Random Subwindows and Multiple Output Decision Trees for Generic Image Annotation
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Abstract

We propose a method for the generic problem of image annotation based on random subwindows extraction and ensembles of decision trees with multiple outputs. The method is evaluated on several

datasets representing various types of images (microscope imaging, photographs of natural scenes, etc.).

Image Annotation

> (oal

Given a training set of images with pixel-wise labelling (ie.
every pixel is hand-labelled with one class among a finite set
of predefined classes), the goal is to build a model that will be
able to predict accurately the class of every pixel of any new,
unseen image. Examples on Bronchial, Retina, Sowerby,

and CorelA databases:

Input 1mage

Background

Generic Method for Image Classification [MGPW05]

> Learning

e Extraction of a large number of subwindows w;, X w,, at
random locations

e Subwindow described by pixels and labeled as image class

e Building a subwindow classification model using ensemble
of extremely randomized decision trees |GEW06]

> Prediction of unseen images
e Random extraction of subwindows in test image
e Propagation of each subwindow into each tree

e Aggregation of tree votes. We assign to the image the ma-
jority class among the classes assigned to its subwindows.

Proposed Methods: an Overview

> Method 0: Pixel classification model
The model is built and used to predict the class of a single
pixel. #Input = 1, #Qutput = 1.

> Method 1: Subwindow classification model
The model is built and used to predict the class of the central
pixel of subwindows. #Inputs = wj, X w,, #Output = 1.

> Method 2: Subwindow classification model with
multiple outputs

The subwindow classifier is extended so as to predict the class
of every subwindow pixels.

#HInputs = #Outputs = wyp, X Wy,.

Learning and Prediction Stages

> Training set of Random subwindows

From the training set of /N manually annotated images, fixed-
size subwindows are extracted at random locations in images,
described by their pixel values as inputs, and with the class
color of the central pixel (Method 1) or the class colors of all
pixels (Method 2) as output(s). Method 0 is a particular case
with subwindows of size 1 x 1.
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> Ensemble of Extremely Randomized Trees
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e Top-down growing by recursive partitioning of subwindows

— Internal test nodes compare a pixel component to a nu-
merical threshold (a; < v;), terminal nodes output class
probability estimates of the central pixel (Method 1) or

information about the majority class of each output pixel
(Method 2).

— Choice of best internal tests among K random tests ac-
cording to an information theoretic score computed for
the central pixel class (Method 1) or average score over
all output pixel classes (Method 2).

— Fully developed (perfect fit on training set)

> Annotation of a new image

The model is used to classify the central pixel (Method 1)
or all pixels (Method 2) of a sliding subwindow so as to
annotate the full image. The sliding subwindow is moved
by a step equal to wgs;. With Method 1, wge = 1. With
Method 2, a class is assigned to a pixel by taking the
majority class among all class predictions that were obtained
for this pixel for all subwindows containing this pixel.

Results

> Quantitative error rates

We evaluated pixel misclassification error rate (in %) com-
pared to human annotation on five datasets, using leave-one-
out protocol (first three) or independent test set protocol (last
two). Best results are summarized:

Dataset | # images|# classes| MO ER M1 ER M2 ER
SETous 10 2 4.07 | 3.61 | 3.28

Bronchial 8 3 4.05 3.4 3.11
Retina 50 2 13.13 | 5.46 h.14
Sowerby 104 8 17.07 | 14.86 | 11.02
CorelA 100 7 53.83 | 44.22 | 33.89

> Qualitative Observations

e Using more trees and more learning subwindows improve

results. Illustration with increasing number of trees T =
{1,5,10,20}.
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Manual annotation

e Using multiple outputs and multiple subwindow sizes 1m-
prove results. Illustration with pixel classification, subwin-
dow central pixel output prediction, subwindow multiple
output prediction, and multiple output predictions with
multiple subwindow sizes.
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it

e Using a small step for the subwindow sliding provides more
precise annotation. Illustration with wge = {5,2,1}.
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