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Image classification

Given a training set of N labelled images (i.e. each image is
associated with a class), build a model to predict the class of
new images

Challenges

To avoid manual adaptation to specific task
To be able to discriminate between a lot of classes
To be robust to uncontrolled conditions

Illumination/scale/viewpoint/orientation changes
Partial occlusions, cluttered backgrounds
. . .
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Approaches

General scheme [MO04]

Detection of “interesting” regions in images [MTS+05]

Harris, Hessian, MSER, edge-based, local variance, . . .

Description by feature vectors [MS05]

SIFT, PCA, DCT, moment invariants, . . .

Matching of feature vectors

Nearest neighbor with Euclidian, Mahalanobis distance, . . .
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Approaches

General scheme [MO04]

Detection of “interesting” regions in images [MTS+05]

Harris, Hessian, MSER, edge-based, local variance, . . .
Random extraction of square patches

Description by feature vectors [MS05]

SIFT, PCA, DCT, moment invariants, . . .
Pixel-based normalized representation

Matching of feature vectors

Nearest neighbor with Euclidian, Mahalanobis distance, . . .
Recent machine learning algorithms able to handle
high-dimensional data, e.g.: Ensemble of Decision Trees,
SVMs
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Detector: Random Subwindows
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Extract Subwindows of random sizes, at random locations
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Descriptor: 16x16 Hue-Saturation-Value
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Resize each subwindow to 16 × 16

Describe each subwindow by its 768 pixel values (in HSV)
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Learning: subwindow classification model

Extract Nw (>>N) subwindows from training images

Random detector, 16x16 HSV descriptor
Label each subwindow with the class of its parent image
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Build a subwindow classification model by supervised learning

T2T1 T3 T4 T5
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Learning: Extra-Trees [Geu02, GEW05]

T2T1 T3 T4 T5
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Ensemble of T decision trees, generated independently

Top-down growing by recursive partitioning

Internal test nodes compare a pixel-location-channel to a
threshold (ai < vi ), terminal nodes output class probability
estimates
Choice of internal tests at random
Fully developed (perfect fit on LS)
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Recognition: aggregation of subwindows and tree votes

T2T1 T3 T4 T5
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Experiments

Standard classification datasets (4 in the paper + 4)

Multi-class (up to 201 classes)
Illumination/scale/viewpoint changes, partial occlusions,
cluttered backgrounds

Standard protocols

Independent test set or leave-one-out validation
Directly comparable to other results in the literature

Parameters

Number of learning subwindows: Nw = 120000 (total)
Number of trees built: T = 10
Number of test subwindows: Nw ,test = 100 (per image)
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Datasets: COIL-100 [MN95] (100 classes)
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Datasets: ETH-80 [LS03] (8 classes)
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Datasets: ZuBuD [SSV03] (201 classes)
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Datasets: WANG [CW04] (10 classes)

Marée et al. Random Subwindows + Extra-Trees (13 / 25)



Introduction
Our Approach

Experiments
Conclusions

Methodology
Datasets
Results

Datasets: MNIST [LBBH98] (10 classes)
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Datasets: AR Expression Variant Faces [MB98] (100 classes)

Learning:

Session 1:

Session 2:
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Datasets: TSG-20 [FSPB05] (20 classes)
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Datasets: IRMA [LGD+05] [iCS05] (57 classes)

(ImageCLEF 2005 [iCS05])

(courtesy of TM Lehmann, Dept. of Medical Informatics, RWTH Aachen, Germany)
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Results: Misclassification error rates

DB ls/ts class us worst best

COIL-100 1800/5400 100 0.50% 12.50% 0.10% [MO04]

COIL-100 100/7100 100 13.58% 50% 24% [MO04]

ZuBuD 1005/115 201 4.35% 59% 0% [MO04]

ETH-80 3280/3280 8 25.49% 35.15% 13.60% [LS03]

WANG 1000/1000 10 15.90% 62.5% 15.90% [DKN04a]

MNIST 60000/10000 10 2.13% 12% 0.50% [DKN04b]

AR EVF 100/600 100 15.83% 29.83% 12% [TCZ+05]

TSG-20 40/40 20 5.0% 2.5% 0% [FSPB05]

IRMA 9000/1000 57 14.7% 73.3% 12.6% [iCS05]
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COIL-100: robustness to viewpoint changes
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Extra−Trees + Random Subwindows

COIL-100: error rate depending on azimuthal test angle, learning
only from the frontal view (0◦).
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Some observations: subwindow classification

correct:

misclassified:
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Robustness to orientation changes

C1 C2 C3

C1 C1 C1 C1 C1 C2 C2 C2 C2 C2 C3 C3 C3 C3 C3
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Why does it work?

Random Subwindows
Aggregation of a large amount of information

Use both local, global, (un)homogeneous regions, . . .

Pixel-based normalized representation

Normalization to a fixed size
HSV limits the effect of illumination changes

Tolerance to partial occlusions and cluttered backgrounds

Extra-trees

Accurate even with high-dimensional data (variance reduction)
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Summary

Novel image classification method that...

combines Random Subwindows and Extra-Trees
yields quite good results on a variety of tasks

could be quickly evaluated on new classification problems

few parameters (the more trees/subwindows, the better)
fast learning (± 6m30s on ZuBuD)
fast classification (tree depth ± 18.26 on ZuBuD)

is now implemented in Java:
http://www.montefiore.ulg.ac.be/~maree/
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Extensions and Future Work

Method

Comparison with other detectors and other descriptors
Comparison with other machine learning algorithms

CART, Bagging, Boosting, Random Forests: [MGPW05]
KNN, SVM

Filtering Subwindows for heavily cluttered backgrounds?

Evaluation

ALOI, Butterflies, Birds, Caltech 101, NORB, . . . , ?
Ongoing real-world applications: metal powders, marbles,
flowers, license plates, . . .
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