THE CONNECTION BETWEEN INNER AND OUTER DEBRIS DISKS PROBED BY INFRARED INTERFEROMETRY

Olivier Absil
University of Liège

From Atoms to Pebbles – Herschel's view of Star and Planet Formation

Grenoble, 22 March 2012

INNER VS. OUTER DEBRIS DISK

Infrared interferometry may help

- \triangleright Disk larger than angular resolution $(\lambda/B) \rightarrow$ incoherent flux
 - Induces a visibility drop at all baselines

HIGH PRECISION INTERFEROMETERS

VEGA VIEWED BY CHARA/FLUOR

RADIATIVE TRANSFER MODELING

- H- and K-band interferometry (CHARA/FLUOR, IOTA/IONIC)
- N-band nulling interferometry (MMT/BLINC)
- Archival near- to mid-IR spectro-photometry

Most probable dust properties

- Bayesian χ² analysis of large parameter space
 - Grains < blowout size</p>
 - Hot grains (> 1000 K)
 - Presence of carbons ≥ 10%
 - Distance: ~ 0.1 0.5 AU
 - Steep density power law: $\alpha < -3 \rightarrow ring$?
- Mass: ~2×10⁻⁹ M_{Earth}
- Luminosity: ~5×10⁻⁴ L_{star}

(same approach as in Lebreton et al.

NEXT STEP: LOW-RESOLUTION SPECTRA

- Dispersed fringes with PIONIER (soon FLUOR)
 - Flux ratio measurements across H and/or K band
 - Direct constraint on dust temperature

ORIGIN OF HOT DUST: STEADY STATE?

- Local production?
- Connection to outer disk?
 - Poynting-Robertson drag?
 - Multiple scattering of comets?

STEADY STATE MULTIPLE SCATTERING

Requires 3+ planets and 10³ M_E in cold reservoir

ORIGIN OF HOT DUST: TRANSIENT?

- Isolated event?
 - Large collision (e.g. Earth-Moon)
 - Break-up of giant comet
- Dynamical perturbations?
 - Falling Evaporating Bodies
 - Asteroid belt disturbed by MMR with massive planet
 - Late Heavy Bombardment
 - Global rearrangement
- Statistical study may help

DEBRIS DISK SURVEY AT CHARA/FLUOR

- Magnitude-limited sample (K < 4)</p>
 - 25 cold disk host stars (dec > 15°)
 - "Unbiased" control sample: 25 stars w/o cold dust
- Observed most stars, ~42 of sufficient quality
- One surprise: companion to epsilon Cephei

Preliminary statistics vs. spectral type

- Many more K-band excesses than anticipated!
 - Still need confirmation that this is (only) dust
- A-type stars more prone to hot dust
 - Same trend as in cold disks, frequency compatible
 - Suggests that they could be related (scattering?)

Preliminary statistics vs. cold dust

- > No correlation with cold dust reservoirs
 - Suggests transient event rather than steady state

PERSPECTIVES

- EXOZODI project (French ANR, 2011-2015)
- Extend survey to confirm statistics (goal: 200 stars)
 - North: refurbished FLUOR at CHARA
 - South: PIONIER at VLTI (Le Bouquin et al.
- Investigate age dependence
- Follow up detections
 - Discriminate with potential binaries
 - Multi-color information for SED modeling
- Search for variability
- Improve models (RT, dynamics, collisions)

EXOZODI team

- Augereau (PI)
- Thébault (Co-PI)
- Absil
- Beust
- Bonsor
- Coudé du Foresto
- Defrère
- Ertel
- Kral
- Lebreton
- Le Bouquin
- Marbeuf
- ..