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Abstract

Evolutionary Algorithms are robust and powerful global optimization techniques for solv-
ing large scale problems that have many local optima. However, they require high CPU
times, and they are very poor in terms of convergence performance. On the other hand,
local search algorithms can converge in a few iterations but lack a global perspective. The
combination of global and local search procedures should offer the advantages of both op-
timization methods while offsetting their disadvantages. This paper proposes a new hybrid
optimization technique that merges a Genetic Algorithm with a local search strategy based
on the Interior Point method. The efficiency of this hybrid approach is demonstrated by
solving a constrained multi-objective mathematical test-case.

Keywords: Nonlinear Programming, Genetic Algorithm, Interior Point Method, Multiobjec-
tive Optimization.

1 Introduction

Genetic Algorithms (GAs), initially developed by Holland [5], remain the most recognized and
practiced form of Evolutionary Algorithms which are stochastic optimization techniques that
mimic the Darwin’s principles of natural selection and survival of the fittest.
As a zero-order optimization method, GAs can be used in the case of discontinuous objective
functions, within disjoined and/or non-convex design spaces, and together with discrete, con-
tinuous or integer design variables. With respect to local search methods (e.g. gradient-based)
GAs minimize the risk to converge to a local optimum thanks to the simultaneous processing of
the whole candidate solutions.
However, GAs generally require a great number of iterations and they converge slowly, espe-
cially in the neighbourhood of the global optimum. It makes thus sense to incorporate a faster
local optimization algorithm into a GA in order to overcome this lack of efficiency while keeping
advantages of both optimization methods.
The Interior Point Method (IPM) emerged in the middle 50’s [4] but was largely developed by
Fiacco and McCormick [3]. In the last two decades the IPM gained rightfully more and more
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attention. First, it clearly outperformed the well-known simplex method in solving (very large)
linear programming problems [6]. Then it was successfully applied to solve large nonlinear op-
timization problems [11].
The salient features of the IPM concern its fast convergence and its adequate handling of in-
equality constraints by logarithmic barrier functions. Another great advantage of the IP based
algorithms is that a strictly feasible initial point is not required, only the non-negativity condi-
tions must be satisfied at each iteration.
We propose in this paper a new hybrid optimization technique that merges a GA with a local
search strategy based on the IPM.
The paper is organized as follows. The GA and the IPM are successively introduced in sec-
tion 2 and section 3. Section 4 presents the proposed coupling procedure. Section 5 yields an
illustrative example of the new hybrid optimizer while some conclusions are drawn in section 6.

2 Efficient GA for Complex Optmization Problems

2.1 Mechanics of GAs

GAs work with artificial populations of individuals that represent candidate solutions and, in
spite of their diversity, most of them are based on the same iterative procedure (figure 1).
The individuals are characterized by genes, which result from the coding of the parameters of the
optimization problem. Each individual is evaluated according to the objectives and to the con-
straints of the optimization problem. This evaluation is used in the process of selection, which
determines the probability that an individual is part of the following generation. Successive new
individuals (children) are generated by using the best features of the previous generation (par-
ents) and sometimes, innovating ones. The evolution of those individuals, through the genetic
operators, tend to improve the quality of the population and to converge to a global optimum.

Figure 1: Classical GA flowchart

2.2 GAs and Multi-Objective Optimization Problems

A Multi-objective Optimization Problem (MOP) can be stated as:

min f(x) (2.1)

where f(x)T = [f1(x), f2(x), · · · , fnfo(x)]. Because of the conflicting nature of the objectives, a
MOP has no unique solution, but rather a set of compromised solutions that can be classified,
with the Pareto dominance concept, into dominated and non dominated ones. The non domi-
nated solutions representing the best compromise are distributed on the so-called Pareto front.
Traditional a priori methods [2] are based on a decision phase that transforms the MOP into
a single objective one through an aggregating approach (weighted sum, goal programming,



weighted min-max, etc). Unfortunately these techniques lead to a unique optimized solution on
the Pareto front (depending on the a priori weights for example).
Conversely, as a powerful a posteriori method which works with a population of candidate so-
lutions, GAs solve the true MOP and provide a complete discretization of the Pareto front in a
single run. Furthermore, GAs are less susceptible to the shape or continuity of the Pareto front:
they can approximate concave or non continuous Pareto fronts, which an aggregating approach
does not allow. These advantages have made them very popular to solve unconstrained MOPs
and numerous Pareto based approaches (MOGA, NSGA, NPGA, etc) have been proposed and
compared in the litterature [2, 13].

2.3 The proposed GA

The GA that has been used in this study is based on a previous version of a home-made computer
code [7, 8]. It includes the classical genetic operators, and its main features are the following:
a real-valued coding for the decision variables, a BLX-alpha crossover [8], a mutation operator,
and a Pareto based approach coupled with an original constraint-handling technique.
As we can see in figure 2, the constraints are firstly evaluated for each individual. On the
one hand, the feasible solutions are ranked according to the MOGA algorithm proposed by
Fonseca and Fleming [2]. On the other hand, each infeasible solution receives a penalty fitness
(Rconst) computed on the basis of the violation of the constraints. At last, a selection, based on
a “penalized tournament”, is applied. This consists of randomly choosing and comparing the
(generally two) individuals :

• if they are all feasible, the best ranked element (according to MOGA) wins,

• if they are all infeasible, the one having the lower Rconst value wins,

• if one is feasible and the others are infeasible, the feasible individual wins.

This constraint-handling technique, which allows a Pareto dominance approach, has already
been validated and successfully applied to design problems [7, 8].

Figure 2: Proposed GA flowchart

Moreover, in the framework of this study, an archiving procedure has been added to the GA.
This new operator externally stores the non dominated solutions found at each generation in
the following way:



1. Copy all the individuals of the current Pareto front to the archive.

2. Remove any dominated solutions from the archive.

3. If the number of non dominated individuals in the archive is greater than a given maximum
Narch: apply a clustering strategy [9].

4. Continue the genetic process (figure 2).

This archiving procedure has been inspired from the SPEA (Strength Pareto Approach) proposed
by Zitzler [13]. However, in our implementation, the individuals stored in the archive do not
participate to the selection phase, which results in a less disturbed evolution process.
The clustering step (e.g. reducing the size of the archive while maintaining its characteristics) is
mandatory: the Pareto front (and the archive) could sometimes contain a huge number of non
dominated individuals. However, the designer is not interested in being offered with a too large
number of solutions from which he has to choose.

3 Primal-Dual Interior Point Method

In this section we briefly describe the direct primal-dual interior point method for nonlinear
programming. A nonlinear programming problem can be compactly expressed in its general
form as:

min f(x) (3.2)
subject to : g(x) = 0 (3.3)

h ≤ h(x) ≤ h (3.4)

where dimension of unknowns vector x, and functions g(x) and h(x) are n, m and p respectively.
IPM combines three concepts: logarithmic barrier function to handle inequality constraints [4],
Lagrange theory of optimization subject to equality constraints [3] and Newton method, which
will be illustrated below.
One first transforms the inequality constraints into equality constraints by adding slack variables
to inequality constraints:

min f(x) (3.5)
subject to : g(x) = 0 (3.6)

h(x)− h− s = 0 (3.7)
−h(x) + h− s = 0 (3.8)
s, s ≥ 0 (3.9)

where the vectors x, s = [s1, . . . , sp]T and s = [s1, . . . , sp]T are called primal variables.
Slack variables si and si (i = 1, . . . , p) are added to the objective function as logarithmic barrier
terms, resulting in the following equality constrained optimization problem:

min f(x)− µ

p∑
i=1

(ln si + ln si) (3.10)

subject to : g(x) = 0 (3.11)
h(x)− h− s = 0 (3.12)
−h(x) + h− s = 0 (3.13)



where µ is a positive scalar called barrier parameter which is gradually decreased to zero as the
iteration progresses.
The Lagrangian of the above equality constrained optimization problem is:

Lµ = f(x)− µ

p∑
i=1

(ln si + ln si)− λTg(x)− πT (h(x)− h− s)− πT (−h(x) + h− s)

where the vectors of Lagrange multipliers λ, π and π are called dual variables.
The perturbed Karush-Kuhn-Tucker (KKT) first order necessary optimality conditions of the
resulting problem are [3]:

F(y) =


−µe + S π
−µe + S π

−h(x) + h + s
h(x)− h + s

−g(x)
∇f(x)− Jg

T λ− Jh
T (π − π)

 = 0 (3.14)

where S, S are diagonal matrices of slack variables, e = [1, ..., 1]T , ∇f(x) is the gradient of f ,
Jg is the Jacobian of g(x), Jh is the Jacobian of h(x), λ is the vector of Lagrange multipliers
associated to equality constraints (3.3) and y = [s s π π λ x]T .
The perturbed KKT optimality conditions (3.14) may be solved by the Newton method. Let us
remark that at the heart of IPM is the theorem [3], which proves that as µ tends to zero, the
solution x(µ) approaches x?, the solution of the problem (3.2-3.4). The goal is therefore not to
solve completely this nonlinear system for a given value of µ, but to solve it approximately and
then diminishing the value of µ iteratively until convergence is reached.
The outline of the method is as follows:

1. Initialize y0, taking care that slack variables and their corresponding dual variables are
strictly positive (s0, s0,π0,π0) > 0. Chose µ0 > 0.

2. Solve the linear system of equations:

H(yk) ∆yk = −F(yk) (3.15)

where H is the Jacobian of KKT optimality conditions (3.14).

3. Determine the step size length αk ∈ (0, 1] such that (sk+1, sk+1,πk+1,πk+1) > 0. Update
solution:

yk+1 = yk + αk∆yk (3.16)

4. Check convergence. A (locally) optimal solution is found when: primal feasibility, dual
feasibility, complementarity gap and objective function variation from an iteration to the
next fall below some tolerances.

5. Compute the barrier parameter for the next iteration:

µk+1 = σk ρk

2p
(3.17)

where ρk = (sk)T πk +(sk)T πk is the complementarity gap, and usually σk = 0.2. Go to 2.



4 Hybrid Genetic Algorithm

Incorporating a local search strategy into a GA can be done in various ways [12]. In this study,
the hybridization technique follows the so-called Lamarckian approach in which the local search
algorithm is applied to some newly generated individuals to drive them to a local optimum
(figure 3). These locally optimal solutions replace the current individuals in the population to
prepare the next generation.

Figure 3: Hybrid GA flowchart

The coupling procedure that has been implemented in the proposed GA can be outlined as
follows:

1. Evaluate the nnfo objective functions for each individual of the current population.

2. Locally optimize the npf non dominated solutions of the current generation. As depicted
in figure 4, each iGA

p (p : 1 → npf ) individual of the Pareto front undergoes the IPM
optimizer.
In order to take into account the multi-objective aspects of the problem, the IPM is
applied for one randomly fixed objective function, while maintaining the other functions
to a constant value:

min fi ∀i : 1 → nfo (4.18)
with

fj = fj(iGA
p ) ∀j : 1 → nfo, j 6= i (4.19)

3. Discard each iGA
p individual from the population and replace it by its locally optimized

element.

Figure 4: Local optimization of the non dominated solutions

This coupling procedure not only helps the algorithm to escape from being trapped in a local
optimum but also seeks out the global optimum with fast convergence.



5 Illustrative Example of the New Hybrid Optimizer

In order to evaluate the efficiency of the previous coupling technique, our hybrid optimizer has
been tested on various multi-objective mathematical problems [1, 10]. One relevant test-case is
presented here:

minimize f1(x) = −x1 − x2
2 (5.20)

f2(x) = −x2
1 − x2 (5.21)

subject to g1(x) ≡ 12− x1 − x2 ≥ 0 (5.22)

g2(x) ≡ x2
1 + 10 x1 − x2

2 + 16 x2 − 80 ≥ 0 (5.23)
with x1 ∈ [2, 7] (5.24)

x2 ∈ [5, 10] (5.25)

First of all, this test-case has been solved by the proposed GA and the IPM, independently
(without coupling them). Figure 5 shows non dominated solutions obtained by both methods.
For comparison purpose, we also depicted the archived Pareto front.
To be able to deal with this multi-objective optimization problem, the IPM has to transform
it into a single objective one. This has been done through the classical weighted sum method,
thus resulting in the minimization of the preference function Φ(x) = w1f1 +w2f2. Furthermore,
in order to discretize the Pareto front, the IPM has been launched 11 times with different values
for the weights varying from {w1 = 1;w2 = 0} to {w1 = 0; w2 = 1} by a constant step. As it
was already mentioned (section 2.2), this technique suffers from the drawback of missing non
convex portions of the Pareto front: the IPM has only found 3 non dominated solutions which
are located on the extreme sides and close to the middle of the Pareto front (figure 5).
Note that the presence of the middle point on the Pareto front issued of the IPM is intriguing,
since theoretically with such method and composite objective function one should converge to
the corners of the Pareto front only. A close examination of this anomaly revealed that this
point is a local minimum of the problem, obtained for the pair of weights {w1 = 0.4, w2 = 0.6},
while its global optimum corresponds to the right corner of the Pareto front.
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Figure 5: Non dominated solutions - GA vs IPM



On the other hand, the proposed GA (section 2.3) has been run with a population of Npop = 100
individuals during Ngen = 100 generations (corresponding to 10000 function evaluations). This
GA demonstrates its ability to clearly discretize this non convex Pareto front in a single run
(figure 5). Moreover, the obtained non dominated solutions are uniformly distributed along the
archive (with Narch = 11).

In order to reduce the number of function evaluations, the same GA has been tested with only 20
individuals during 10 generations (corresponding to 200 function evaluations). Unfortunately,
as illustrated by figure 6, the Pareto front and the archive are not any more correctly identified
by this micro GA.
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Figure 6: Non dominated solutions - micro GA

Finally, the GA coupled with the IPM has been run with the same previous parameters for the
GA (Npop = 20, Ngen = 10, Narch = 11). Figure 7 shows that the last Pareto front and the
archive obtained by this hybrid optimizer are well discretized, and this only after 200 function
evaluations. Furthermore, during the optimization process, the IPM solver was called more or
less 50 times. For this test-case, the hybrid approach decreases the computational effort by a
factor of 3 with respect to the GA alone, and for a similar quality of the archived Pareto front.
This result should be somewhat improved by linking the GA and the IPM in a more efficient way.

Making the parallel between figure 6 and figure 7, one can observe in figure 8 that the proposed
coupling approach is efficient. This figure clearly shows the significant improvement of the qual-
ity of the archive when using the hybrid approach comparatively with the use of the micro GA
alone. This positive effect is due to the fact that the GA is able to explore the promising areas
of the design space, involving the global optima at an early stage, while quickly converging to
the final non dominated solutions thanks to the IPM. This observation suggests that the major
benefit of the coupling is obtained when the GA works with a reduced number of both individ-
uals and generations.

We also mention that a very good exploration of the Pareto front with our hybrid optimizer has
been observed for all the studied test-cases.
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Figure 7: Non dominated solutions - micro GA coupled with IPM
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Figure 8: Archive - micro GA vs hybrid optimizer

6 Conclusions

This study presents a promising global optimization technique. Based on a strong coupling
approach between a GA and the IPM, a new hybrid optimizer has been developed. This tool
exploits the main advantages of both GA and IPM, namely the ability to deal with problems
exhibiting several local minima for the former, and the quick convergence to the optimal solution
for the latter. Another advantage of this hybrid optimizer with respect to a pure GA is that,
for a similar quality of results, it allows the use of a smaller number of function evaluations, and
thereby an important reduction of the computational time.



This hybrid optimizer has successfully solved various constrained and unconstrained multi-
objective optimization problems.
Work in progress concerns the finding of a satisfactory criterion to assess the performances of the
proposed coupling approach. A future work aims to validate this hybrid optimizer on real-life
engineering optimization problems (e.g. issued from mechanical engineering and power systems).
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