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1 Introduction

Le Laboratoire de Méhodes de Fabrication de l'Université de Liège s'était
déjà consacré dans le passé à l'étude des pseudo-articulations à col circulaire
(Merken et Debongnie, [4, 3]). Ces travaux ont été étendus récemment par l'au-
teur au cas du col elliptique [1].

La démarche suivie dans ces travaux a consisté à calculer par la résistance des
matériaux la solution exacte pour les di�érentes sollicitations de base. Comme
ces solutions sont souvent des expressions algébriques compliquées, nous avons
systématiquement suivi la voie suivante :

� Tout d'abord, on calcule la solution exacte.
� On dégage de celle-ci la solution asymptotique pour de très faibles épais-
seurs de col.

� On présente alors la solution générale sous forme d'une correction de la
solution asymptotique par un facteur dépendant de l'épaisseur relative du
col.

� On dégage, par une analyse numérique, une approximation simple du fac-
teur correctif.

Cette démarche originale fournit des solutions très bien approchées et beaucoup
plus simples à utiliser que celles de la littérature [6, 5, 2], ce qui constitue un
argument appréciable au niveau de la conception.

Nous avons conservé ce schéma général dans le présent travail, qui est consa-
cré à la théorie du col parabolique. Les calculs sont présentés dans leur détail.

2 Géométrie

Nous nous proposons dans ce qui suit d'étudier le comportement élastique
de cols paraboliques tels que celui de la �gure 1. le col a une épaisseur minimale
h0. Pour l'obtenir, on a découpé d'un bloc rectangulaire, symétriquement de
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chaque côté, des paraboles de profondeur a et de longueur 2`. Il est supposé
que le rapport h0/a est relativement petit et, en tout cas, que h0/a ≤ 0, 5, ce
qui su�t à tous les besoins pratiques. Nous utiliserons la coordonnée x prise
suivant l'axe moyen de la pseudo-articulation, avec comme origine le point le
plus étroit du col. Cette coordonnée varie donc entre −` et `. L'épaisseur du
col perpendiculairement au dessin est notée b. Comme le montre la �gure 1,

Figure 1 � Col parabolique

l'épaisseur du col dans le plan du dessin a la forme générale

h = h0 + αx2

À l'extrémité du col, en x = `, l'épaisseur vaut h = h0 + 2a, ce qui donne

h0 + α`2 = h0 + 2a

soit

α =
2a

`2

Ainsi,

h = h0 + 2a
x2

`2
= h0

(
1 +

2a

h0

x2

`2

)
(1)

En utilisant la variable réduite

ξ =

√
2a

h0

x

`
(2)

relation qui s'inverse en

x =

√
h0
2a
`ξ (3)

on obtient
h = h0(1 + ξ2) (4)

3 Flexion pure dans le plan du dessin

3.1 Forme générale

Sous l'e�et d'un moment uniformeMf , la rotation αf est régie par l'équation

dαf
dx

=
12Mf

Ebh3
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Figure 2 � Moment constant dans le plan du dessin

où b est l'épaisseur du col. La rotation d'extrémité vaut donc

αf (`) =
12Mf

Eb

∫ `

−`

dx

h3
=
Mf

Eb
I1 (5)

3.2 Calcul de l'intégrale I1
On a

I1 = 12

∫ `

−`

dx

h3

= 24

∫ `

0

dx

h3

=
24

h30

√
h0
2a
`

∫ ξ∗

0

dξ

(1 + ξ2)
3

=
`

2a

√
2a

h
5/2
0

J1 (6)

avec

ξ∗ =

√
2a

h0

Posons
ξ = tgϕ

ce qui donne

dξ =
1

cos2 ϕ
dϕ, 1 + ξ2 =

1

cos2 ϕ

Il vient, en notant φ∗ = arctg
√

2a
h0
,

1

24
J1 =

∫ ξ∗

0

dξ

(1 + ξ2)3
=

∫ ϕ∗

0

cos4 ϕdϕ

Or,

cos4 ϕ = cos2 ϕ · cos2 ϕ =
1

4
(1 + 2 cos 2ϕ)2

=
1

4
(1 + 2 cos 2ϕ+ cos2 2ϕ) =

1

4
(1 + 2 cos 2ϕ) +

1

8
(1 + cos 4ϕ)

=
3

8
+

1

2
cos 2ϕ+

1

8
cos 4ϕ
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Donc
1

24
J1 =

3

8
ϕ∗ +

1

4
sin 2ϕ∗ +

1

32
sin 4ϕ∗

Comme

sin 2ϕ∗ = 2 sinϕ∗ cosϕ∗ = 2 tgϕ∗ cos2 ϕ∗ =
2 tgϕ∗

1 + tg2 ϕ∗

=
2
√

2a
h0

1 + 2a
h0

=
2
√

h0

2a

1 + h0

2a

cos 2ϕ∗ = cos2 ϕ∗ − sin2 ϕ∗ = cos2 ϕ∗(1− tg2 ϕ∗) =
1− tg2 ϕ∗

1 + tg2 ϕ∗

=
1− 2a

h0

1 + 2a
h0

=
−1 + h0

2a

1 + h0

2a

sin 4ϕ∗ = 2 sin 2ϕ∗ cos 2ϕ∗ = −4

√
h0

2a

(
1− h0

2a

)
(
1 + h0

2a

)2
on obtient

1

24
J1 =

3

8
arctg

√
2a

h0
+

1

2

√
h0

2a

1 + h0

2a

− 1

8

√
h0

2a

(
1− h0

2a

)
(
1 + h0

2a

)2
et

J1 = 9 arctg

√
2a

h0
+ 12

√
h0

2a

1 + h0

2a

− 3

√
h0

2a

(
1− h0

2a

)
(
1 + h0

2a

)2
= 9 arctg

√
2a

h0
+ 12

√
h0

2a

1 + h0

2a

(
1− 1

4

1− h0

2a

1 + h0

2a

)
(7)

3.3 Valeur asymptotique pour h0/a→ 0

Pour les très faibles valeurs du rapport h0/a, on obtient

J1 ≈ J1,as =
9π

2

ce qui donne

αf (`)as =
9π

2

`

2a

√
2a

h
5/2
0

Mf

Eb
(8)

3.4 Coe�cient correcteur

Pour des valeurs usuelles de h0/a, c'est-à-dire allant jusqu'à h0/a = 1/2,
proposons-nous d'écrire la solution sous la forme

αf (`) = αf (`)as ·
1

K1(h0/a)
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ce qui revient à dire

K1 =
9π

2J1
(9)

Un ajustement numérique donne l'expression approchée suivante de K1 :

K1 ≈ K1,app = 1 + 0, 0264

(
h0
a

)2

(10)

avec une erreur inférieure à 0, 018% pour h0/a ≤ 0, 5, comme le montre le
tableau suivant :

h0/a 0,01 0,02 0,05 0,1 0,2 0,5
J1 1,413716 1,413712 1,413672 1,413475 1,412480 1,404434
J1,app 1,413713 1,413702 1,413623 1,413344 1,412225 1,404447
∆% -0,0002 -0,0007 -0,003 -0,009 -0,018 +0,001

Le calcul peut donc se faire simplement par la formule

αf (`)app =
9π

2

`

2a

√
2a

h
5/2
0

Mf

Eb
· 1

K1,app
(11)

On notera que le déplacement de �exion en x = ` est donné par

vf (`) = `αf (`) (12)

4 Raideur en torsion

Figure 3 � Torsion

Pour un moment de torsion Mt appliqué à l'extrémité du col, la rotation de
torsion ψ véri�e l'équation

dψ

dx
=

Mt
1
3Gbh

3

Intégrant, on obtient

ψ(`) =

∫ `

−`

3Mt

Gbh3
=

3Mt

Gb

∫ `

−`

dx

h3
=

1

4

Mt

Gb
I1

On retrouve la même intégrale qu'en �exion pure, ce qui permet d'écrire immé-
diatement

ψ(`) =
9π

8

`

2a

√
2a

h
5/2
0

Mt

Gb
· 1

K1
(13)

avec le même K1 que ci-dessus.
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5 Raideur en extension

Figure 4 � Extension

5.1 Expression générale

Sous l'e�et d'un e�ort normal N , le déplacement u est régi par l'équation

du

dx
=

N

Ebh

si bien que

u(`) =
N

Eb

∫ `

−`

dx

h
=

N

Eb
I2 (14)

5.2 Calcul de l'intégrale I2
On obtient aisément

I2 =

∫ `

−`

dx

h
= 2

∫ `

0

dx

h
= 2

√
h0
2a
`

1

h0

∫ ξ∗

0

du

1 + u2
= 2

`

2a

√
2a

h0

∫ ξ∗

0

du

1 + u2

= 2
`

2a

√
2a

h0
arctg

√
2a

h0
(15)

5.3 Valeur asymptotique

Pour les faibles valeurs de h0/a, la valeur asymptotique de I2 est

I2,as = π
`

2a

√
2a

h0

ce qui donne

u(`)as =
N

Eb
π
`

2a

√
2a

h0
(16)

5.4 Coe�cient correcteur

A nouveau, nous écrirons

u(`) = u(`)as ·
1

K2
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ce qui revient à dire

K2 =
π `

2a

√
2a
h0

I2
=

π

2 arctg
√

2a
h0

(17)

Cette expression est utilisable en pratique. On peut également l'approcher comme
suit :

K2 ≈ K2,app = 1 + 0, 56

√
h0
a

(18)

ce qui donne, pour h0/a ≤ 0, 5, une erreur relative inférieure à 1, 61%, comme
le montre le tableau suivant :

h0/a 0,01 0,02 0,05 0,1 0,2 0,5
K2 1,047046 1,067750 1,110904 1,162857 1,242209 1,418776

K2,app 1,056000 1,079196 1,125220 1,177088 1,250440 1,395980
∆% 0,85 1,07 1,28 1,22 0,66 -1,61

6 Raideur en �exion pure dans le plan transverse

La rotation β due à un moment uniforme dans le plan perpendiculaire à celui
du dessin est donnée par

β(`) =
12MfT

Eb3

∫ `

−`

dx

h
=

12MfT

Eb3
I2 (19)

Il s'agit de la même intégrale qu'en extension, ce qui nous permet d'écrire di-
rectement

β(`)as =
12MfT

Eb3
π
`

2a

√
2a

h0
(20)

et

β(`) = β(`)as ·
1

K2
(21)

avec le même K2 que ci-dessus.

7 Raideur en translation latérale pure dans le

plan

On peut obtenir une translation d'une extrémité sans rotation parasite en
appliquant une charge latérale Q au droit du col, ce qui se réalise par l'arti�ce
illustré en �gure 5. Le moment de �exion a alors pour expression Mf = −Qx.
La déformée inclut un terme de �exion et un terme de cisaillement : v = vf +vc.

7.1 Contribution de la �exion

7.1.1 Expression générale

L'équation régissant la rotation de �exion αf est

dαf
dx

=
12Mf

Ebh3
= −12Qx

Ebh3
(22)
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Figure 5 � Obtention d'une translation latérale pure d'une extrémité dans le
plan

On en déduit

vf (`) =

∫ `

−`
αfdx = [xαf ]

`
−` −

∫ `

−`
x
dαf
dx

dx

Le second membre de (22) étant impair, on se ramène à

vf = −
∫ `

−`
x
dαf
dx

dx =
12Q

Eb

∫ `

−`

x2

h3
dx =

Q

Eb
· 24

∫ `

0

x2

h3
dx =

Q

Eb
I3 (23)

7.1.2 Calcul de l'intégrale I3
On a

I3 = 24

∫ `

0

x2

h3
dx = 24 · 1

h30

(
h0
2a

)3/2

`3
∫ ξ∗

0

ξ2dξ

(1 + ξ2)3
(24)

= 24

(
`

2a

)3

·
(

2a

h0

)3/2

J3 (25)

avec

J3 =

∫ ξ∗

0

ξ2dξ

(1 + ξ2)3
(26)

Posant encore une fois ξ = tgϕ, on obtient

ξ2dξ

(1 + ξ2)3
=

tg2 ϕ · 1
cos2 ϕdϕ
1

cos6 ϕ

= tg2 ϕ cos4 ϕdϕ = sin2 ϕ cos2 ϕdϕ =
1

4
sin2 2ϕdϕ

si bien que

J3 =
1

4

∫ ϕ∗

0

sin2 2ϕdϕ =
1

8

∫ ϕ∗

0

(1− cos 4ϕ)dϕ =
1

8
ϕ∗ − 1

32
sin 4ϕ∗

=
1

8
arctg

√
2a

h0
+

1

8

√
h0

2a

(
1− h0

2a

)
(
1 + h0

2a

)2
Au total,

I3 = 3

(
`

2a

)3

·
(

2a

h0

)3/2
arctg

√
2a

h0
+

√
h0

2a

(
1− h0

2a

)
(
1 + h0

2a

)2
 (27)
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7.1.3 Forme asymptotique

Pour les très faibles valeurs de h0/a, on obtient la valeur asymptotique sui-
vante de I3 :

I3,as =
3π

2

(
`

2a

)3

·
(

2a

h0

)3/2

(28)

soit

vf (`)as =
Q

Eb
· 3π

2

(
`

2a

)3

·
(

2a

h0

)3/2

(29)

7.1.4 Coe�cient correcteur

Suivant toujours la même démarche, nous écrirons dans le cas général

vf (`) = vf (`)as ·
1

K3
(30)

K3 étant dé�ni par

K3 =
3π
2

arctg
√

2a
h0

+

√
h0

2a

(
1− h0

2a

)
(
1 + h0

2a

)2
(31)

On peut approcher ce coe�cient par l'expression simple

K3,app = 1 + 0, 455

(
h0
a

)1,44

(32)

avec une erreur inférieure à 0, 25% pour h0/a ≤ 0, 5, comme le montre le tableau
suivant :

h0/a 0,01 0,02 0,05 0,1 0,2 0,5
K3 1,000595 1,001670 1,006461 1,017694 1,047386 1,166016

K3,app 1,000600 1,001627 1,006089 1,016520 1,044822 1,16769
∆% 0,00046 -0,0043 -0,037 -0,12 -0,25 0,14

7.2 Contribution du cisaillement

7.2.1 Expression générale

L'équation est ici
dvc
dx

=
Q

5
6Gbh

ce qui donne, à l'extrémité,

vc(`) =
6Q

Gb

∫ `

−`

dx

h
=

6Q

5Gb
I2 (33)

On retrouve encore la même intégrale qu'en extension, ce qui permet d'écrire
directement

vc(`) =
6Q

5Gb
π
`

a

√
2a

h0
· 1

K2
(34)

Cette contribution est en général négligeable devant celle de �exion.
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8 Raideur en translation latérale pure hors plan

Il s'agit du même type de sollicitation que ci-dessus, mais dans la direction
transversale au plan du dessin. La charge appliquée sera ici notée R, et le dé-
placement correspondant w se décomposer encore en un terme de �exion wf et
un terme de cisaillement wc. La rotation sera notée β.

8.1 Contribution de la �exion

8.1.1 Expression générale

Partant de la relation de base donnant la rotation

dβ

dx
=

12MfT

dx
= −12

Rx

Eb3h
(35)

on a

wf (`) =

∫ ell

−`
βdx = [xβ]

`
−` −

∫ `

−`
x
dβ

dx
dx

soit

wf (`) =
12R

Eb3

∫ `

−`

x2dx

h
=
R

b3
· 24

∫ `

0

x2dx

h
dx =

R

b3
I4 (36)

8.1.2 Calcul de l'intégrale I4
On a

I4
24

=

∫ `

0

x2dx

h
=

(
h0
2a

)3/2
`3

h0

∫ ξ∗

0

ξ2dξ

1 + ξ2
=

`3
√
h0

(2a)3/2
J4 =

`3

2a

√
h0
2a
J4

avec

J4 =

∫ ξ∗

0

ξ2dξ

1 + ξ2
=

∫ ξ∗

0

1 + ξ2 − 1

1 + ξ2
dξ = ξ∗ − arctg ξ∗ =

√
2a

h0
− arctg

√
2a

h0

donc

wf (`) =
12R`3

Eb3a

(
1−

√
h0
2a

arctg

√
2a

h0

)
(37)

8.1.3 Valeur asymptotique

Pour les très faible valeurs de h0/a, on obtient l'expression asymptotique
suivante :

wf (`)as = 12
R`2

Eb3
· `
a

(38)

8.1.4 Coe�cient correcteur

Dans le cas général, on peut écrire

wf (`) = wf (`)as ·
1

K4
(39)
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où K4 est dé�ni par

K4 =
1

1−
√

h0

2a arctg
√

2a
h0

(40)

Ce coe�cient peut être approché par l'expression suivante :

1

K4,app
= 1− 1, 111

√
h0
a

+ 0, 470
h0
a

(41)

à vrai dire pas tellement plus simple et conduisant, pour h0/a ≤ 0, 5 à une
erreur relative inférieure à 0, 7%, comme le montre le tableau suivant :

h0/a 0,01 0,02 0,05 0,1 0,2 0,5
1/K4 0,893920 0,852587 0,776430 0,697950 0,600124 0,0446426

1/K4,app 0,893600 0,852281 0,775073 0,695671 0,597146 0,449404
∆% -0,036 -0,071 -0,17 -0,33 -0,50 0,67

8.2 Contribution du cisaillement

Le déplacement dû à la déformation de cisaillement vaut

wc(`) =
6R

5Gb

∫ `

−`

dx

h
=

6R

5Gb
I2 (42)

où l'on retrouve encore l'intégrale I2 que nous avons rencontrée en extension.
On a donc immédiatement

wc(`) =
6R

5Gb
π
`

2a

√
2a

h0
· 1

K2
(43)

Il faut noter que cette contribution n'est en général pas négligeable devant celle
de �exion.
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