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Abstract

We tune the calculation of central exclusive Higgs production to the recent CDF central exclusive
dijet data, and predict the cross section for the exclusive production of Higgs boson at the LHC. It
is always below 1 fb, and below 0.3 fb after experimental cuts.
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1 Introduction

The possibility of producing a Higgs boson in a diffractive event has been suggested a long time ago
[1, 2]. The exclusive process was then recognized as a gold-plated signal for a light Higgs boson [3],
as it would show up irrespectively of its decay products. Many theorists built models predicting
the rate of production, and because there is no factorisation theorem for production in a gap, the
estimates varied wildly. Recently, CDF measured diffractive production of jets in a mass range up
to 130 GeV, so that one can now identify the ingredients needed to describe the data.

The first attempt to embed Higgs boson production into a pomeron appeared in [2], which used
specific non-perturbative ingredients to model the pomeron. The first perturbative calculation was
performed in [4], at the price of the introduction of an unknown proton impact factor. Potentially
large screening corrections were evaluated in [5] in an eikonal formalism, and have been extended to
any unitarisation scheme in [6, 7]. Finally, the necessity of a Sudakov form factor was noted in [8].

All these ingredients were incorporated in a series of papers by the KMR group [9], who used
specific prescriptions for the Sudakov form factor, for the screening corrections, and for the impact
factor. In a previous paper [10] devoted to dijet exclusive production, we have shown that their
choices are not the only ones possible, and we have proposed alternatives to several of them:

X

(a)

X

(b)

X

(c)

X

(d)

Figure 1: Standard scheme of an exclusive cross section calculation with its various steps.

• Partonic amplitude: although the calculation lies partly in the infrared region, one usually
calculates the amplitude in perturbative QCD by computing the exchange of two gluons between
two quarks, Fig. 1.(a). The second (screening) gluon is present in order to prevent a colour
flow in the t channel and allows the production of a colour singlet in the final state. In the
present calculation the momentum lost by the proton is not neglected with respect to the loop
momentum k as in [10], and we have shown that this approximation overestimates the cross
section by a factor 2. An exact transverse kinematics is thus kept.

• Impact factor: the infrared divergences of the QCD amplitude disappear because the protons
is colour-neutral. This introduces a proton impact factor, as illustrated in Fig. 1.(b). In the
present paper,it is parametrised by an off-diagonal skewed unintegrated gluon density [10, 11]
that allows for the exchange of soft gluons in the t channel.

• Sudakov form factor: the virtual corrections, coming from the transition of gluons from low
transverse momenta in the proton to hard ones in the Higgs-boson vertex, are accounted for
by this factor, as shown in Fig. 1.c. The vertex corrections give double and single logarithms
which must be resummed and the main uncertainty in the calculation comes from the constant
terms that cannot be resummed although they can be large.

• Gap survival probability: additional pomeron exchanges between the initial and final protons
can occur and this leads to screening corrections [5], as shown in Fig. 1.(d)
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We also showed that the calculation still largely lies in the non-perturbative region, so that more exotic
choices are also possible [12]. The uncertainties coming from these various ingredients were studied,
and in the following we shall use the CDF dijet results [10] to reduce the theoretical uncertainties on
the Higgs-boson exclusive cross section.

The first section of this letter summarizes the calculation of the Higgs-boson exclusive cross
section in the light of the dijet exclusive cross section. The second section presents the results using
our new knowledge of the different ingredients.

2 The Higgs-boson exclusive cross section

2.1 Kinematics and partonic amplitude

The basis of the calculation is the partonic subprocess qq → q+H+ q, and involves the evaluation of
the diagram shown in Fig. 2 and the corresponding cross diagram as well as the diagrams in which
the Higgs is emitted from the other gluon. We neglect the quark masses, their initial transverse

k

q

p

q − k1

p + k3

k + k1

k + k3

k1 − k3

σ µ

νσ

Figure 2: Kinematical conventions for the Higgs exclusive production at the partons level.

momenta and write their four-momenta as qµ and pµ with s = 2p · q. The total momentum transfers
to the initial quarks are −k1 and k3 respectively and the momenta are decomposed onto the incoming
quark directions using a Sudakov decomposition:

kµ = αpµ + βqµ + kµ,

kµ1 = α1p
µ + β1q

µ + kµ1 ,

kµ3 = α3p
µ + β3q

µ + kµ3 ,

(1)

where all transverse vectors are denoted by bold letters. The produced Higgs boson momentum is

kµH = (α1 − α3)pµ + (β1 − β3)qµ + (k1 − k3)µ. (2)

The kinematical region of interest is multi-Regge kinematics where longitudinal momentum losses
are small and obey

1� αi, βi �
|k2
i |
s
, i = 1, 3; α, β ∼ |k

2|
s
. (3)

Let us also define the momenta of the colliding gluons

κµ1 ≡ (k + k1)µ, κµ3 ≡ (k + k3)µ. (4)
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At lowest order, the amplitude is purely imaginary and can be calculated using cutting rules.
The parton-level amplitude then becomes4, in the high-s limit [4]:

Mqq = g4
s

C

2(2π)2s

∫
d2k

κ2
1κ

2
3k

2
(4qσqµ)V µν(4pσpν), (5)

where gs is the coupling constant between quarks and gluons, which will be later re-absorbed in the
impact factor, C=2/9 is the colour factor for the two-gluons exchange and V µν is the Higgs-gluon-
gluon effective vertex. The effective coupling between gluons and the Higgs boson can be obtained
by calculating the diagrams in Fig. 3. This was done in [4] where it was shown that the vertex can

+ =

t

HH

Figure 3: The Higgs-gluon-gluon vertex. Because the coupling of the Higgs to quarks is proportional
to the quark mass, the top quark contribution dominates.

be written

V µν = δab(κ1.κ3 g
µν − κν1κµ3 )

W1

m2
H

+ (κ2
1κ

2
3 g

µν + κµ1κ
ν
3 κ1.κ3 − κµ1κν1 κ2

3 − κµ3κν3 κ2
1)
W2

m4
H

, (6)

where

Wi =
(
√

2Gf )1/2g2m2
H

12π2
Ni. (7)

with g the hard coupling constant, Gf the Fermi constant and mh the Higgs mass. The expression of
N1 and N2 come from the integration over the quark loop in the particular kinematics of production
in a rapidity gap κ2

1,κ
2
3 � m2

H . Defining a ≡ m2
H/m

2
t , one obtains

N1 =
6

a

[
1 +

(
1− 4

a

)
arctan2

(√
a

4− a

)]
. (8)

The second part of the vertex, that depends of N2, can be neglected because the tensor structure will
always give contributions proportional to κ2

1 or κ2
3 that are small compared to the factors s generated

by the first tensor structure, and because |N2|2 is always less than 30% of |N1|2 for Higgs masses
below 1 TeV.

Considering now the phase space available for the final Higgs boson and the above expression for
the vertex, one can write the partonic differential cross section in the large-s limit as

dσqq =
2C2g8

(2π)9
s

dβ1dα3

(1− β1)(1 + α3)
d2k1d2k3

∣∣∣∣∫ d2k

k2κ2
1κ

2
3

(κ1 · κ3)
W1

m2
H

∣∣∣∣2 δ(k2
H −m2

H). (9)

The final delta function is used to put the Higgs on shell and to perform the integral over α3.
One can show using Eq. (2) and the on-shell condition on the final quarks that

α3 ∼ −
m2
H

sβ1
. (10)

The above expression, Eq. (9), is singular at the partonic level when one of the exchanged gluons
goes on-shell, i.e if k2κ2

1κ
2
3 → 0. This divergence disappears when one takes into account the fact

that protons are colour singlets. This introduces an impact factor which furthermore describes the
response of the proton to a transfer of momentum.

4Note that ref. [4] is missing a factor 2 in the expression of the amplitude.
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2.2 Soft and Higher-Order Corrections

The lowest-order partonic amplitude is the only piece of the calculation that can be exactly calculated.
The higher-order corrections (Sudakov form factor) and the soft corrections (impact factors and
screening) can only be estimated. One can also use other exclusive data to constrain the theory,
and the only other input in a similar kinematical range is the dijet cross section from the TeVatron.
Hence we shall use our previous study [10] to constrain the calculation.

2.2.1 Impact Factor

The wave-function overlap between the initial-state and final-state protons, after an exchange of
t-channel gluons of transverse momenta ka and kb and of longitudinal momentum fractions xa and
xb, leads to an impact factor Φ(xa, xb;ka,kb) that has the properties [13]

Φ(xa, xb; 0,kb) = Φ(xa, xb;ka, 0) = 0. (11)

The amplitude (5) for Higgs-boson production becomes for proton-proton scattering

Mpp = g4 C

2(2π)2s

∫
d2k

κ2
1κ

2
3k

2
(4qσqµ)V µν(4pσpν)Φ(β, β1;k,κ1)Φ(α, α3;k,κ3) (12)

To this, one must add an s-dependent factor that comes from the gluon content of the proton
(or equivalently from the pomeron trajectory), so that Φ is a function of the longitudinal momentum
fractions of the gluons. As the spectator gluon of momentum k has a smaller momentum fraction
than that of the gluon linked to the Higgs vertex, we assume that the latter momentum fraction is
dominant, and take α = β = 0 in Eq. (12).

Although the property (11) is true in general, the precise form of Φ is unknown. In [10], we
tested several possibilities, and found that the shape of the ET distribution of the CDF dijet data
was best reproduced if we assumed an x-dependence similar to that coming from unintegrated gluon
distributions. Hence we built the impact factor using three ingredients:

• The diagonal unintegrated gluon distributions F(x,Q2) is built in [11]. They are built from
a hard part, based on differentiation of conventional gluon densities (GRV [14], MRS [15] or
CTEQ [16] LO fits), and from a soft part, based on soft colour-singlet exchange inspired by the
dipole form factor and allowing partons to enter the IR region. Four variants of the soft part
were used, and their parameters were fixed by fitting the proton structure function F2p to the
HERA data in a region of virtuality 0 < Q2 < 35 GeV2 and for x smaller than 10−2. They are
respectively named FIT-1, FIT-2, FIT-3 and FIT-4 [17, 18].

• The skewed unintegrated distributions are obtained from the above by assuming that skewness,
i.e. the non-zero longitudinal momentum transfer, can be taken into account by using an
effective longitudinal momentum fraction xg = 0.41xi [17, 19].

• The fully off-diagonal impact factors are obtained by multiplying the above by a factor repro-
ducing Eq. (11) and going to 1 in the diagonal case, and by an exponential factor reproducing
the proton t slope and shrinkage. One also chooses the scale Q to be the average of the incoming
transverse momenta Q2 = (ka+kb

2 )2.

One then obtains for the upper proton:

Φ(0, β1;k,κ1) = F
(

0.41β1, (k +
1

2
k1)2

)
2k2κ2

1

k4 + κ4
1

e
− 1

2

[
B0+2α′ log

(
x0
β1

)
k2
1

]
, (13)
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with B0=4 GeV−2, α′=0.25 GeV−2 and x0= 3.4 10−4 [10].
These parametrisations provide a very good description of the charm contribution to the proton
structure function F2p, of the longitudinal structure function FL and of diffractive vector meson
production [17, 20] as well as of the dijet exclusive cross section at the TeVatron [10].

2.2.2 The Sudakov Form Factor

During the exchange of gluons producing the Higgs boson, the gauge field goes from a long-distance
configuration to a short-distance one. This is the situation in which, for running αS , large logarithms
arise from virtual diagrams such as those of Fig. 1.(c). These logarithms become infinite if the external
legs go on-shell, and it is known that these infinities are canceled by the bremstrahlung diagrams,
which are easier to calculate. Hence, in order to evaluate the vertex corrections to g∗g∗ → H, one
can use the standard formula [21], assuming a point-like ggH vertex:

T (µ2, `2) = e−S(µ2,`2), S(µ2, `2) =

∫ µ2

`2

dq2

q2

αs(q
2)

2π

∫ 1−∆

0
dz[zPgg +NfPgq], (14)

where ∆ = |q|/µ and Pgg and Pgq are the splitting functions

Pgg(z) = 2Nc

[
z

1− z +
1− z
z

+ z(1− z)
]
, Pgq(z) =

1

2

[
z2 + (1− z)2

]
. (15)

The amplitude becomes

Mpp = g4 C

π2

∫
d2k

Φ(0, β1,k,κ1)Φ(0, |α3|,k,κ3)

κ2
1 κ2

3 k2
qµV

µνpν

√
T (µ2,κ2

1) T (µ2,κ2
3). (16)

The Sudakov form factor is a loop correction to the vertex and includes an integral over the mo-
mentum in the loop, i.e. over both the fraction of light-cone momentum z and the transverse
momentum q2. The integration builds up double logarithms in the kinematical region where the
virtual emission is soft and runs from a soft to a hard scale, respectively, `2 and µ2. The upper scale
is chosen according to the standard discussion of the Sudakov form factor where the hard point-like
vertex is characterized by only one scale, the mass of the centrally produced system mX . This is the
situation in the Higgs boson production for which the log structure of the Sudakov form factor can be
calculated. It has been estimated to single-log accuracy in [22] and recently in [23], the upper limit
of the z-integration is then of the order of mH . The lower scale `2 is proportional to the virtuality
from which the evolution starts κi and this leaves an uncertainty related to the constant terms which
cannot be obtained from bremstrahlung, and which are known not to exponentiate. For the purpose
of this study, we perform the z integration in the argument of the Sudakov correction S(µ2, `2) and
write its structure in three terms. After the second integration considering a running αS , the first
will give the log contribution, the second the (log)(log) contribution and the third a constant term:

S ∝
∫ µ2

`2

dq2

q2

αs(q
2)

2π

[
Slog + Slog log + Sconst

]
(17)

with

Slog = −6 log ∆,

Slog log =
1

3
Nf −

11

2
,

Sconst = 12∆− 9∆2 + 4∆3 − 3

2
∆4 +

1

2
Nf

[
−∆ + ∆2 − 1

3
∆3
]
.

(18)
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Physical Quantity Allowed Values Fit to the 1 σ Values
CDF data

Parametrisation of the [17, 20] FIT-4 FIT-4
unintegrated gluon distribution

Constant terms in Sudakov exponentiation C/2 to 2 C C=1C C/2 to 2 C
Gap survival probability 4.5-18% 10 % 10%

Table 1: Allowed range of parameters, and parameters reproducing the central values of the CDF
exclusive dijet data. These will be used to predict the Higgs-boson exclusive cross section.

We have kept the latter contribution as in other exclusive models but we allow its variation by a
factor 2 up or down. This constitutes the uncertainty coming from the constant terms in the Sudakov
form factor. The effect of this change is an overall factor.

Note that perturbation theory suggests that the Sudakov form factor should be included in the
definition of the unintegrated gluon distribution. We do not do this here, because the use of an
unintegrated gluon distribution is only an educated guess leading to the impact factor. There is
no reason to believe that the two objects are identical, as the exchanged spectator gluon cannot be
assigned to only one of the initial protons.

2.2.3 Gap-Survival Probability

There is no factorisation theorem in diffractive exclusive production, so it may be important to take
initial- and final-state exchanges into account. This is at best tentative, as one really needs to model
the multiple-pomeron exchanges which account for the purely elastic cross section, i.e. one needs to
overcome the difficulty that lead the analytic S-matrix theory to a standstill.

Most of the present estimates are based on an eikonal scheme of unitarisation, following the
arguments presented by Bjorken a while ago [3]. They have been recently generalised to an arbitrary
unitarisation scheme [7], for the case in which the production process happens at short distance.
The gap survival probability can be calculated as the S-matrix element, which factors in impact-
parameter space and depends on the variables conjugate to k1, k3 and k1 + k3. Such construct, and
its transform back to momentum space, has never been implemented, and one usually treats the gap-
survival probability as an overall factor. Several estimates can be found in the literature [24], from
5% to 15% at the TeVatron energy, and about a factor 2 lower at the LHC. These are conservative
estimates, as the gap survival at the LHC could be as large as 25 % or smaller than 1 % [7]. In the
present study and in Sec. 4, we assume a gap survival probability at the LHC two times smaller that
the one used at the TeVatron as suggested by eikonal models [24].

2.3 First Estimation of the Higgs Boson Exclusive Cross Section

Putting together all the above ingredients, we can estimate the Higgs boson cross section for sets
of reasonable theoretical parameters given in the second column of Table 1. and we see that
modest changes in the theoretical input can produce large differences in the predicted cross section.
The Higgs boson exclusive cross section in this model is below one femtobarns at the LHC5. The
uncertainty is of one order of magnitude and the slope as a function of the Higgs mass is steeper
than in the existing similar models [9, 25].

5Similarly small cross section has been obtained in references [25, 26].
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Figure 4: Prediction of the Higgs exclusive production cross section at 14 TeV without any experi-
mental cuts and without tuning to CDF dijet data.

3 From Dijet to Higgs

One can in fact do a somewhat better job by constraining the model to reproduce existing data.
The process of interest is the dijet exclusive production for which one of the diagrams is shown in
Fig. 5.b and for which the CDF collaboration published a measurement in 2008 [30]. These are

H

(a) (b)

Figure 5: (a) Higgs exclusive production and (b) Dijet exclusive production

important data for two reasons, firstly the calculations are expected to be almost identical, i.e. they
differ only because of the hard vertices that produce the final particles. Indeed, diagrams in which
the final-state gluons are produced by two different t-channel gluons can be safely neglected in the
present kinematics as it contains one more hard propagator. In [27], we have evaluated its maximum
contribution and have showed that it is safe to consider only those of Fig. 5. Secondly, the dijet
system reaches masses of the order of 130 GeV, i.e. the region of mass where the Higgs boson is
expected. The CDF data thus provide a good opportunity to tune the calculation of quasi-elastic
production and to reduce the uncertainties that affect this family of process. The model of production
of exclusive dijet is the same as the one presented in the first section and developed in [10]. However,
the sources of uncertainties on both processes are different due to the structure of the Sudakov form
factor. One knows that a typical double-log-enhanced correction gets sizable logs only for a point-like
vertex, or in other words, only if there is a large virtuality inside the effective vertex. This is the
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case in the Higgs boson production where the virtuality of the top quarks in the vertex shown in
Fig. 3 is suffisuantly large in front of q2. On the contrary, in the dijet case, one can end up with
the two situations pictured in Fig. 6 In the left picture, the flow of transverse momentum q2 � k2

2

q2 ≪ k2
2

q2 ≃ k2
2

k2
2

Figure 6: The two different kinematical regimes for colour-singlet dijet production. Left: The effective
point-like vertex q2 � k2

2. Right: The resolved vertex q2 ' k2
2.

in the loop does not change the amplitude while in the right one, the momentum q2 ' k2
2 is enough

to resolve the vertex. The transverse logarithm does not build up leading to a complete change of
the log structure of the amplitude. Consequently in the dijet exclusive production, the upper scale
must be of the order of k2

2 as it marks the limit beyond which the double-logs do not build up. This
raises the question whether the dijet exclusive production data can be used to tune the Higgs boson
calculation due to the extra uncertainty coming from the Sudakov form factor.

One can note that the gap survival probability is an overall factor that multiplies the cross section
and a source of uncertainty similar to the one coming from the constant terms of the Sudakov form
factor. Both uncertainties can be considered as a single one and cannot be reduced independently
and this disavantage is reduced if one considers the ratio between the Higgs boson and the dijet
exclusive cross section. It removes the uncertainty coming from the dependence of the cross section
on the energy behaviour of the gap survival probability and underlines the importance of dijet data
at the LHC. The uncertainty on the constant terms is reduced but not removed as the hard scale
used in both processes is different (µ ∼ ET in the dijet case and µ ∼ mH in the Higgs case). This
means that, whatever is the precision reached by the dijet data at the LHC, the precision on the
theoretical prediction for the Higgs boson exclusive cross section will be smaller.

The comparison between different parametrisations of the dijet exclusive production model and
the CDF data have led to a selection of parameters that reproduce the measurement well, as shown
in Fig. 7. The central curve corresponds to one of the different choices of parameters that reproduce
the central values of the data points and the band corresponds to parametrisations that are within
the 1 σ errors, also given in Table 1. Using the knowledge of the TeVatron dijet data, we now
keep the parametrisation of the unintegrated gluon distribution, the constant terms in the Sudakov
exponentiation and the gap survival probability, we introduce them in the Higgs boson exclusive
production calculation and present a prediction for the cross section using the parameters from the
third and fourth columns of Table 1.

4 Final results

We now present the results for the cross section at the Higgs boson level but experimentally, what
is detected in the central detector is the decay products of the Higgs, a bb̄ pair in the mass range
considered. To obtain the cross section, the final jets have a priori to be reconstructed via a jet
searching algorithm and this should be taken into account as the transverse energy of the parton
is not equal to the transverse energy of the jet due to the energy lost when reconstructing the jet.
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Figure 7: CDF Run II data on exclusive dijet, and a band of parametrisations that all go through the
data. The curve corresponds to a choice of parameters that best fit the central values and the band
corresponds to parametrisations that go through the 1 σ errors. Both include the effect of splash-out
discussed in [10].

The effects of the so-called splash-out were studied into details for gluon production in [18] but are
not included here in the Higgs case. They are of course included in Fig. 7. Indeed, one can use the
very forward detectors to reconstruct the mass of the central system from the measurement of the
fraction of momentum lost by the initial hadrons. One in fact scans the mass domain to obtain the
cross section without using the information coming from the central detector6.

At the TeVatron (
√
s=1960 GeV) for the experimental cuts of the first column of Table 2, the

Higgs boson exclusive cross section is tiny, of the order of 2 attobarn, for mH=120 GeV and the
parametrisation of the central curve. That makes the Higgs boson impossible to observe at the
TeVatron, at least if it is produced in an exclusive reaction. For the LHC, we present in Fig. 8 three

Cuts TeVatron[30] LHC[31] LHC[28]

|α3| [0.03,0.08] [0.002,0.2] [0.005,0.018]
β1 - [0.002,0.2] [0.004,0.014]
|yX | [-2.5,2.5] < 1 < 0.06

Gap size > 3.6 - -
MX - > 50 GeV [80GeV,160GeV]

Table 2: Experimental cuts for the TeVatron and the LHC.

sets of curves at 7, 10 and 14 TeV. The first row corresponds to the cross section without experimental

6Actually, one has to match the presence of hadrons in the forward detectors with an Higgs boson event in the
central detector but the mass of the centrally-produced system and the cross section can be obtained using forward
detectors only [28]. The effect of the Higgs decay and the reconstruction of the bb̄ final state were studied in the same
model in reference [29].
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Figure 8: Higgs-boson exclusive cross section at 14 TeV (left), 10 TeV (center) and 7 TeV (right).
The first row gives the results without cuts. The second row corresponds to the cuts of the third
column of Table 2 and the third row to those of the fourth column

cuts, the second for cuts resulting from the use of the forward detectors FP420+RP220 [31], given in
Table 2, and the third for a more restrictive set of cuts [28] used in Monte-Carlo studies, also given in
Table 2. The FP420 detector would be located in a small space left on the beam line of the LHC and
be able to collect protons flying at 10 to 5 mm from the beam. With the addition of RP220 it should
be possible to measure precisely the momentum of protons that have lost a fraction 0.002< ξ <0.2
of their initial momentum with an acceptance close to 100%. This measurement would determine
the mass of the centrally produced system and allow a clear identification of the exclusive events by
associating the information from both central and forward detectors.

In the left column that gives the cross section without any experimental cuts, one can see that
the uncertainty was reduced by a factor 5 compared to Fig. 4 by using the CDF data. The effect of
the cuts is important and cannot be neglected: the application of the FP420+RP220 cuts reduces
the cross section by a factor three. The rapid fall down of the cross section in the bottom row is
also purely due to the effect of cuts. If one considers only the use of FP420, there is a cut-off on the
longitudinal momenta lost by the proton,

0.002 < |α3|, β1 < 0.02.
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With |α3| roughly equal to m2
H/sβ1 if one considers a Higgs boson with a mass of 200 GeV in a

process with
√
s = 10 TeV, the only possible values for |α3| stand between 0.02 and 0.2, and are

outside the range of the forward detector. For collision of protons below 14 TeV, the use of the roman
pots of RP220 in addition with the very forward FP420 is needed to increase the acceptance at large
masses. This effect disappears at higher energies.

5 Conclusion

In a previous paper [10], we have proposed a new model for quasi-elastic production that is similar
to the KMR model, but differs from it in the implementation of the different parts of the calculation:
we use an impact factor with the correct IR properties, exact transverse kinematics and include a
parametrisation of the nonperturbative region. Our model was used here to obtain the cross section
of exclusive Higgs-boson production at the LHC and the corresponding uncertainties. The vertex
corrections, i.e the Sudakov form factor, was one of the main sources of uncertainty in the dijet case
but in the Higgs-boson production case, a recent NLO calculation sets its structure and scales. The
other pieces of the model, the parametrisation of the unintegrated gluon density, the gap survival
probability and the constant term in the Sudakov form factor were chosen to fit the CDF dijet
data. Using these results, the Higgs-boson quasi-elastic cross section is found to be between 0.07 and
0.2 femtobarns for a Higgs boson of mass 120 GeV and

√
s = 10 TeV considering the kinematical

cuts of RP220 and FP420. This is a factor 2 lower than the KMR estimate [9].
Finally, we want to stress that the theory of exclusive production is not under full theoreti-

cal control. Indeed, exclusive production does not factorize, and wanders appreciably in the non-
perturbative region. Hence, many of the assumptions made here are rather conservative as they
derive from perturbative QCD. The constraint that leads to a reasonable agreement between models
is the reproduction of the CDF dijet data.
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