

Use of medium without reducing agent for *in vitro* fermentation studies by bacteria isolated from pig intestine

C. Poelaert*, C. Boudry*, D. Portetelle†, A. Théwis* and J. Bindelle*

Animal Science Unit* and Animal and Microbial Biology Unit†,
Gembloux Agro-Bio Tech (University of Liege), Passage des Déportés 2, 5030 Gembloux

Introduction

In vitro gas production methods are used to assess nutritive value of ruminant or monogastric feed ingredients.

The *in vitro* incubation medium is composed of:

- a mixed organic solution, containing usually a reducing agent ;
- the microbial inoculum ;
- the test substrate.

The reducing agent, generally Na_2S or cysteine HCl, generates the required anaerobic environment.

BUT the addition of a reducing agent can disrupt the balance between bacterial species by the production of toxic metabolites in non physiological concentration.

Materials and Methods

4 Test substrates:

Soy proteins, casein, potato starch, cellulose

3 Incubation media:

One of the 3 organic solutions (containing Na_2S , cysteine HCl or without reducing agent) (Table 1) + pig faecal inoculum (5%)

Table 1. Composition of the three organic solutions, based on Menke and Steingass (1988).

Medium Na_2S	Medium Cysteine HCl	Medium Control
Macrominerals: Na, K, Mg		
Microminerals: Ca, Mn, Co, Fe		
Buffer: $\text{NaHCO}_3/\text{NH}_4\text{Cl}$		
Resazurin		
Na_2S (285 mg/l)	Cysteine HCl (500 mg/l)	Ø
Water		

Fermentation procedure:

- 200 mg of the test substrate + 30 ml of the incubation media (saturated with CO_2) placed in glass bottle equipped with a pressure sensor module (Fig. 1a)
- Fermentation for 72h at 39°C (Fig. 1b)

Analyses:

- Volume of gas produced from the pressure data
- SCFA production after 8, 24 and 72h of fermentation by HPLC

Figure 1a. Glass bottle equipped with a pressure sensor module (Gas Production System, Ankom RF).
Figure 1b. Fermentation during 72h at 39°C in a shaking water-bath.

Results

A. Gas production

- The fermentation of carbohydrate ingredients produces a higher final gas volume than the protein ingredients ($P<0.05$).
- For all ingredients fermentation patterns are similar with Na_2S and without reducing agent ($P>0.05$) (Table 2, A, Rmax, Tmax).
- Use of cysteine HCl as reducing agent negatively influences the maximum rate of gas production of the carbohydrate ingredients ($P<0.05$) (Table 2, Rmax).

Table 2. Gas fermentation parameters (A: maximum gas volume for $t=\infty$; Rmax: maximum rate of gas production ; Tmax: time at which Rmax is reached) modelled according to Groot *et al.* (1996).

Substrate	Reducing agent	A (ml/gDM)	Rmax (ml/gDMxh)	Tmax (h)
Casein	Control	123.2 ^b	10.1 ^c	7.4 ^{cde}
	Na_2S	121.8 ^b	10.5 ^c	7.7 ^{cde}
	Cystéine	116.6 ^b	9.4 ^{cd}	5.9 ^{de}
Soy proteins	Control	116.8 ^b	3.6 ^f	14.2 ^b
	Na_2S	99.3 ^b	3.2 ^f	12.2 ^b
	Cystéine	109.4 ^b	3.6 ^f	5.5 ^e
Potato starch	Control	282.5 ^a	54.3 ^a	8.5 ^{cd}
	Na_2S	295.1 ^a	53.2 ^a	8.4 ^{cde}
	Cystéine	247.5 ^a	50.6 ^b	8.9 ^c
Cellulose	Control	305.1 ^a	8.2 ^d	40.6 ^a
	Na_2S	279.1 ^a	8.1 ^d	42.9 ^a
	Cystéine	343.4 ^a	6.3 ^e	43.0 ^a
Sources of variation	P-value			
Substrate	<0.001 ***	<0.001 ***	<0.001 ***	
Reducing agent	0.917	0.001 **	0.021 *	
Substrate x Red. agent	0.641	0.030 *	0.002 **	

a-e: different letters within a column indicate significant ($P<0.05$) differences
DM, dry matter

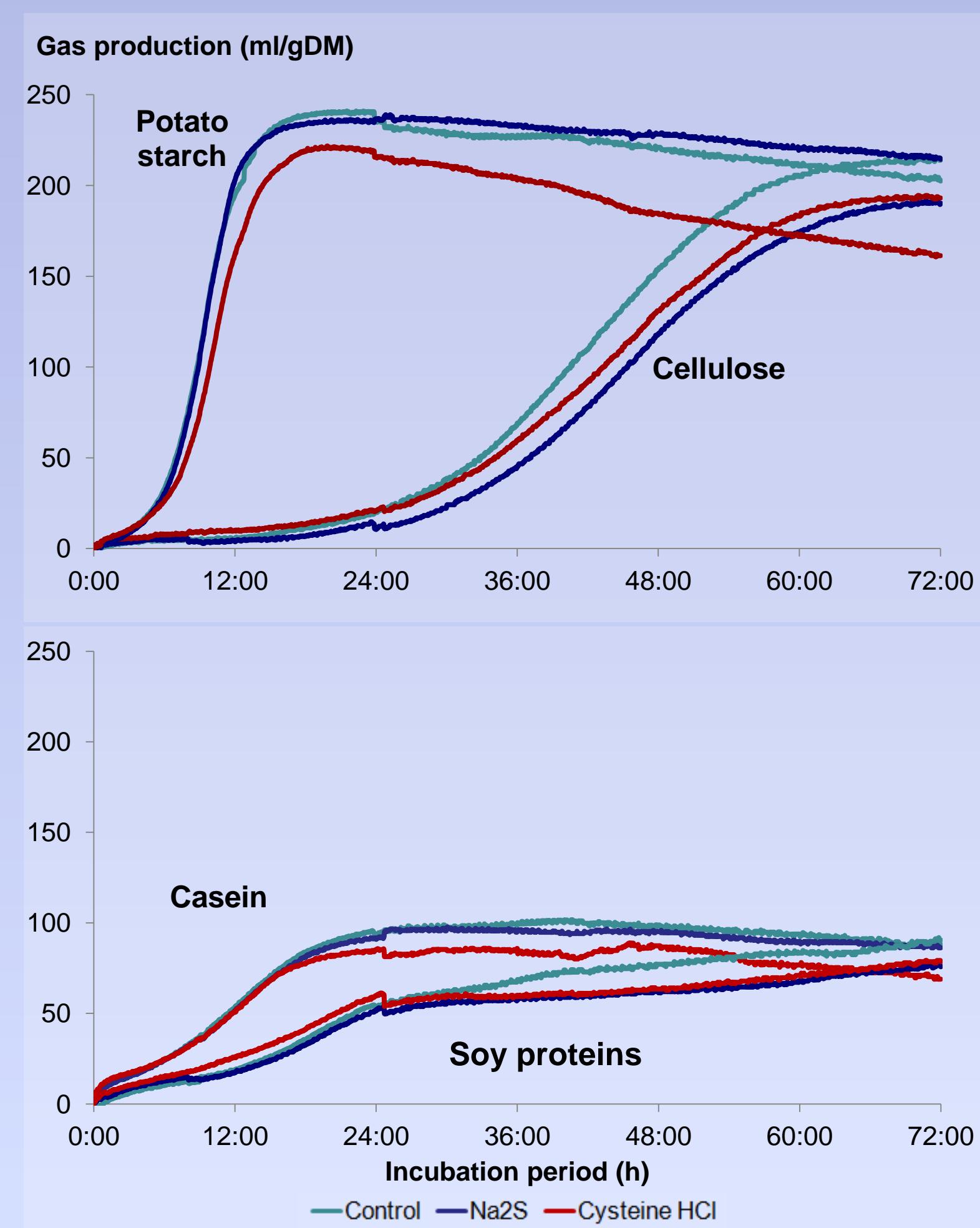


Figure 2. Gas production curves during *in vitro* fermentation of carbohydrate and protein ingredients in 3 incubation media (red curve: with cysteine HCl ; blue curve: with Na_2S ; green curve: without reducing agent). DM, dry matter

B. Short-chain fatty acid (SCFA) production

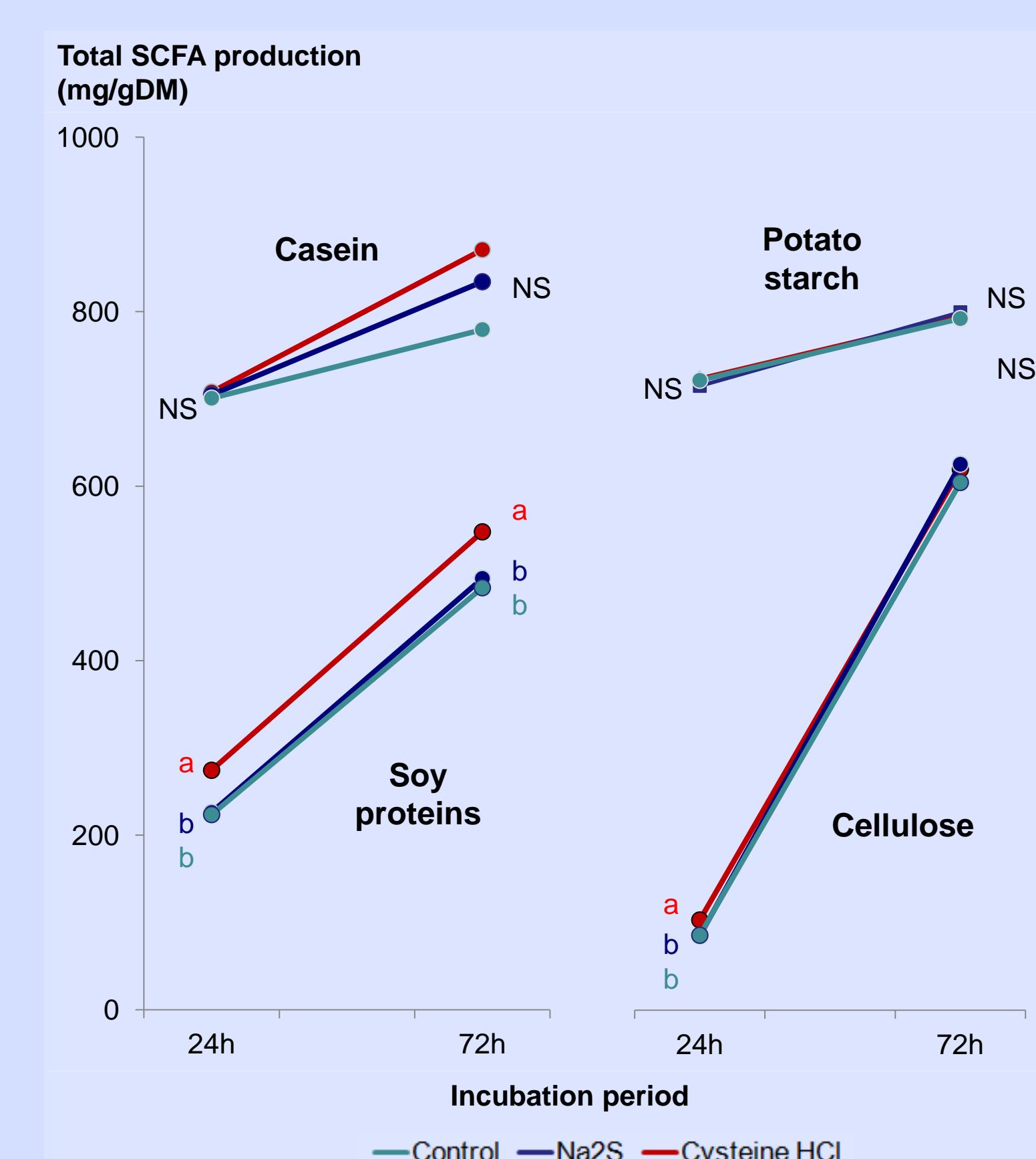


Figure 3. SCFA after 24 and 72h of fermentation in 3 incubation media (red: with cysteine HCl ; blue: with Na_2S ; green: without reducing agent). a, b: different letters for a given test substrate and incubation period indicate significant ($P<0.05$) differences
DM, dry matter ; NS, not significant.

The addition of a reducing agent, usually Na_2S or cysteine HCl, in the incubation medium can disrupt the balance between bacterial species by the production of toxic metabolites.

These results suggest that the simplification of the *in vitro* incubation media by omitting the use of a reducing agent doesn't alter the fermentation kinetics and the total short-chain fatty acid production after 72h of fermentation. The saturation of the incubation medium with CO_2 seems sufficient to generate the required anaerobic environment.