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Abstract. We propose a new method for content-based image retrieval
which exploits the similarity measure and indexing structure of totally
randomized tree ensembles induced from a set of subwindows randomly
extracted from a sample of images. We also present the possibility of
updating the model as new images come in, and the capability of com-
paring new images using a model previously constructed from a different
set of images. The approach is quantitatively evaluated on various types
of images with state-of-the-art results despite its conceptual simplicity
and computational efficiency.

1 Introduction

With the improvements in image acquisition technologies, large image collec-
tions are available in many domains. In numerous applications, users want to
search efficiently images in such large databases but semantic labeling of all these
images is rarely available, because it is not obvious to describe images exhaus-
tively with words, and because there is no widely used taxonomy standard for
images. Thus, one well-known paradigm in computer vision is “content-based
image retrieval” (CBIR) ie. when users want to retrieve images that share some
similar visual elements with a query image, without any further text descrip-
tion neither for images in the reference database, nor for the query image. To be
practically valuable, a CBIR method should combine computer vision techniques
that derive rich image descriptions, and efficient indexing structures [2].

Following these requirements, our starting point is the method of [8], where
the goal was to build models able to predict accurately the class of new images,
given a set of training images where each image is labeled with one single class
among a finite number of classes. Their method was based on random subwindow
extraction and ensembles of extremely randomized trees [6]. In addition to good
accuracy results obtained on various types of images, this method has attractive
computing times. These properties motivated us to extend their method for
CBIR where one has to deal with very large databases of unlabeled images.

The paper is organized as follows. The method is presented in Section 2. To
assess its performances and usefulness as a foundation for image retrieval, we
evaluate it on several datasets representing various types of images in Section
3, where the influence of its major parameters will also be evaluated. Method
parameters and performances are discussed in Section 4. Finally, we conclude
with some perspectives.
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2 Method rationale and description

We now describe the different steps of our algorithm: extraction of random sub-
windows from images (2.1), construction of a tree-based indexing structure for
these subwindows (2.2), derivation of a similarity measure between images from
an ensemble of trees (2.3), and its practical use for image retrieval (2.4).

2.1 Extraction of random subwindows

Occlusions, cluttered backgrounds, and viewpoint or orientation changes that
occur in real-world images motivated the development of object recognition or
image retrieval methods that model image appearances locally by using the so-
called “local features” [15]. Indeed, global aspects of images are considered not
sufficient to model variabilities of objects or scenes and many local feature de-
tection techniques were developped for years. These consider that the neighboor-
hood of corners, lines/edges, contours or homogenous regions capture interesting
aspects of images to classify or compare them. However, a single detector might
not capture enough information to distinguish all images and recent studies [18]
suggest that most detectors are complementary (some being more adapted to
structured scenes while others to textures) and that all of them should ideally
be used in parallel. One step further, several recent works evaluated dense sam-
pling schemes of local features, e.g. on a uniform grid [4] or even randomly [8,
11]. In this work, we use the same subwindow random sampling scheme than
[8]: square patches of random sizes are extracted at random locations in images,
resized by bilinear interpolation to a fixed-size (16 x 16), and described by HSV
values (resulting into 768 feature vectors). This provides a rich representation
of images corresponding to various overlapping regions, both local and global,
whatever the task and content of images. Using raw pixel values as descriptors
avoids discarding potentially useful information while being generic, and fast.

2.2 Indexing subwindows with totally randomized trees

In parallel to these computer vision developments, and due to the slowness of
nearest neighbor searches that prevent real-time response times with hundreds of
thousands of local feature points described by high-dimensional descriptors, sev-
eral tree-based data structures and/or approximate nearest neighbors techniques
have been proposed [1,5,9,13, 14, 16] for efficient indexing and retrieval.

In this paper, we propose to use ensembles of totally randomized trees [6] for
indexing (random) local patches. The method recursively partitions the train-
ing sample of subwindows by randomly generated tests. Each test is chosen by
selecting a random pixel component (among the 768 subwindows descriptors)
and a random cut-point in the range of variation of the pixel component in
the subset of subwindows associated to the node to split. The development of a
node is stopped as soon as either all descriptors are constant in the leaf or the
number of subwindows in the leaf is smaller than a predefined threshold ny;iy,.
A number T of such trees are grown from the training sample. The method thus



depends on two parameters: ny, and 7. We will discuss below their impact on
the similarity measure defined by the tree ensemble.

There exists a number of indexing techniques based on recursive partitioning.
The two main differences between the present work and these algorithms is the
use of an ensemble of trees instead of a single one and the random selection of
tests in place of more elaborated splitting strategies (e.g., based on a distance
metric computed over the whole descriptors in [9,16] or taken at the median
of the pixel component whose distribution exhibits the greatest spread in [5]).
Because of the randomization, the computational complexity of our algorithm
is essentially independent of the dimensionality of the feature space and, like
other tree methods, is O(N log(N)) in the number of subwindows. This makes
the creation of the indexing structures extremely fast in practice.

Note that totally randomized trees are a special case of the Extra-Trees
method exploited in [8] for image classification. In this latter method, K ran-
dom tests are generated at each tree node and the test that maximizes some
information criterion related to the output classification is selected. Totally ran-
domized trees are thus obtained by setting the parameter K of this method to
1, which desactivates test filtering based on the output classification and allows
to grow trees in an unsupervised way. Note however that the image retrieval
procedure described below is independent of the way the trees are built. When
a semantic classification of the images is available, it could thus be a good idea
to exploit it when growing the trees (as it would try to put subwindows from
the same class in the same leaves).

2.3 Inducing image similarities from tree ensembles
A tree T defines the following similarity between two subwindows s and s" [6]:

{NLL if s and s’ reach the same leaf L containing N subwindows,

kr(s,s') =
7(s,5) 0 otherwise.

This expression amounts to considering that two subwindows are very similar if
they fall in a same leaf that has a very small subset of training subwindows3.
The similarity induced by an ensemble of T trees is defined by:

T
1
kens (57 Sl) = ? Z th (S, 8/) (1)
t=1

This expression amounts to considering that two subwindows are similar if they
are considered similar by a large proportion of the trees. The spread of the sim-
ilarity measure is controlled by the parameter nuy,: when npy;, increases, sub-
windows tend to fall more often in the same leaf which yields a higher similarity
according to (1). On the other hand, the number of trees controls the smoothness

3 Intuitively, as it is less likely a priori that two subwindows will fall together in a
small leaf, it is natural to consider them very similar when they actually do.



of the similarity. With only one tree, the similarity (1) is very discrete as it can
take only two values when one of the subwindows is fixed. The combination of
several trees provides a finer-grained similarity measure and we expect that this
will improve the results as much as in the context of image classification. We
will study the influence of these two parameters in our experiments.

Given this similarity measure between subwindows, we derive a similarity
between two images I and I’ by:

1
kI,II = Ta o~ kens sasl ’ 2
L) = ST 2y, o) 2

where S(I) and S(I") are the sets of all subwindows that can be extracted from
I and I’ respectively. The similarity between two images is thus the average
similarity between all pairs of their subwindows. Although finite, the number of
different subwindows of variable size and location that can be extracted from
a given image is in practice very large. Thus we propose to estimate (2) by
extracting at random from each image an a priori fixed number of subwindows.
Notice also that, although (2) suggests that the complexity of this evalation is
quadratic in this number of subwindows, we show below that it can actually be
computed in linear time by exploiting the tree structures.

Since (1) actually defines a positive kernel [6] among subwindows, equa-
tion (2) actually defines a positive (convolution) kernel among images [17]. This
means that this similarity measure has several nice mathematical properties.
For example, it can be used to define a distance metric and it can be directly
exploited in the context of kernel methods [17].

2.4 Image retrieval algorithms

In image retrieval, we are given a set of, say Npg, reference images and we want
to find images from this set that are most similar to a query image. We propose
the following procedure to achieve this goal.

Creation of the indexing structure. To build the indexing structure over the
reference set, we randomly extract N;; subwindows of variable size and location
from each reference image, resize them to 16 x 16, and grow an ensemble of totally
randomized trees from them. At each leaf of each tree, we record for each image
of the reference set that appears in the leaf the number of its subwindows that
have reached this leaf.

Recall of reference images most similar to a query image. We com-
pute the similarities between a query image Ig and all N reference images,
by propagating into each tree Ny subwindows from the query image, and by
incrementing, for each subwindow s of I, each tree 7', and each reference image
IR, the similarity k(Ig,Ir) by the proportion of subwindows of Ir in the leaf



reached by s in 7, and by dividing the resulting score by T'N;sN;s. This proce-
dure estimates k(Ig, Ir) as given by (2), using Nis and Ny random subwindows
from Ir and Ig respectively. From these Np similarities, one can identify the NV
most similar reference images in O(N Ng) operations, and the complexity of the
whole computation is on the average of O(T Nys(log(Nis) + Ng)). Notice that
the fact that information about the most similar reference images is gathered
progressively as the number of subwindows of the query image increases could be
exploited to yield an anytime recall procedure. Note also that once the indexing
structure has been built, the database of training subwindows and the original
images are not required anymore to compute the similarity.

Computation of the similarity between query images. The above pro-
cedure can be extended to compute the similarity of a query-image to another
image not belonging to the reference set, an extension we name model recycling.
To this end, one propagates the subwindows from each image through each tree
and maintains counts of the number of these subwindows reaching each leaf.
The similarity (2) is then obtained by summing over tree leaves the product
of the subwindow counts for the two images divided by the number of training
subwindows in the leaf and by normalizing the resulting sum.

Incremental mode. One can incorporate the subwindows of a new image into
an existing indexing structure by propagating and recording their leaf counts.
When, subsequently to this operation a leaf happens to contain more than nyi,
subwindows, the random splitting procedure would merely be used to develop
it. Because of the random nature of the tree growing procedure, this incremental
procedure is likely to produce similar trees as those that would be obtained by
rebuilding them from scratch. In real-world applications such as World Wide
Web image search engines, medical imaging in research or clinical routine, or
software to organize user photos, this incremental characteristic will be of great
interest as new images are crawled by search engines or generated very frequently.

3 Experiments

In this section, we perform a quantitative evaluation of our method in terms
of its retrieval accuracy on datasets with ground-truth labels. We study the
influence of the number of subwindows extracted in training images for building
the tree structure (INV;;), the number of trees built (T"), the stop-splitting criterion
(nmin), and the number of images extracted in query images (Ny). Like other
authors, we will consider that an image is relevant to a query if it is of the same
class as the query image, and irrelevant otherwise. Then, different quantitative
measures [3] can be computed. In order to compare our results with the state
of the art, for each of the following datasets, we will use the same protocol and
performance measures than other authors. Note that, while using class labels to
assess accuracy, this information is not used during the indexing phase.



3.1 Image retrieval on UK-Bench

The University of Kentucky recognition benchmark is a dataset introduced in [9)
and recently updated that now contains 640 x 480 color images of 2550 classes of
4 images each (10200 images in total), approximately 1.7GB of JPEG files. These
images depict plants, people, cds, books, magazines, outdoor/indoor scenes, an-
imals, household objects, etc., as illustrated by Figure 1. The full set is used as
the reference database to build the model. Then, the measure of performance
is an average score that counts for each of the 10200 images how many of the
4 images of this object (including the identical image) are ranked in the top-4
similar images. The score thus varies from 0 (when getting nothing right) up
to 4 (when getting everything right). Average scores of variants of the method
presented in [9] range from 3.07 to 3.29 (ie. recognition rates! from 76.75% to
82.36%, see their updated website ), using among the best detector and descrip-
tor combination (Maximally Stable Extremal Region (MSER) detector and the
Scalable Invariant Feature Transform (SIFT) descriptor), a tree structure built
by hierarchical k-means clustering, and different scoring schemes. Very recently,
[14] improved results up to a score of 3.45 using the same set of features but
with an approximate k-means clustering exploiting randomized k-d trees.

Fig. 1. Several images of the UK-Bench. One image for various objects (top), the four
images of the same object (bottom).

Figure 2 shows the influence of the parameters of our method on the recogni-
tion performances. We obtain scores slightly above 3 (ie. around 75% recognition
rate) with 1000 subwindows extracted per image, 10 trees, and a minimum num-
ber of subwindows per node npi, between 4 and 10. Note that the recognition
rate still increases when using more subwindows. For example, not reported on
these figures, a score of 3.10 is obtained when 5000 subwindows are extracted
per image with only 5 trees (nmin = 10).

* (Number of correct images in first 4 retrieved images /40800) * 100%
5 http://www.vis.uky.edu/ stewe/ukbench/



UK-Bench: Influence of ny, stop splitting on recognition performance (T=10) UK-Bench: Influence of the number of trees T on recognition performance
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Fig. 2. Influence of the parameters on UK-Bench. Influence of stop splitting parameter,
number of trees, number of training subwindows, number of test subwindows.

3.2 Image retrieval on ZuBuD

The Ziirich Buildings Database ¢ is a database of color images of 201 buildings.
Each building in the training set is represented by 5 images acquired at 5 ar-
bitrary viewpoints. The training set thus includes 1005 images and it is used
to build the model, while the test set (acquired by another camera under dif-
ferent conditions) that contains 115 images of a subset of the 201 buildings is
used to evaluate the generalization performances of the model. The performance
measured in [13,3,16] is the classification recognition rate of the first retrieved
image, with 93%, 89.6%, and 59.13% recognition rates respectively. In [12], a
100% recognition rate was obtained, but with recall times of over 27 seconds per
image (with an exhaustive scan of the database of local affine frames).

We obtain 95.65% with 1000 subwindows per image, T = 10, and several
values of Ny, inferior to 10. On this problem, we observed that it is not necessary
to use so many trees and subwindows to obtain this state-of-the-art recognition
rate. In particular, only one tree is sufficient, or less than 500 subwindows.

 http://www.vision.ee.ethz.ch/showroom/zubud/index.en.html



3.3 Model recycling on META and UK-Bench

In our last experiment, we evaluate the model recycling idea, ie. we want to assess
if given a large set of unlabeled images we can build a model on these images,
and then use this model to compare new images from another set.

To do so, we build up a new dataset called META that is basically the
collection of images from the following publicly available datasets: LabelMe Set1-
16, Caltech-256, Aardvark to Zorro, CEA CLIC, Pascal Visual Object Challenge
2007, Natural Scenes A. Oliva, Flowers, WANG, Xerox6, Butterflies, Birds. This
sums up to 205763 color images (about 20 GB of JPEG image files) that we use as
training data from which we extract random subwindows and build the ensemble
of trees. Then, we exploit that model to compare the UK-Bench images between
themselves. Using the same performance measure as in section 3.1, we obtain an
average score of 2.64, ie. a recognition rate of 66.1%, with 50 subwindows per
training image of META (roughly a total of 10 million subwindows), T' = 10,
Nmin = 4, and 1000 subwindows per test image of UK-Bench. For comparison, we
obtained a score of 3.01 ie. 75.25% recognition rate using the full UK-Bench set
as training data and same parameter values. Unsurprisingly, the recognition rate
is better when the model is built using the UK-Bench set as training data but
we still obtain an interesting recognition rate with the META model. Nistér and
Stewénius carried out a similar experiment in [9], using different training sets
(images from moving vehicles and/or c¢d covers) to build a model to compare UK-
Bench images. They obtained scores ranging from 2.16 to 3.16 (using between
21 and 53 millions local features), which are also inferior to what they obtained
exploiting the UK-Bench set for building the model.

4 Discussion

Some general comments about the influence of parameters can be drawn from
our experiments. First, we observed that the more trees and subwindows, the
better the results. We note that on ZuBuD, a small number of trees and not so
large number of subwindows already gives state-of-the-art results. We also found
out that the value of 1,3, should neither be too small, nor too large. It influences
the recognition rate and increasing its value also reduces the memory needed to
store the trees (as they are smaller when 7, is larger) and the required time for
the indexing phase. It also reduces the prediction time, but with large values of
Nmin (such as 1000) image indexes at terminal nodes of the trees tend to become
dense, which then slows down the retrieval phase of our algorithm which exploits
the sparsity of these vectors to speed up the updating procedure.

One clear advantage of the method is that the user can more or less control
the performance of the method and its parameters could be choosen so as to
trade-off recognition performances, computational requirements, problem diffi-
culty, and available resources. For example, with our current proof of concept
implementation in Java, one single tree that has 94.78% accuracy on ZuBuD is
built in less than 1m30s on a single 2.4Ghz processor, using a total of 1005000
training subwindows described by 768 values, and ny,, = 4. When testing query



images, the mean number of subwindow tests in the tree is 42.10. In our exper-
iment of Section 3.3, to find similar images in UK-Bench based on the model
built on META, there are on average 43.63 tests per subwindow in one single
tree. On average, all 1000 subwindows of one UK-Bench image are propagated in
all the 10 trees in about 0.16 seconds. Moreover, random subwindow extraction
and raw pixel description are straightforward.

In Section 3.3 we introduced the META database and model. While this
database obviously does not represent the infinite “image space”, it is however
possible to extract a very large set of subwindows from it, hence we expect that
the META model could produce scores distinctive enough to compare a wide
variety of images. The results we obtained in our last experiment on the 2550
object UK-Bench dataset are promising in that sense. Increasing the number
of subwindows extracted from the META database and enriching it using other
image sources such as the Wikipedia image database dump or frames from Open
Video project might increase the generality and power of the META model.

Our image retrieval approach does not require any prior information about
the similarity of training images. Note however that in some applications, such
information is available and it could be a good idea to exploit it to design better
similarity measures for image retrieval. When this information is available in the
form of a semantic labeling of the images, it is easy to incorporate it into our
approach, simply replacing totally randomized trees by extremely randomized
trees for the indexing of subwindows. Note however that our result on ZuBuD
equals the result obtained by [8] using extremely randomized trees that exploit
the image labels during the training stage. This result suggests that for some
problems, good image retrieval performances could be obtained with a fast and
rather simple method and without prior information about the images. Beside
a classification, information could also be provided in the form a set of similar
or dissimilar image pairs. Nowak and Jurie [10] propose a method based on
randomized trees for exploiting such pairwise constraints to design a similarity
measure between images. When a more quantitative information is available
about the similarity between training images, one could combine our approach
with ideas from [7], where a (kernel-based) similarity is generalized to never seen
objects using ensembles of randomized trees.

5 Conclusions

In this paper, we used totally randomized trees to index randomly extracted
subwindows for content-based image retrieval. Due to its conceptual simplicity
(randomization is used both in image description and indexing), the method is
fast. Good recognition results are obtained on two datasets with illumination,
viewpoint, and scale changes. Moreover, incremental mode and model recycling
were highlighted. In future works, other image descriptors and other stop split-
ting and scoring schemes might be evaluated. In terms of other applications,
the usefulness of the method for the problem of near duplicate image detection
might be investigated. Finally, totally randomized trees might also be helpful to
index high-dimensional databases of other types of content.
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