engineering, Caprace (2010) 

 

Figure 3. Design stage within shipbuilding industry, 
Caprace (2010) 

 
In 2010 we can state that performing concurrent 

design tasks is nowadays the current practice, at least 
for the large design groups and shipyards. But, can 
we say the same concerning the optimization tasks? 
Is it possible to perform concurrently optimization 
tasks? 



Here after, we try to answer at this question and to 
identify the place and the challenge of the “ship 
structure optimization” in the global context, which 
is the “ship optimization”. 

The ship design optimization is a kind of natural 
tasks that the naval architect tries to perform during 
the various loops of the design spiral (whatever is 
done sequentially or concurrently). The “Spiral” is 
definitively an optimization process. Each loop can 
be considered as an iteration of the optimization 
process. But when specialists are called, as it is usu-
ally the case at each step of the design (see spiral, 
Fig. 1), the concerned optimization s become defini-
tively local optimization. 

By local optimization we understand an optimiza-
tion that tackles a single specific issue (hydrodynam-
ics, propulsion, structure, safety, etc.), the others be-
ing frozen. For instance, is it popular to consider the 
hull form and the general Arrangement (GA) as 
fixed, when we optimize the ship structure (scant-
ling) to reduce the weight and/or the production cost. 

Similarly, in CFD optimization analyses we con-
sider often the structure (weight, cost, gravity centre) 
as fixed. Alternatively, rules of thumb or statistical 
curves (weight = Fct (∆, L, B, T, Cb, etc.)) are used 
to adjust the weight according to the hull form. 

There are also the ship production teams, which 
try to optimize workflow and workload to reduce de-
livery time. They are working in the field of Design 
for Production and the target is to optimize the ship 
focusing on the production keeping fixed the other 
parameters (hull form, scantling, block splitting, 
etc.), Caprace (2008). 

It is clear and obvious that it is not suitable neither 
efficient to perform sequential local optimization. 
But in 2010, it is still the current industrial practice 
to reach an improved design. For sure, engineers 
know that they do not reach the global optimum but 
they are confident to be in the right direction. 

Local optimization is an industrial practice start-
ing 20-25 years ago when were available advanced 
dedicated numerical tools, specialized in one design 
tasks, modifying the hull form to increase speed, re-
duce fuel consummation or improve seakeeping, im-
proving ship structures to reduce weight or produc-
tion cost, or modifying GA for better safety (fire 
escape) and increasing the number of cabins, etc. 

Mathematicians have demonstrated that perform-
ing sequential local optimization may not drive to 
the global optimum. So the solution is definitively to 
move to a global optimization. That means an opti-
mization in which the technical interacting tasks are 
considered simultaneously. 

Here above, we have explained that for designing 
a ship it is nowadays possible to tackle all the tech-
nical tasks altogether. Therefore, the current solution 
is a series of concurrent design tasks. 

On the other hand, for the optimization it is clear 
that it is nowadays impossible to perform a global 

optimization (all in one) – at least not with the cur-
rent technologies available in the ship and marine 
industry. So the solution is to perform a series of lo-
cal optimization. This is the current practice. There 
are indeed on the market efficient and reliable tools 
that perform hull form optimization, scantling opti-
mization, GA optimization, etc. 

Therefore the challenge for tomorrow is to move 
to a concurrent optimization. That means that several 
tools will run simultaneously, using the same data 
and the same initial design (geometry, loads, etc.). 
There are currently some tentative to initiate such 
procedure (such as VRSHIPS, VIRTUE (CFD) and 
IMPROVE (Structure) EU projects). All of them are 
facing similar problems: 

- Difficulty to share similar data. Standard 
formats are required and must be accepted by 
the different developers, which are in fact of-
ten competitors. Currently, keeping a differ-
ent format is a way to avoid competitors and 
repulse new developers with alternative 
modules (which can be more effective than 
own module). 

- Difficulty to move from CAD data to CFD, 
from CAD to structural models (FEM) and 
above all, from CFD to structural models, 
and vice versa. 

- Level of accuracy of the CAD data is rather 
different then the expected level required for 
structure analysis. Some data may be miss-
ing. But, more often, too much CAD data are 
available to easily and automatically produce 
a coarse mesh for FEA. In this case, how to 
automatically generate a simplified model 
from a detailed CAD model, and later, when 
the optimization is achieved, how to update a 
detailed CAD model with data (usually ge-
ometry) coming from a coarse mesh? The 
key issue is to avoid re-meshing and manual 
data-transfer, or even worse, retyping the 
data. 

- Most of the tools are in fact “black boxes” 
for the other developers. Therefore data ex-
change is rather slow and cumbersome. 

 
In conclusion, a promising direction of research is 

the development of a concurrent optimization plat-
form, which could be the intermediate step between 
a series of sequential local optimization and a full 
global optimization (which remains a rather long 
term goal). 

In the framework of this targeted concurrent and 
multidisciplinary ship optimization, Section 3 pre-
sents the author views on a limited area, which is the 
“optimization of ship structures”. 



3 SHIP STRUCTURE OPTIMIZATION  

3.1 State of the art 

Ship design traditionally has been based on a se-
quential and iterative approach. With the availability 
of non-linear optimization tools, many researchers 
have attempted to solve the ship design problem us-
ing different optimization techniques. This allows 
the development of competitive new designs while 
considering various interactions within the system in 
a shorter time span. 

The first marine structure optimization studies 
were made practically by hand by Harlander (1960). 
Then, with computer assistance, researchers tried to 
develop design and optimization algorithms. Opti-
mization appears in the works of Evans et al. (1963) 
and Nowacki et al (1970). Few years later, an impor-
tant step for optimization of marine structures has 
been done by Hughes (1980, 1988). 

Forty years ago, standard optimization tools fo-
cused on a single and limited aspect (e.g. shape, 
scantling, propeller, ultimate strength, etc.) and a 
single objective was targeted (weight, resistance, 
cavitations, etc.). Nowadays, optimization tools tend 
to adopt a more generic approach coupled with the 
fact that they have also become much more reliable. 

The evolutions of design and optimization tech-
niques are well reported by Cho et al (2006). Seo et 
al (2003), Rigo et al. (2003), Khajehpour et al. 
(2003), Parsons et al. (2004), Klanac et al. (2004), 
Zanic et al. (2005) and Xuebin (2009) have all inte-
grated multi-criteria optimization model that incor-
porate structural weights and/or production costs. 
The differences concern the selected design variables 
and the constraints (yielding, buckling, deflection, 
weight, cost, fatigue, etc.) as well as the analysis 
used to assess structural response (2D FEM, 3D 
FEM, analytical linear, analytical non-linear, etc.). 
However all authors unanimous agree that one single 
objective is not sufficient to model accurately the 
various aspects of the marine structures. 

Preliminary design is the most relevant and the 
most effective period to modify design scantling and 
to compare different alternatives. The earlier infor-
mation is known, the better decisions are taken in the 
design process. Unfortunately, it is often too early 
for efficient use of many methods mentioned before. 

3.2 Definition 

Before to go ahead, it is necessary to clarify the 
meaning of “ship structure optimization”. Indeed the 
meaning may defer according to the persons. Naval 
architects may understand general arrangement (GA) 
of the ship, location of the watertight bulkheads and 
decks, etc. The engineers of the structural units will 
probably think about scantling, types of framing 
(longitudinal, transverse or mixed), types of stiffen-
ers (bulb profile, T bars, L shape, etc.), frame and 

stiffener spacing’s but will consider the structural 
GA as fixed. 

Both of them are right. The difference comes from 
the fact that the two problems also solved one after 
the other by different persons, even if their problems 
interact.  

A possible way to avoid such misunderstanding is 
to rank structural optimization tasks and methods in 
relation with the design level(s) at which they are 
performed (keeping in mind that a structural optimi-
zation task always refers to a specific design stage). 

3.3  “Design stages” and “Structure 
Optimization” 

We usually identify three key steps in the design 
process, which are focusing on different levels 
(parts) of the ship structure and therefore have dif-
ferent optimization needs (or focuses): 

- The Conceptual Design stage (CD) 
- The Basic Design stage (BD) 
- The Detail Design stage (DD) 

3.3.1 The conceptual design stage (CD) 
The conceptual design stage is characterized by (this 
is not an exhaustive list): 

- Few data are available. 
- Performed within few weeks (i.e. 3 weeks). 
- It is done by the naval architect team, which 

often does not rely so much on advanced 
numerical tools (such as optimization tools). 

- Focus is on the hull form, GA, propulsion 
and client requirements. Structure concerns 
are limited to structural material selection 
and weight and gravity centre estimation. 

- Even if a significant benefit in production 
(design for production) can be obtained at 
this level it is usually not a concern of the 
naval architects. They mainly focus on pro-
pulsion efficiency and global weight (assum-
ing the weight is a relevant measure of the 
cost – which completely wrong if we think in 
term of production cost). 

- A first CAD model of the hull form is avail-
able as stability is assessed. 

- Etc. 

3.3.2 The basic design stage (BD) 
The basic design stage is characterized by (this is not 
an exhaustive list): 

- Performed at the tender stage and finished 
with the contract (if any). 

- Performed within few months (i.e. 2-3 
months). 

- Data are available but a lot are still missing. 
- First structural calculations rely on classifica-

tion tools such as the MARS2000 software of 
Bureau Veritas. 



- It is the time to build a first 3D structural 
analysis (coarse mesh model, if a FEA is 
achieved, which is not always the case for 
small and medium ships). 

- Potential cost savings are huge but a lot of 
uncertainties remain (due to concurrent engi-
neering all the data are not available such as 
hydrodynamics loads like sloshing, slam-
ming, etc.). 

- Fatigue, vibration, noise are not considered 
in deep, even if they are key issues for the 
life cycle cost (particularly fatigue). 

- It is the last chance to optimize the structure 
considering the production aspects (Design 
for Production). 

- Etc. 

3.3.3 The detailed design stage (DD) 
The detailed design stage is characterized by (this is 
not an exhaustive list): 

- Start when the contract is signed. 
- Performed within several months (i.e. 5-10 

months) and requires a large staff. 
- Data are usually available. 
- This stage is in fact not focusing on design 

but much more on validation based on quan-
titative assessments (stress, deflection, fa-
tigue, bucking, vibration, noise, etc.) using 
advanced calculation tools that are available. 

- Problems identified at this stage (such as fa-
tigue or vibration) will be solved, but usually 
at high costs (adding new elements as brack-
ets, delay in production, late change in ele-
ments which are already under production, 
etc.). 

- Time is lacking as there is a strong constraint 
on the delivery date. The production of some 
elements may be started before the comple-
tion of all the detailed analysis (that explains 
the cost of future changes). 

- Detailed analyses are time consuming and 
require significant experienced staff. 

- It is definitively too late to optimize! 
- Etc. 

 
Based on this design procedure and design stages, 

which are the challenges to optimize ship structures?  
- Need specific tools for conceptual and basic 

design stages. Indeed the early design stages 
(CD and BD) are the only opportunities to 
select (by optimization) an effective scantling 
considering the production requirements 
(simplicity, accessibility, least production 
cost, etc.). Later will be too late. 

- Need tools that can be used at the conceptual 
design stage and later at the basic design 
stage without re-meshing or re-modelling. It 
could be the same tool that can handle more 
advanced data and have a wider scope (not 

only hull girder bending but also local struc-
tural constraints and production constraints). 
Or it can be different tools but avoiding re-
meshing and re-modelling. 

- Need a tool (or IT platform) that can be used 
with the limited data available at the first de-
sign stages (CD and BD) to develop coarse 
mesh models dedicated to optimization. 
Later, at the detailed design stage, these 
models must to be able to be re-used (to save 
time and avoid re-meshing). 

- Need fast and reliable modelling tools with 
interface with standard commercial CAD 
tools which are used by the naval architects 
and the classification societies. 

- Need to target multi stakeholders (shipyard, 
ship-owner, classification society, IMO, etc.) 
and therefore multi-objective optimization. 

3.4  Description of a typical structural 
optimization tool 

As many optimization tools, to optimize the struc-
tures of a ship we need objectives functions (crite-
ria), design variables and constraints. We also need 
an optimization algorithm (mathematical approaches 
as simplex, steepest descent, SQP or heuristic ap-
proaches (evolutionary strategies, genetic algo-
rithms, neural network algorithms, etc.). 

3.4.1 Objective functions 
Objective functions depend on design variables in an 
explicit or implicit way, and may be assessed using 
numerical or mathematical expression. Typical ob-
jective functions are weight, production cost, life cy-
cle cost, safety index, etc. 

3.4.2 Design variables 
The design variables refer to a list of variables char-
acterizing the design being optimized. The design 
variables can be the main dimensions of the structure 
(or part of it) but also local parameters such as the 
web thickness of the stiffeners of a given structural 
region. Design variables can be the types of material 
or grade, the types of stiffeners (bulb, T, L), the 
overall section of a deck, etc. That explains we can 
have structural optimization problems with few de-
sign variables (10-50) when only few main dimen-
sions or parameters are selected, but also optimiza-
tion problems with few hundreds (100-1000) design 
variables (typically when the dimensions of each 
element are considered as independent design vari-
ables). 

The selection of the design variables depends of 
the target of the optimization and the design stage. In 
the next parts of this paper, design variables will 
typically be the scantling of the stiffened panels that 
compose the ship structures. A ship is usually com-
posed of stiffened panels (sub-elements of the decks, 



bottoms, side shells, bulkheads, etc.). The design 
variables relate to the scantling of these stiffened 
panels. The panel scantling varies from panel to 
panel even if standardization is usually achieved for 
obvious production considerations. By panel scant-
ling we understand the plate thickness, the frame 
spacing, the stiffener spacing and the dimensions of 
these frames and stiffeners (for instance HP200 or 
FB100x10). 

3.4.3 Design constraints 
The design constraints mainly refer to a list of limits 
mathematically defined in order to keep a feasible 
solution at the end of the optimization process. Se-
lection and modelling of the constraints are in fact 
the most difficult part of the optimization process. 
To get a reliable industrial solution, all the con-
straints involved in the structural design must be 
considered. Different types of constraints can be 
considered: 

- Technological constraints (or side con-
straints) that provide the upper and lower 
bounds of the design variables. 

- Geometrical constraints impose relationships 
between design variables in order to guaran-
tee a functional, feasible and reliable struc-
ture. These are generally based on expert 
knowledge to avoid local strength failures 
(web or flange buckling, stiffener tripping, 
etc.), or to guarantee welding quality and 
easy access to the welds. For instance, weld-
ing a plate of 30 mm thickness with another 
one being 5 mm thick is not recommended. 

- Structural constraints are selected to avoid 
yielding, buckling, cracks, etc. and to limit 
deflection, stress, etc (for the different limit 
states). These constraints are based on solid-
mechanics phenomena and modelled with ra-
tional equations. By rational equations, we 
mean a coherent and homogeneous group of 
analysis methods based on physics, solid me-
chanics, strength and stability treatises, etc. 
and that differ from empirical and parametric 
formulations. Thus these structural con-
straints may limit the deflection level of the 
structure, the stress in an element and the 
safety level related to buckling, ultimate re-
sistance and tripping. 

- Global constraints impose limitations for 
centre of gravity to ensure ship stability, fab-
rication cost to ensure producibility or flex-
ional inertia to ensure the respect of the clas-
sification rules. 

- Equality constraints are often added to avoid 
discontinuity of design variables and promote 
standardization. Panels of a same deck nor-
mally have the same thickness, stiffeners 
spacing’s are often homogeneous, etc. 

 

Constraints find usually their origin from classifi-
cation societies (rule based design) or from direct 
calculation (rational analysis, FEA, etc.), but also 
from the yard’s best practice and yard’s standards. 

One of the main difficulties encountered when op-
erating the optimization methods are to correctly de-
fine the problem to be solved. This generally must 
be extracted from the whole design set of con-
straints, and put in a very formal way, which is not a 
straightforward operation, and actually not a natural 
way of thinking for a designer. In practice, this often 
leads to bad formulated problems and to a trial and 
error process to define things correctly (Birk, 2003). 

Note that the difference between an objective 
function and a constraint is rather limited. Cost, 
weight, stress, gravity centre can be consider as a cri-
teria that we want to minimize (maximize) or as a 
constraint (for which an upper or lower bound is 
fixed). So it is convenient when the user can select a 
criterion as a constraint or as an objective function. 
The relationship between the function and the design 
variables does not change. 

3.4.4 Optimization algorithms 
There are basically two main types of optimization 
algorithms: the mathematical approaches (determi-
nistic) and the heuristic approaches including con-
cepts inspired by natural biological systems (Birk, 
2003). 

- The purely deterministic approaches: Starting 
from an initial design (feasible or not), the 
deal is to identify the best direction of propa-
gation. Such methods are the simplex, the 
steepest descent, BFGS, SQP, Dual ap-
proach, etc. The author experience and best 
practice concerns the convex linearization 
and dual approach (CONLIN software, 
Fleury and Braibant, 1986)). Even with hun-
dreds of design variables and thousands of 
constraints, the convergence in the feasible 
domain is guarantied and the optimum is 
reached within 10 iterations (this means 10 
re-analyzed of the real problems). This ap-
proach is discussed here after in Section 4. 

- The heuristic approaches are based on an “in-
telligent scanning” of all the feasible design 
space. These methods guaranteed to find the 
global optimum or at least to be close (if 
enough runs are performed) and are not in-
fluenced by the initial design. They are very 
efficient and effective methods if the compu-
tation time for each re-analysis is short as 
few thousands of runs are often required. 
This approach is discussed here after in Sec-
tion 4. 

 
It is not the relevant place to discuss here which 

approach is the best. In fact, there is no best method. 
The selection of a suitable method is highly problem 



dependant. In the framework of ship structure opti-
mization few relevant advantages and shortcomings 
can be highlighted. 

The deterministic approaches - these methods 
consist in minimizing a given objective function by 
searching in the design space with help of determi-
nistic algorithms. 

- They are prone to converge to a local opti-
mum. 

- They require expensive effort to assess the 
first derivative of the constraints. There are 
methods which do not require the first de-
rivative but in that case much more iterations 
are usually required. It is a common practice 
to say that, at least, one iteration is needed 
per design variable if a linear approach is se-
lected. Hopefully less iterations are required 
if the first (and sometimes the second) de-
rivatives are used (Newton, BFGS, SQP, 
etc.). For instance, only few iterations can be 
required for a structure optimization with 
hundreds of design variables and thousands 
of constraints. 

- The solution depends of the initial design as 
it is a convergence process. 

- They are suitable to solve problems with con-
tinuous design variables. The discrete design 
variables induced some difficulties. 

- They cannot be used with noisy or non-
derivable functions, as good quality gradients 
are requested. 

- They need a completely clean and reliable es-
timate of the functions and their derivatives, 
and are not robust with respect to any failure 
in this area. 

- They usually have a quick convergence (5 to 
10 iterations), which counteracts the time-
consuming gradients calculation. 

 
The heuristic/stochastic approaches - This other 

type of algorithms consists in introducing a dose of 
chance in the search for an optimum, which lets one 
expect to reach an absolute optimum after a suffi-
cient number of trials. 

- They are rather easy to implement, even if 
they require calibration to speed up the con-
vergence for the specific problems. 

- They are rather generic and the same algo-
rithm can be use in many fields. That ex-
plains why they are now so popular. 

- They are very efficient if the number of solu-
tions is limited (that means a reduced number 
of design variables). 

- Independent of an initial design. 
- Prone to find the acceptable approximation 

of global optimum for a reasonable calcula-
tion costs. 

- Effective for multi-objective optimization to 
find acceptable approximation of the Pareto 
front. 

- Much more efficient with discrete design 
variables than with continuous design vari-
ables. 

- They are very robust with respect to inaccu-
racy of failures in the analyses. 

 
This "random" but oriented search can be based on 

several types of algorithms: 
- the simulated annealing methods which take 

roots in thermodynamics and uses the anal-
ogy with energy minimisation of physical 
systems ruled by the Boltzmann law. In this 
case, there is always a probability of a tempo-
rary increase of energy, during the cooling 
process, this probability decreasing together 
with the temperature. 

- the genetic algorithm methods which take 
roots in the concept of natural selection (evo-
lution theory). They are based on the simula-
tion of the evolution of a population on 
which different kinds of operations are ap-
plied (combination, mutation, etc.) and sub-
mitted to a selection at each generation. 

- the particle swarm methods (Cui et al, 2008) 
- etc. 

3.5 The future challenge of the ship structure 
optimization  

Currently, as for the design, the most challenging is-
sues concerning ship structural optimization are the 
integration of fatigue as constraint and the imple-
mentation of direct calculations of the loads. 

3.5.1 Fatigue analysis 
To be cost effective optimization of scantling has to 
be performed at the basic design stage but the fine 
and very fine mesh models to assess fatigue are only 
available at detailed design stage. So, the challenge 
to implement fatigue in the ship structure optimiza-
tion is to develop fast and simplified fatigue assess-
ment module to be embedded in the optimization 
loop. Module requirements are to be fast and accu-
rate. In optimization the most important is to identify 
the direction of optimization. The quality of the 
trend is more important than the quantitative quality 
of the values themselves. The importance is to iden-
tify the best alternative(s). At the end, a final as-
sessment is performed in the DD stage, but it is es-
sential to have a fatigue module at the BD stage to 
compare different alternatives and provide the best 
directions of the optimization. 

3.5.2 Direct calculation of loads 
Static loads and wave bending moments are quite 
well defined by classification societies. Still water 
bending moments are now easily assessed at the 



conceptual stage by the naval architects. But the hy-
drodynamic loads (sloshing, slamming, torsion mo-
ment, etc.), especially for innovative ships as trima-
ran or fast ferry which are strongly governing the 
ship scantlings, need advanced direct calculations 
that are usually not performed before de detailed de-
sign stage. So, as for the fatigue, the challenge to 
implement direct load assessment modules in the 
ship structure optimization is the development of 
fast and simplified load assessment modules to be 
embedded in the optimization loop. 

4 FROM SINGLE TO MULTI-OBJECTIVE 
OPTIMIZATION  

4.1 State of art 

After each design loop (or iteration, see Fig. 1), a 
new design is obtained (in principle a better design), 
which has been assessed with regards to propulsion, 
stability, weight, cost, etc. This means that implicitly 
a series of objectives (or criteria) exists in the head 
of the designers/engineers. So naval architects, with-
out knowing (as Mr Jourdin - Molière) are daily per-
forming multi-objective optimization. Unfortunately, 
even with highly experienced naval architects there 
is a low probability to select an “optimum design”. 

That explains why mathematicians and engineers 
are trying since 1960 to develop rational numerical 
models to assist the naval architect to identify the 
“optimum design”. The first tentative concerned sin-
gle objective optimization of the ship structure 
minimizing its weight. Engineers obtained results 
but their methods were not applied by the industry. 
Indeed in practice, the design of such a complex ob-
ject as seagoing ship structure is a solution of a 
multi-objective optimization task including many 
optimization criteria often counteracting each other, 
e.g. small hydrodynamic resistance vs. large cargo 
deadweight, high structure strength and reliability vs. 
low structural weight and cost. Multi-objective op-
timization does not yield an unequivocal determina-
tion of a single variant but a set of compromise solu-
tions (infinite in general), which is used as a basis of 
taking a final design decision consisting in a selec-
tion of a solution to be further developed. 

4.2 Single criterion problem 

The single criterion optimization problem is usually 
formulated as Parsons and Scott (2004), Sekulski 
(2009). 
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where there is a single optimization criterion or ob-
jective function )(1 xF

r

 that depends on the N  un-
known design independent variables in the vector x

r

. 
For a practical engineering solution, the problem is 
usually subject to I  equality constraints and J  ine-
quality constraints )(xhi

r

 and )(xg j

r

, respectively, 
that also depend on the design variables in the vector 
x
r

. The minimization form is general because a 
maximization problem can be solved by minimizing 
the negative or the inverse of the cost function. 

4.3 Multi-criteria optimization  

Multi-objective design problems are those where 
two or more criteria included are measured in differ-
ent units and there is no acceptable way to transform 
them to a single value. In practice the multi-
objective optimization problem arises when there are 
targets to attain and there are various ways to attain 
these targets. In the design of seagoing ship these 
may be for example to achieve the lowest possible 
structural weight, and the lowest manufacturing cost.  

The multi-criterion optimization problem involves 
1>K  optimization criteria and can be formulated 

as, Parsons and Scott (2004): 
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where there are K  multiple optimization criteria 

)(1 xF
r

 through )(xFK

r

 and each depends on the N  

unknown design variables in the vector x
r

. In gen-

eral, this problem does not have any single solution 

due to conflicts amongst the K  criteria. 
Attention should be paid to the fact that a general 

view of life cycle cost includes the costs of design, 
manufacturing, foreseen service costs, and also the 
costs of decommissioning and disposing of the struc-
ture.  

It is worth noting that the value of money as a cost 
comparison basis is also changeable, and depends on 
social and economic conditions same as the mutual 
relations between particular components of construc-
tion/service cost. This tends to somewhat reduce the 
importance of cost-based criteria and leads to a 
situation where other criteria not expressly money-
related are used more often, such as structural weight 
and reliability. Quite often the volume or weight of 
steel materials (plates and profiles) as a structure op-
timization criterion is used for the fabrication of a 
whole structure. The above criteria approximately 
reflect the costs of used-up material in case of struc-
tures built wholly of a single material, e.g. steel. 



Some other criteria can be adopted as well, reflecting 
the approximate labour for the construction works or 
its maintenance works - these can be for example the 
length of joints, the number of connections for a 
given steel structure design, or its outer surface 
which is subject to maintenance. 

4.4 Pareto optimum front 

In case of a multiple criteria conflict, Pareto-
optimality is a widely accepted measure of quality in 
the multi-objective selection problems. This has first 
been exposed by the Italian-French economist V. 
Pareto in 1906. This is also referred to today as 
Edgeworth-Pareto optimality: A solution is Pareto 
optimal if it satisfies the constraints and is such that 
no criteria can be further improved without worsen-
ing at least one of the other criteria. Note that this 
emphasizes the conflicting or competitive interaction 
amongst the criteria. These definitions typically re-
sult in a set of optimal solutions rather than in a sin-
gle unique solution. 

A particular design of a ship structure may be 
called Pareto-optimal under a condition that there is 
no other variant of this structure which would be 
better with regard to at least one criterion while at 
the same time being equally good with regard to all 
the remaining optimization criteria. This means that 
a Pareto-optimal structural variant cannot be im-
proved without simultaneous worsening of at least 
one criterion. Pareto-optimal designs are also re-
ferred to in literature as being non-dominated ones, 
trade-offs, non inferior or Pareto efficient. The vari-
ant of a ship structure is not Pareto-optimal if there 
is any other variant, which improves at least one cri-
terion while at the same time not worsening the val-
ues obtained for the remaining ones. Such variants 
are also called dominated ones or inferior ones.  

Fig. 4 gives an example of a Pareto frontier. The 
boxed points represent feasible choices, and smaller 
values are preferred to larger ones. Point C is not on 
the Pareto Frontier because it is dominated by both 
point A and point B. Points A and B are not strictly 
dominated by any other point, and hence they lie on 
the frontier. Of course, such a presentation is easy in 
case of problems involving two objectives, but is 
much more difficult of even impossible in case three 
or more objectives are involved. 

 
Figure 4. Example of a Pareto front 

 
A design team, of course, typically seeks a single 

result that can be implemented in the design. This 
result should be an effective compromise or trade-off 
amongst the conflicting criteria. This can often be 
reached by considering factors that can not be in-
cluded in the optimization model, Zanic et al. 
(2003). Some additional tools can also be used to 
help the designer making his choices, and possibly 
defining a new unique objective function that gathers 
all his wishes, and that can be minimized/maximized 
afterwards (Multi Criteria Decision Making tools). 

4.5 Global optimum criterion 

As noted before, engineering design requires a spe-
cific result to be implemented, not a set of solutions 
as provided by the Pareto optimal set. The most in-
tuitive ways to achieve an effective compromise 
amongst competing criterion are, amongst others, the 
weighted sum, the min-max and the nearest to the 
utopian solutions. These solutions can be obtained 
through the global criteria: 
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kF  is the value of the criterion KF  obtained when 
that criterion is the single criterion used in the opti-
mization i.e. the best that can be achieved with that 
criterion considered alone. The scalar preference 
function [ ])(xFP K

r

 replaces )(xF
r

 in Eq. 1 for nu-
merical solution. 

The weighted sum solution results from Eq. 3 
when 1=ρ , whereas the nearest to the utopian solu-
tion results when 2=ρ  and the min-max solution 
when ∞=ρ . The numerical implementation for the 
min-max solution uses the equivalent of Eq. 3 with 

∞=ρ , 
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Moreover, a solution could be obtained for a 
number of values of ρ and then the design team 
could decide which solution best represents the de-
sign intent. 

4.6 Mapping the entire Pareto front 

When dealing with multi-criteria problems, it is 
highly recommended to study the entire Pareto front. 
This allows the design team to consider all options 
that meet the Pareto optimality definition. The final 



design decision can then be based on the considera-
tions modelled in the optimization formulation as 
well as on the multiple additional considerations, 
factors, and constraints not included in the model. 
This is feasible when there are two criteria but rap-
idly becomes impractical due to computational time 
and visualization reasons when the number of crite-
ria reaches three and up. 

In order to map the entire Pareto front, the follow-
ing three methods can be used: 

a) Repeated weighted sum solutions. If the fea-
sible objective function space is convex, 
weighted sum solutions can be obtained for 
systematically varied weighting factors. 

b) Repeated weighted min-max solutions. If the 
feasible object function space does not have a 
slope that exceeding w1/w2, weighted min-
max solutions can be obtained for systemati-
cally varied weighting factors. 

c) Multi-criterion optimization methods. Multi-
criterion implementations of Evolutionary 
Algorithms (Evolutionary Strategies, Generic 
Algorithms, etc), Simulated Aneealing, Par-
ticle Swarm Optimization, etc. can leads to 
the entire Pareto front 

 
These methods (a) and (b), based on a scalariza-

tion of a vector objective function, have found wide-
ranging applications also in the methods of evolu-
tion-based multi-objective optimization, as they al-
low for use of well researched single-objective opti-
mization algorithms. 

These classical methods used for the solving of 
multi-objective problems are easy to implement but 
the fundamental disadvantages are: 

- Seeking only a single point on non-
dominated solutions front and resulting ne-
cessity to make numerous calculation runs 
for a single optimization task. 

- The fact that expert knowledge is required 
at the beginning to specify the weight coef-
ficients used for component optimization 
criteria. 

 
Evolutionary multi-objective optimization (c) al-

gorithms developed in recent years have proved 
highly effective. Highly promising results in the field 
of genetic algorithms use for multi-objective optimi-
zation tasks have been obtained in the field of ship 
structures by Okada & Neki (1992) and Hutchinson 
et al (1998). Special evolutionary multi-objective op-
timization methods may be applied, as far as genetic 
algorithms are concerned. Fundamental advantages 
of these methods are:  

- Effective search of solution space. 
- Capability to illustrate the non-dominated 

solutions front in a single simulation run. 
- Robustness of the procedure. 

 
With simple genetic algorithms application how-

ever these major advantages are paid by high compu-
tational cost: a large number of fitness evaluation is 
needed to reach a satisfactory solution. If the fitness 
function is computed by means of complex simula-
tion codes the total cost of the approach may take the 
problem impossible to face. 

Excellent presentation of evolutionary methods of 
multi-objective optimization can be found in re-
cently published books Coello et al (2007), Deb 
(2001) and Osyczka (2002). 

NSGA-II (Deb et al, 2000) and SPEA2 (Zitzler et 
al, 2001) algorithms are commonly recognized and 
they are employed as reference algorithms by many 
authors for estimation of the efficiency of other for-
mulations. The principal elements of these algo-
rithms are: 

- Selection strategies based on the Pareto-
domination relation. 

- Niche strategies to preserve diversity in the 
consecutive populations. 

- Elitist strategy to ensure survival of non-
dominated solutions in the time of evolu-
tion. 

 
Despite the disadvantages of the algorithm em-

ploying scalarization of the objective functions are 
efficient algorithms transient from the classic meth-
ods to the advanced algorithms employing the 
Pareto-domination relation for the variant selection. 

The researchers have reported for several years 
that if the number of the optimization criteria is 
greater than 3, the methods based on the domination 
relation turn to be ineffective since together with the 
increase of the number of optimization criteria the 
number of non-dominated variants decreases reduc-
ing the effectiveness of the selection operator, 
Hughes (2003 and 2005), Purshouse and Fleming 
(2003). 

5 LBR-5, A LEAST COST STRUCTURAL 
OPTIMIZATION METHOD 

5.1 Introduction 

To be attractive to shipyards, scantling optimization 
has to be performed at the preliminary design stage. 
It is indeed the most relevant period to assess the 
construction cost, to compare fabrication sequences 
and, to find the best frame/stiffener spacing’s and 
most suitable scantlings to minimize ships life cycle 
cost. However at this stage of the project, few pa-
rameters (dimensions) have been definitively fixed 
and standard FEM is often unusable, particularly to 
design offices and modest-sized shipyards. There-
fore, an optimization tool at this design stage can 
provide precious help. This is precisely the purpose 



of the LBR-5 optimization software, Rigo (2001) 
and Rigo & Fleury (2001). 

LBR-5 is the French acronym of "Stiffened Panels 
Software" version 5.0. The purpose of the tool is the 
sizing/scantling optimization of ship and offshore 
structures. The development of the LBR-5 module is 
included in the development of a module-oriented 
optimization approach, Rigo (2001). The goal is to 
create a multi-purpose optimization model, opened 
to users and compatible with other structure analysis 
modules based on codes and specific regulations. 
Such a model contains various analysis methods for 
strength assessment that can easily be enriched and 
complemented by users. The user must be able to 
modify constraints and add complementary limita-
tions according to the structure type (hydraulic, ship 
and offshore structures, etc.), the code or the regula-
tion in force and to his experience and ability in de-
sign analysis. The objective is to create a user-
oriented optimization technique in permanent evolu-
tion, i.e., that evolves with the user and his individ-
ual needs. 

The structural analysis is performed on a model 
based on an extrusion of the cross section of the 
structure (2D+) solving the stiffened plate differen-
tial equations with Fourier series expansions, Rigo 
(2005). 

5.2 The LBR-5 module oriented optimization 
concept 

A multi-purpose optimization model, open to users 
and compatible with different codes and regulations 
must contain various analysis methods for strength 
assessment that could be easily enriched and com-
plemented by users. The user must be able to modify 
constraints and add complementary limita-
tions/impositions according to the structure type 
studied (naval, offshore structures, etc), the code or 
the regulation in force and to his experience and 
ability in design analysis. The objective is to create a 
user-oriented optimization technique, in permanent 
evolution, i.e. that evolves with the user and his in-
dividual needs. We define this as “Module-Oriented 
Optimization ". 

The LBR-5 optimization model is based on this 
concept and is composed of several modules. Nei-
ther the module number nor their type is imposed. 
The whole model is made up of 3 basic modules (ob-
jective function, optimization algorithm and con-
straints), which forms the framework of the tool. 

Around the objective function and constraints 
modules there are a large number of sub-modules. 
Each of these sub-modules is specific to a type of 
constraint. In principle, it is necessary to have at 
least one sub-module for each constraint type. To 
date, only a limited number of modules are available 
(in general 1 or 2 for each constraint type). It is up to 
the user to complete, adapt and add new modules ac-

cording to his specific requirements (type of struc-
ture, codes and regulations to be followed, technical 
and scientific level, available hardware, etc.). The 
objective is to enable the user himself to build the 
tool he needs. 

Fig. 5 shows the basic configuration of the LBR-5 
software with the 3 fundamental modules (objective 
function, optimization algorithm and constraints). 
 

Figure 5. Flow chart of the LBR-5 optimization software 

 

Figure 6. The CONLIN model: convex approximations 
and dual approach (Rigo and Fleury, 2001) 

5.3 The LBR-5 optimization algorithm. 

The LBR-5 optimization algorithm is based on the 
CONLIN code developed by Fleury and Braibant 
(1986) using a convex linearization of the con-
straints and the objective function combined in a 
dual approach. With this algorithm, large con-
strained problems with implicit and non-linear con-
straints can be easily solved (Fig. 6). The main diffi-
culty in solving a dual problem is dealing with the 
non-linear and implicit constraints. In order to avoid 
a large number of time-consuming re-assessments of 



these non-linear and implicit functions, Fleury sug-
gests applying convex approximations. At each itera-
tion, all the functions (objective function and con-
straints) are replaced by an approximation called 
"convex". In a word, the complex initial optimiza-
tion problem is decomposed in a sequence of simpler 
convex optimization problems (obtained through a 
convex linearization) that can be easily solved using 
a dual approach (Fig. 6). 
 
 

In order to consider non-linear implicit constraints 
( )( iXC ), Fleury proposes replacing these constraints 
with approximated explicit linear constraints by us-
ing convex linearization. He suggests using the first 
term of the Taylor Series Expansion. Three linear al-
ternatives are possible: 

Linearization with standard design variables 
)( iX : 
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Linearization with reciprocal design variables 
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Convex linearization with mixed variables 

)1,( jk XX : 
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As design variables refer to dimensions such as 
plate thickness, web height, etc., it is not suitable to 
use iX  to linearize constraints related to stress, 
strengthand displacement. It is better to use recipro-
cal linearization iX1 . On the other hand, geometri-
cal constraints must be linearized with standard de-
sign variables iX  instead of reciprocal ones iX1 . 
Therefore, for a general case, it is obvious that 
mixed linearization is the better way. But the prob-
lem remains how to determine which linerization is 
the most suitable (reciprocal variable iX1  or direct 
variable iX ) for each design variable. Fleury has re-
sponded to this, proposing to make this selection in a 
way that replaces the actual design space (feasible 
domain for the design variables) by a smaller do-
main, included in the actual one, but convex. One 
can summarise in this way: since the substitution de-
sign space is conservative, this leads to a solution 

that is still admissible, but that could be "slightly" 
different from the real optimum. Step by step, this 
conservatism is released as one comes closer to the 
real optimum. 

The convexity of the design space and conserva-
tion allow a safe and fast convergence. The conver-
gence is safe because, at each iteration, the updated 
solution has a tendency to still remain in the feasible 
domain. Fleury et al (1986) has demonstrated that an 
efficient convex linearization can be achieved by se-
lecting the group of variables iX  and the group of 
reciprocal variables iX1  according to the sign of 
the first derivative of the function to linearize, that is 

ii XXC ∂∂ ))0(( . 
For a given design variable, iX : 

• A linearization with standard variable iX  is 
achieved if 0))0(( >∂∂ ii XXC  

• A linearization with reciprocal variable iX1  
is achieved if 0))0(( <∂∂ ii XXC  

 
Therefore Eq. 9 becomes: 
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With 
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The proposed convex linearization is very power-
ful as only the values of ))0(( 1XC  and 

kk XXC ∂∂ )0((  are required. The linearization is 
done automatically at each step (iteration) and the 
convergence order is 2. In addition, the main advan-
tage of the proposed convex linearization is the con-
servatism of the approximated function. Let’s note 
however that conservatism is only guaranteed with 
regards to initial linear functions in kX  and in 

jX1 . To avoid numerical problem the equations 
have to be normalised before starting the convex lin-
earization. 

At each iteration the normalised problem to solve 
is the following: 

[ ]∑ ∑− iijj XFXFmin  with N design variables 

X submitted to M constraints 

∑ ∑ ≤− CMXCXC iijj  and maxmin iii XXX ≤≤  

the lower-upper bounds. 

This problem is called a primal problem with ref-
erence to the iX  design variables, called primary or 



primal design variables. It is a constrained problem 
with N design variables and M constraints. This 
problem cannot be solved easily with classic meth-
ods such as, for example, the conjugated gradient. A 
dual approach will be used here to replace the primal 
constrained problem with N unknowns by an uncon-
strained problem with M unknowns (called the dual 
problem). This technique is especially advantageous 
when NM <<< : Unfortunately, with regard to the 
applications considered in this paper, this last advan-
tage is not relevant since M and N are the same order 
of size. 

To the primal problem (convex with separable 
variables), one can associate the dual problem: 

[ ]),()min()max( λλ XdeLX  and maxmin iii XXX ≤≤  

With ),( λXL  the Lagrangien, kλ  the M multipliers 
of Lagrange (dual variables) 
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which is also a function with separable variables. 
Because the Lagrangien function is separable 
(Eq. 11), the single dual problem with N design vari-
ables (N dimensions) is replaced by a series of N 
problems with a single dimension: 

)min()(1 X=λ  of ∑
=
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i

ii XLXL
1

)(min)(  with 

maxmin iii XXX ≤≤  as ∑
=
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N

i
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1

)()(  (as function 

with separable variables). 

Each term of the )(XL  minimisation (Eq. 11) can be 
written in an explicit form: 

iiiiii XBXAXL +=)(min  where iA  and iB  are de-

fined as ∑
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)(λλ . 

Note that the minimisation related to each iX  vari-

able requires that 0=∂∂ ii XL . Then, 

maxmin iiiii XABXX ≤=≤  and )( ki fctX λ= . 

6 APPLICATION OF LBR-5 SOFTWARE TO 
STRUCTURAL OPTIMIZATION OF CRUISE 
VESSELS 

6.1 Introduction 

This section relates to the structural optimization of 
a cruise ship. The length between perpendiculars is 
about 280m and the overall length is about 315m. 
Fig. 7 shows the outline of a similar ship. 

6.2 Model 

Three amidships sections of the ship has been simul-
taneously implemented inside LBR-5. The sections 
are characterized by 14 decks, 40 m breadth and 42 
m height (STX-France). Fig. 7 shows the three con-
sidered sections. Based on structure symmetry, only 
the half structure is modelled. 

The structural module of LBR-5 allows the analy-
sis of 2.5 D structures, obtained from the definition 
of a 2D model and extruded through the longitudinal 
direction. It is obvious that fore and the aft sections 
of a ship could not be analysed and optimized to-
gether with the amidships section, but this optimiza-
tion is possible independently. The main inconven-
ient of an independent optimization is that several 
design variables (for example the stiffeners spacing) 
that should be the same for the considered structures, 
may have different values at the local optimum. 
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Figure 7. Three amidships sections of a cruise ship (STX-France) 

 

Recently a multi-structures module has been im-
plemented in LBR-5 to optimize several sub-
structures simultaneously. The main originality is to 
link design variables between these structures, for 
example the amidships section with the fore and aft 
sections of a cruise ship (see Fig. 7). The multi-



structures module optimizes simultaneous the three 
sections in order to obtain compatible design vari-
ables.  

However, only several common design variables 
can be taken into account such as stiffener spacing or 
plate thickness. The link between the three sections 
is done through design variables: new equality con-
straints are added between variables. Between sub-
structures, there is no link at the level of strain & 
stress. In practice, the three sections are optimized 
independently but some design variables are linked 
together in order to find a realistic and global opti-
mum solution. 

6.3 Load cases 

For each section the following load cases were con-
sidered: 

- sagging and hogging wave vertical bending 
moments with a probability of 10

-8
; still wa-

ter pressures; static deck loads; 
- sagging and hogging wave vertical bending 

moments with a probability of 10
-5

; still wa-
ter and wave pressures; static deck loads; 

- no hull bending moment but maximum still 
water and wave pressures; static and inertial 
deck loads. 

 
Deck bending efficiency coefficients were consid-

ered in order to take into account the participation 
degree of each deck to the longitudinal bending. 

The main difficulty of the modelling is to get ade-
quate moments and shear forces on the both side of 
the reduced part of the ship. In principle, the hull 
girder shear and bending depend on the distribution 
laws of gravity and buoyancy forces corresponding 
to each specific loading case. Indeed shear force is a 
resultant force coming from the general behaviour of 
the ship. It is influenced by its length, weight and 
water pressures. If we model only a part of the ship, 
we do not have the same behaviour: the shear force 
and moment in the studied section are not the same 
as in reality. To solve the problem we artificially 
modify the bending moment applied and the length 
of the model to get the adequate bending mo-
ment/shear force in the studied section for each con-
sidered load cases acting on the sections of the pas-
senger ship. 

Indeed our model is a 2D model extruded in the 
third direction. Hydrodynamic pressures and dead-
weight do not change along this direction. Conse-
quently the resulting pressure on the structure p  is 
also constant in this direction – our model is like a 
beam with a constant pressure p  applied. If we ap-
ply a bending moment 1M  to the extremities of our 
model, the equations of the moment M  and shear T  
are: 
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where x  is the distance from the extremity and L  
the length of the model. For the whole ship the be-
haviour is more complex ( p  is not constant over the 
length) and must be studied to know the real distri-
bution of the bending moment and the shear. With 
these distributions we can know the moment and the 
shear to apply at the section studied by LBR-5 – in 
other words we can know M  and T . 

In the LBR-5 model we must choose a position x  
where are applied the structural constraints: the 
equations above show that for each position x  we 
have different values of M  and T . For a section 
chosen (for a given x ) we must then solve the above 
equation to find which bending moment apply to the 
extremity 1M  and which length L  to select to have 
the good couple ),( TM . Consequently the length of 
the model is virtual and varies for each load case. 

6.4 Optimization - Design variables 

The three ship structures are modelled respectively 
with 81, 78 and 93 stiffened plate elements (Fig. 8). 
The structural response of the model is solved with 
the resolution of the non-linear differential equations 
of each stiffened plate element, Rigo (2001). For 
each element, nine design variables are available: 

• Plate thickness. 
• For longitudinal members (stiffeners, cross-

bars, girders, etc.), 
o web height and thickness, 
o flange width, 
o spacing between two longitudinal 

members. 
• For transverse members (frames, transverse 

stiffeners, etc.), 
o web height and thickness, 
o flange width, 
o spacing between two transverse 

members (frames). 
 

Figure 8. LBR-5 Stiffened Plate Element 

 



In this case study 1694 design variables were acti-
vated for the whole ship model (3 ship sections) 
which represents an average of 6-7 design variables 
per stiffened panel. Only plate thicknesses and longi-
tudinal members have been optimized. 

To deal with this huge number of design variables 
the LBR-5 optimization algorithm which can solve 
non-linear constrained problems has been used. It is 
based on both a convex linearization of the non-
linear functions and a dual approach, Fleury et al. 
(1986). It is especially effective because only few it-
erations are required; typically less than 10. 

6.5 Optimization - Objective functions 

Production cost and minimum weight constitute the 
double objective considered in this application. 

Production costs (PC) has been subdivided into 
three categories according to Eq. 14: 

• the cost of raw materials (MC) – The evalua-
tion of material costs consists in quantifying 
volumes required for construction and ob-
taining prices from suppliers and subcontrac-
tors. 

• the labour costs (LC) – The best alternative 
to using empirical formulations to evaluate 
labour costs is an analytic evaluation. Such 
an approach requires knowledge of the work-
ing time required for each standard labour 
task associated with a workstation as well as 
the subdivision by stations of the entire con-
struction process. Eq. 15 provides the Cost 
Evaluation Relationships (CERs) of the la-
bour cost of a stiffened panel for a simple 
manufacturing activity e.g. the welding of 
two assemblies, the tacking of steel profiles, 
etc. The production cost has been calculated 
with an advanced cost module taking into ac-
count a detailed shipyard database. Around 
60 fabrication operations are considered, 
covering the different construction stages, 
such as girders and web-frames prefabrica-
tion, plate panels assembling, blocks pre-
assembling and assembling, as well as 30 
types of welding and their unitary costs, 
Toderan et al. (2007). 

• the overhead costs (OC) – Overhead includes 
any expense that cannot be attributed to a 
specific work station of the construction 
process, but that is, however, linked to con-
struction. 

 

OCHCLCMCPC +×+=  (14) 

where PC Production cost (€), 

 MC Material cost (€), 

 LC Labour cost (man-hours), 

 HC Hourly cost (€/hour), 

 OC Overhead costs (€). 

 

WCACKCUCQCLC ××××=  (15) 

 
where LC Labour cost (man-hours), 

 QC Quantity (welding length, number of 

brackets, etc.), 

 UC Unitary costs (cost-per-unit), 

 KC Corrective coefficient used to calibrate 

the unitary costs, 

 AC Accessibility/Complexity coefficient, 

 WC Workshop coefficient. 

 

The CER (Eq. 15) provides the basic tool to assess 
the cost. This relationships (QC × UC) is typically 
developed directly from the measurement of a sim-
ple physical attributes such as dimensional data 
(plate thickness, profile length, profile scantling, 
welding length, welding throat, etc.) or quantitative 
data (number of profiles, number of brackets, num-
ber of cut-outs, number of holes, etc.) for a given 
shipbuilding activity (QC), and the unitary cost of 
carrying out the activity (UC), e.g. the labour for 
steel block assembly (man-hours/ton) or the labour 
for welding in a vertical position (hours/meter). 

The unitary costs (UC) vary according to the type 
and the size of the structure, the manufacturing tech-
nology (manual welding, robotic welding, etc.), the 
experience and facilities of the construction site, the 
country, etc. Usually, unitary costs are defined as a 
function of one or more design variables like (plate 
thickness, welding throat, welding type (butt or fil-
let), welding position, bevels, profile scantling, etc.). 

The catalogued cost scales (cost-per-unit) avail-
able do not always reflect accurately the expected 
costs for the cost assessment. Therefore, these cost 
scales can be modified thanks to an appropriate ad-
justment factor (KC). This procedure has the double 
advantage of preserving the cost scales for control 
purposes and allowing the impact simulation of a fa-
cility or technology investment on the cost. 

An additional coefficient (AC) is introduced to the 
equation to adjust manufacturing cost assessment in 
case of increase or a decrease in the relative accessi-
bilities/complexities of the ship or its sub-assemblies 
(ship, blocks, panels, etc.). The more dense, difficult 
to reach and complex the structure is , the more the 
manufacturing cost will increase. 

The productivity changes from a workshop to an-
other. Usually shipyards wish to consider this type of 
change in their cost assessments. For that purpose 
we use another adjustment coefficient (WC) reflect-
ing certain gains or losses in productivity within 
specified shipyard activities, such as in the workshop 
the product is assembled. 

Beside the production cost a maintenance/repair 
oriented life cycle cost/earning model is currently 
being studied in order to improve the cost objective 
function. Turan et al. (2009) provided good theoreti-
cal and practical foundation but further research and 



progress are still required to develop a more mature 
maintenance/repair cost modelling systems. 

6.6 Optimization - Design constraints 

Constraints are linear or non-linear functions, either 
explicit or implicit of the design variables. These 
constraints are analytical relationships of the limita-
tions that the user wants to impose on the design 
variables or parameters such as displacement, stress, 
ultimate strength, etc. 

The problem is highly constrained (Table 1) and 
the adequacy of these constraints can greatly influ-
ence the solution provided. In this specific case 
study, 3388 technological constraints, 1696 geomet-
rical constraints, 16809 structural constraints and 6 
global constraints have been used. All the previous 
constraints have been applied to a ship at the end of 
his service life, i.e. for the corroded structure after 
30 years of life. 
 
Table 1.  Design constraints of the 3 ship sections 

 Aft 

ship 

Amid 

ships 

Fore 

ship 

Total 

 section section section  

 [A] [M] [F]  

Number of strake 

elements 
81 78 93 252 

Design variables 550 460 684 1694 

     

Technological 

constraints 
1100 920 1368 3388 

Geometrical 

constraints 
558 446 692 1696 

Structural 

constraints 
5734 4035 7040 16809 

Global constraints 2 2 2 6 

Equality 

constraints 
0 0 0 0 

Total constraints 7394 5403 9792 21899 

6.7 Pareto front 

For the application case, Eq. 5 was used for the two 
criteria of the objective function. This leads to the 
Eq. 16 where P  is the objective function and 1F , 2F  
are the both criteria analysed in this paper i.e. re-
spectively the steel weight and the production cost. 
Furthermore, 1

0F  represents the value of the criterion 

1F  (i.e. steel weight) obtained when the optimization 
is performed only with this criterion in the objective 
function (single objective), while 2

0F  represents the 
value of the criterion 2F  (i.e. production cost) ob-
tained when the optimization is performed only with 
this criterion in the objective function (single objec-
tive). 
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The Pareto front has been mapped by using the re-
peated weighted sum solutions method using a proc-
ess that altered the weighting factors in the weighted 
sum solution and solved the optimization for each of 
them. The resulting convex Pareto front is shown in 
Fig. 9 (50 points were calculated). The Pareto front 
required 28 hours with a laptop Pentium Dual Core 
2.52 GHz and 3 Go of RAM. Thanks to the optimi-
zation algorithm features, all scantlings presented in 
Fig. 9 are feasible solutions, which mean that all of 
the constraints imposed to optimization are being 
satisfied. 
 

 

� Initial design  � Utopian point   Pareto optimal 

solutions 

× Not converged points  • Min-Max Solution (ρ=∞) 

Figure 9. Pareto front of the cruise ship optimization  

 
Table 2. Cost and Steel Weight Savings 

 
Weight 

Optimization  

Cost 

Optimization  

Min-Max 

Solution 

 Saving (%) Saving (%) Saving (%) 

Steel weight -12.72% +5.1% -11.3% 

Production 

cost 
-0.88% 

-4.52% -1.58% 

Material cost -8.5% +0.89% -8.38% 

Labour cost +4.22% -8.8% +2.96% 

 

The utopian point, the min-max solution (ρ=∞), 
and the initial solution are also shown in Fig. 9. Min-
Max solution has been obtained for a weighting fac-
tor equal to 0.59 for the production cost and 0.41 for 
the weight. This analysis has highlighted that the ini-
tial design is relatively far from the Pareto front. Us-
ing Fig. 9, the design team is now able to choose a 
compromise solution from the Pareto front, by con-
sidering additional factors and constraints that could 
not be included in the optimization problem. 
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6.8 Results 

In this application, results are mainly presented in 
terms of ratios to avoid publishing sensitive confi-
dential quantitative data. A comparative analysis has 
been carried out on the several optimal configura-
tions. Table 2 provides the cost and steel weight sav-
ings respectively between the initial design and a 
cost optimization, between initial design and weight 
optimization and finally between initial design and 
the min-max solution. 

Results show that a cost optimization generates an 
important increase of steel weight. Thus the cost op-
timal solution is far from the optimum in term of 
steel weight. Consequently for this ship the Min-
Max solution is probably much more efficient than a 
weight optimization (i.e. production cost gain of 
1.58% and weight gain of 11.3%). This case study 
clearly shows the advantage of a multi-objective op-
timization in comparison with a single one. 

The breakdown of the gain for each main part of 
the ship, i.e. the bottom, the side shells, the inner 
desks and the accommodations', is presented on Fig. 
10 and Table 3. The results shows that plate thick-
ness has been reduced everywhere. The highest re-
duction as well as for production cost as for steel 
weight is given for the side shells of the ship. 

 

 
Fig. 10.  Gain breakdown of the min-max solution 

 

Table 3.  Gain Breakdown of the min-max solution 
 Production 

Cost 

Saving (%) 

Steel 

Weight 

Saving (%) 

Bottom -0.1% -7.71% 

Side -18.42% -31.56% 

Inner decks +4.33% -8.77% 

Accommodations' -1.92% -10.43% 

TOTAL -1.58% -11.3% 

6.9 Validation of the results 

The final scantlings of the min-max solution were 
verified with Bureau Veritas rules (Mars2000); all 
plates and stiffeners had thickness greater or equal to 
those required by the rules. Note that the optimiza-
tion did not take fatigue into account. Information of 
structural details required for reliable fatigue as-
sessment is available only in the next design stage. 
This is a significant obstacle for an early design 
stage, because the decisions taken at this stage have 
a strong influence on the fatigue life of the hull 
girder. Structural modifications after the early design 
stage are expensive. In order to overcome this prob-
lem, a study has been conducted to implement a ra-
tional model for fatigue assessment at the early de-
sign, Remes et al. (2009). 

7 IMPROVE 

A new forward-looking design for a 220,000m
3
 

capacity liquefied natural gas carrier (Fig 11) has 
emerged as part of the EU-funded IMPROVE pro-
ject, following a study by STX France S.A (RINA 
2009). 

 

 

 

 
Fig 11: The STX France new concept suggests a ‘two-

draught’ vessel, using minimal or even no ballast water 

in the unloaded condition. 

 



The Saint-Nazaire shipyard’s designers propose a 
solution to reduce the need for ballasting in order to 
prevent biological invasions of marine organisms 
transported in ballast water and sediment transfer. 
Moreover, energy and thus money will be saved by 
decreasing the huge amounts of sea water trans-
ported, almost unnecessarily. 

The innovative part is a change of the hull shape 
in combination with an adapted with type of propul-
sion unit. The solution is based on a V-shape hull 
and pod type propulsion technology to make the 
need for ballast water unnecessary in good sea way 
conditions. The special hull form allows a sufficient 
draught in most loading condition with a reduced 
volume of ballast water. 

In the framework of IMPROVE the scantling of 
the cargo tanks has been optimized (including frame 
spacing and stiffener spacing), considering sloshing 
assessment performed by BV. 

The least weight optimization (objective function 
being the minimization of the weight) reveals a po-
tentials gain of the order of 15 % (including the cof-
ferdams). Concerning the production cost (least cost 
optimization) the gain is around 5%. 

Similarly two other ships have been optimized in 
the frame work of IMPROVE. A large Ro-Pax ship, 
with capacity for 3000 lane meters of freight and 300 
cars, plus 1600 passengers, designed by Uljanik 
Shipyard in Croatia (Fig. 12) has been optimized us-
ing Octopus-Maestro developed by V Zanic et al 
(2009) 

The third ship is a 40,000dwt chemical tanker, 
designed by Szczecin Shipyard, in Poland (Fig. 13) 
and optimized using CONSTRUCT (Ehlers and 
Klanac, 2009). 
 

 

 

Fig 12: Structural assessment of the ROPAX (Zanic et al 

2009). 

 

 

 

Fig 13: Structural assessment of the Chemical Tanker 

(Ehlers et al, 2009) 

8 CONCLUSIONS 

The future challenge in the field of ship structure op-
timization does not concern the optimization algo-
rithm itself but the development of some specific 
modules and mainly their integration. 

The identified challenges and needs are the fol-
lowing: 

- Development of fast and reliable modules to 
assess structural constraints such as fatigue 
and loads, at the early design stage (concep-
tual design stage but more probably at the ba-
sic design stage). 

- Develop interfaces and/or open platforms for 
an easy plug and play (integration) of exter-
nal modules. Initiative started by the IM-
PROVE user group (Rigo et al, 2009) must 
be encouraged and development of open plat-
forms as ModeFrontier or BOSS-Quattro is 
encouraged. 

- Integrate the optimization tools in design 
chains, with direct links to the major 
CAD/CAM tools and FE software to avoid 
data retyping and time consuming re-
meshing. 

- Implement multi stakeholders and multi ob-
jectives approaches to better converge to-
wards reliable industrial solutions, which are 
always a fact of comprise between objectives 
of the different stakeholders. 

- Integrate life cycle cost, and particularly the 
maintenance and operation costs within the 
global cost assessment for the entire life of 
the ship. In that case, optimization will be a 
supportive design tool toward the “Design 



for Maintenance” and “Design for opera-
tion”. 
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