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1 Introduction

Le Laboratoire de Méhodes de Fabrication de ’Université de Liége s’était
déja consacré dans le passé a I’étude des pseudo-articulations & col circulaire
(Merken et Debongnie, [4, 3]). Ces travaux ont été étendus récemment par I’au-
teur au cas du col elliptique [1].

La démarche suivie dans ces travaux a consisté a calculer par la résistance des
matériaux la solution exacte pour les différentes sollicitations de base. Comme
ces solutions sont souvent des expressions algébriques compliquées, nous avons
systématiquement suivi la voie suivante :

— Tout d’abord, on calcule la solution exacte.

— On dégage de celle-ci la solution asymptotique pour de trés faibles épais-

seurs de col.

— On présente alors la solution générale sous forme d’une correction de la
solution asymptotique par un facteur dépendant de I’épaisseur relative du
col.

— On dégage, par une analyse numérique, une approximation simple du fac-
teur correctif.

Cette démarche originale fournit des solutions trés bien approchées et beaucoup
plus simples & utiliser que celles de la littérature [6, 5, 2], ce qui constitue un
argument appréciable au niveau de la conception.

Nous avons conservé ce schéma général dans le présent travail, qui est consa-
cré a la théorie du col parabolique. Les calculs sont présentés dans leur détail.

2 Géométrie

Nous nous proposons dans ce qui suit d’étudier le comportement élastique
de cols paraboliques tels que celui de la figure 1. le col a une épaisseur minimale
hg. Pour l'obtenir, on a découpé d’un bloc rectangulaire, symétriquement de



chaque co6té, des paraboles de profondeur a et de longueur 2¢. Il est supposé
que le rapport hg/a est relativement petit et, en tout cas, que ho/a < 0,5, ce
qui suffit & tous les besoins pratiques. Nous utiliserons la coordonnée x prise
suivant ’axe moyen de la pseudo-articulation, avec comme origine le point le
plus étroit du col. Cette coordonnée varie donc entre —¢ et ¢. L’épaisseur du
col perpendiculairement au dessin est notée b. Comme le montre la figure 1,
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F1cURrE 1 — Col parabolique
I’épaisseur du col dans le plan du dessin a la forme générale
h = ho + az?
A Dextrémité du col, en = = ¢, ’épaisseur vaut h = hgy + 2a, ce qui donne

ho+a€2=h0+2a

soit
2a
o = 672
Ainsi,
x2 2a x>
h=ho+2a— =ho |1+ —— 1
0+ oy 0<+h0€2> (1)
En utilisant la variable réduite
2a x
=,/== 2
=127 2)
relation qui s’inverse en
h
v =] 5olE (3)
2a
on obtient
h= ho(1 + &) (4)

3 Flexion pure dans le plan du dessin

3.1 Forme générale

Sous 'effet d’'un moment uniforme My, la rotation o est régie par I’équation

@ - 12Mf
dr  Ebh3
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FIGURE 2 — Moment constant dans le plan du dessin

ou b est I’épaisseur du col. La rotation d’extrémité vaut donc

12M; (% dx  M;
= — — = 7
o) = =5 / S Eb

3.2 Calcul de l’intégrale 7,

On a

avec

Posons

ce qui donne

L
dx
7, = 12/ —
1 s
4
dz
_24M%f*t%
h3V 2a " J, (1+52)3
! \/2a

= ——=N
- 5/2
2ah0/
" 2a
$ Ve
£=tgy
1 1
de¢ = ——dp, 1+&=—;
cos? o cos? o

Il vient, en notant ¢* = arctg i—z,

cost

*

1 & de o,
5= ), e, e

1
cos? ¢ - cos? p = 1(1 +2cos2¢)?
1 ) 1 1
1(1 + 2cos2p + cos” 2p) = 1(1 + 2cos2¢p) + §(1 + cos dyp)
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1 3 1 1
ﬂjl = ggp* + Zsichp* + 3—251n4g0*
Comme
. . 2tg ¢”
sin2¢* = 2sine* cosp* = 2tgp*cos? pt = —=>1
2 2 ® gy ' 1—|—tg290*
2 h
EEVCERNE
= 2a h
1+28 14k
cos20* = coso* —sin?¢* =cos? (1 —tgl*) = — =
@ © @ " (1 —tg* ") Tt o
_ 2a h
_ 1 ho __1—"_%
= 24 — h
1+}Tﬁ 1+ 32
[ho (1 — ko
sinde™ = 2sin2¢* cos2p™ = —42(1(h22a)
(1+32)
on obtient
h h h
1, 3amtg\/ﬁ+1\/23 14/58 (1-352)
Yl ™3 7T 5 ) )
24 8 ho 21—|—ﬁ 8 (14_’2%)
et

ha ho (1 ho
T = 9arctg,/i“+12\/; —3\/;< z:)
0

h 2

Lrae  (+3)

ho h

2a 2a 11—352
= Yarctg(/— + 12 1—= 2a 7
A Ty T 1+§g< 41+’;g> @

3.3 Valeur asymptotique pour hy/a — 0

Pour les trés faibles valeurs du rapport hg/a, on obtient

9
jl ~ jl,as = ?
ce qui donne
9r € 2a My
af(l)as = ?%WE (8)
0

3.4 Coefficient correcteur

Pour des valeurs usuelles de hg/a, c’est-a-dire allant jusqu’a ho/a = 1/2,
proposons-nous d’écrire la solution sous la forme

ap(l) = as(€)as - #/)



ce qui revient & dire

97
Ki=— 9
Y (9)
Un ajustement numérique donne ’expression approchée suivante de K :
ho\?
Ki~ Kigpp=1+0,0264 | — (10)
a

avec une erreur inférieure a 0,018% pour hg/a < 0,5, comme le montre le
tableau suivant :

ho/a 0,01 0,02 0,05 0,1 0,2 0,5
J1 1,413716 | 1,413712 | 1,413672 | 1,413475 | 1,412480 | 1,404434
Troapp | 1,A13713 | 1,413702 | 1,413623 | 1,413344 | 1,412225 | 1,404447
A% -0,0002 -0,0007 -0,003 -0,009 -0,018 —+0,001
Le calcul peut donc se faire simplement par la formule
oy (O)apy = X LYV2Za My 1 (11)
P = 2a p32 Eb T Ky apy
On notera que le déplacement de flexion en x = ¢ est donné par
vr(l) = Loy (L) (12)

4 Raideur en torsion

7
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FiGURE 3 — Torsion

Pour un moment de torsion M; appliqué a 'extrémité du col, la rotation de
torsion @ vérifie I’équation

dy My
dv — 1Gbh?
Intégrant, on obtient
“3M,  3M; [dx 1M
Y(l) = 3 = 3= 1k
_¢ Gbh Gb J_,h3  4Gb

On retrouve la méme intégrale qu’en flexion pure, ce qui permet d’écrire immé-

diatement
97 ¢ 2a M 1
D) = 3

L 1
8 2ap)/? Gb K (13)

avec le méme K7 que ci-dessus.



5 Raideur en extension

/M

FIGURE 4 — Extension

5.1 Expression générale
Sous leffet d’un effort normal N, le déplacement u est régi par I’équation

d7u N
dz ~ Ebh

si bien que
N (‘dz N

5.2 Calcul de l’intégrale 7,

On obtient aisément

dx da: ho du ¢ [2a (€ du
L = /_ 2 =2 2a" hg u2_2%\/h70/0 1+ u?
= —Hh—oarctgH (15)

5.3 Valeur asymptotique

Pour les faibles valeurs de hg/a, la valeur asymptotique de Z est

{ [2a
T as — W5\ 7—
2 7T2a ho

N ¢
w0 = 5730\ B

ce qui donne
(16)

5.4 Coeflicient correcteur

A nouveau, nous écrirons



ce qui revient & dire

14
2a ho ™
2a
2 arctg o

(17)

Cette expression est utilisable en pratique. On peut également ’approcher comme

suit :
ho
Ky~ Ko app = 140,561/ -2
a

ce qui donne, pour hy/a < 0,5, une erreur relative inférieure a 1,61%, comme
le montre le tableau suivant :

(18)

ho/a 0,01 0,02 0,05 0,1 0,2 0,5
Ko | 1,047046 | 1,067750 | 1,110004 | 1,162857 | 1,242209 | 1,418776
Ka.app | 1,056000 | 1,079196 | 1,125220 | 1,177088 | 1,250440 | 1,395980
A% 0,85 1,07 1,28 1,22 0,66 1,61

6 Raideur en flexion pure dans le plan transverse

La rotation 8 due & un moment uniforme dans le plan perpendiculaire & celui
du dessin est donnée par

_ 12Myp [*dz

12M 7
Eb3

yo) (19)

1l s’agit de la méme intégrale qu’en extension, ce qui nous permet d’écrire di-

rectement
12M £ |2
B0 = Tt 2 20 (20)
et 1
B0 = Bas - 7= (21)

avec le méme K5 que ci-dessus.

7 Raideur en translation latérale pure dans le
plan

On peut obtenir une translation d’une extrémité sans rotation parasite en
appliquant une charge latérale @) au droit du col, ce qui se réalise par artifice
illustré en figure 5. Le moment de flexion a alors pour expression M; = —Q.
La déformée inclut un terme de flexion et un terme de cisaillement : v = v¢ +v,.

7.1 Contribution de la flexion

7.1.1 Expression générale

L’équation régissant la rotation de flexion oy est

12Q.

Wﬁ - 12Mf _
Ebh3

dr ~ Ebh3




//////

FIGURE 5 — Obtention d’une translation latérale pure d’une extrémité dans le
plan

On en déduit

Le second membre de (22) étant impair on se rameéne &

¢
_ doy 12Q
vf = —/ g —dz =5 h3 24/ mdr = —13 (23)

7.1.2 Calcul de l’intégrale 73

On a
B B 1 [ho 3/2 5 & €2df
I3 = 24/ —dm 24 - h3 () é/o m (24)
AN TN

() ()

avec e

_ £7dg
7=, wrey 0

Posant encore une fois f = tg ¢, on obtient

£2de tg @ Cosz de

1
= tg? ¢ cos® pdyp = sin? g cos? pdy = 1 sin? 2pdyp

233 i
Grey~ b
si bien que
1 (¢ 1 (¢ 1 1
Jz = 1 /0 sin? 2pdp = é/o (1 —cosdp)dp = ggp — 3—2$1n4g0

2a+1 %(1_%)
S (1

e\ /203 2a }2%( *}2%)
() @) BB

= —arct
3 g

Au total,



7.1.3 Forme asymptotique

Pour les trés faibles valeurs de hg/a, on obtient la valeur asymptotique sui-

vante de 73 :
7. 3T (L) (2a\Y (28)
Bas ™ 9\ 2a ho
soit 5 3/2
Q 3m [/ 2a
Dgs = — - — | — — 29
vr@as = Zp- 5 | 24 ho (29)
7.1.4 Coefficient correcteur
Suivant toujours la méme démarche, nous écrirons dans le cas général
1
O=vrl)gs  — 30
07(0) = 5O~ 3z (30)
K3 étant défini par
3T
Ks = 2 (31)
VE-5)
arctg %‘; + %
(1+32)
On peut approcher ce coefficient par ’expression simple
1,44
ho
K3 qpp = 140,455 <a> (32)

avec une erreur inférieure a 0,25% pour hg/a < 0,5, comme le montre le tableau
suivant :

ho/a 0,01 0,02 0,05 0,1 0,2 0,5
K3 1,000595 | 1,001670 | 1,006461 | 1,017694 | 1,047386 | 1,166016
K3 app | 1,000600 | 1,001627 | 1,006089 | 1,016520 | 1,044822 | 1,16769
A% 0,00046 | -0,0043 -0,037 -0,12 -0,25 0,14
7.2 Contribution du cisaillement
7.2.1 Expression générale
L’équation est ici
dve  Q
drz — 2Gbh
ce qui donne, & I’extrémité,
6Q [“dx 6
_0Q [fdr  6Q (33)

RO e I Te

On retrouve encore la méme intégrale qu’en extension, ce qui permet d’écrire

directement
o) 5@ € [ 1
50 a\ by | Ko

Cette contribution est en général négligeable devant celle de flexion.

(34)



8 Raideur en translation latérale pure hors plan

1l s’agit du méme type de sollicitation que ci-dessus, mais dans la direction
transversale au plan du dessin. La charge appliquée sera ici notée R, et le dé-
placement correspondant w se décomposer encore en un terme de flexion wy et
un terme de cisaillement w.. La rotation sera notée 3.

8.1 Contribution de la flexion
8.1.1 Expression générale

Partant de la relation de base donnant la rotation

dﬂ 12MfT Rx
= =12
dx dx Eb3h (35)
on a I y
€ d/B
0) = de = [z8]", — —d
wil)= [ pde= o)’ [ o%de
soit

12R (% 22dz R ¢ 22dr R
R B 24/0 0= L1, (36)

8.1.2 Calcul de l’'intégrale 7,

On a
I4_/€332d33_ ho 3/2 43 /f* €2d¢ B ZB\/%‘] /3 j
24 J, h 2a) hoJo 1+ (2a)3/2 2a 4
avec

I £* 2
B &cdg _/ 1+¢ -1 _ _
j4—/0 T1er 11 —————df =& — arctg & —,/ arctg\/
donc
12R03 [ h /2

8.1.3 Valeur asymptotique

Pour les trés faible valeurs de hg/a, on obtient Iexpression asymptotique
suivante :

wy() = 12200 L (39)
8.1.4 Coefficient correcteur
Dans le cas général, on peut écrire
1
wy(l) = wg(l)as - K, (39)
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ou K, est défini par

1
Ky = (40)
1-—- \/g—garctg,/%
Ce coefficient peut étre approché par ’expression suivante :
1 h h
=1—1,1114/ = +0,470= (41)
Ka,app a a

a vrai dire pas tellement plus simple et conduisant, pour hg/a < 0,5 & une
erreur relative inférieure & 0, 7%, comme le montre le tableau suivant :

ho/a 0,01 0,02 0,05 0,1 0,2 0,5
1/K,4 0,893920 | 0,852587 | 0,776430 | 0,697950 | 0,600124 | 0,0446426
1/K4,app 0,893600 | 0,852281 | 0,775073 | 0,695671 | 0,597146 | 0,449404
A% -0,036 -0,071 -0,17 -0,33 -0,50 0,67
8.2 Contribution du cisaillement
Le déplacement da & la déformation de cisaillement vaut
6R [‘dx 6R
D) =— | —=_"FT 42
welt) = 555 o 5Gh? (42)

ol l’on retrouve encore 'intégrale Z, que nous avons rencontrée en extension.
On a donc immédiatement

w(g)f@ L 2 1
T 5 2\ e Ky

Il faut noter que cette contribution n’est en général pas négligeable devant celle
de flexion.

(43)
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