

Random Subwindows for Robust Image Classification

Raphaël Marée, Pierre Geurts, Justus Piater, Louis Wehenkel

Institut Montefiore, University of Liège, Belgium

CVPR05, 22th June 2005

Image classification

- Given a training set of N labelled images (i.e. each image is associated with a class), build a model to predict the class of new images
- Challenges
 - To avoid manual adaptation to specific task
 - To be able to discriminate between a lot of classes
 - To be robust to uncontrolled conditions
 - Illumination/scale/viewpoint/orientation changes
 - Partial occlusions, cluttered backgrounds
 - ...

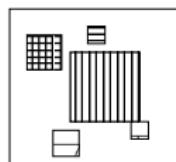
Approaches

- General scheme [MO04]
 - Detection of “interesting” regions in images [MTS⁺05]
 - Harris, Hessian, MSER, edge-based, local variance, ...
 - Description by feature vectors [MS05]
 - SIFT, PCA, DCT, moment invariants, ...
 - Matching of feature vectors
 - Nearest neighbor with Euclidian, Mahalanobis distance, ...

Approaches

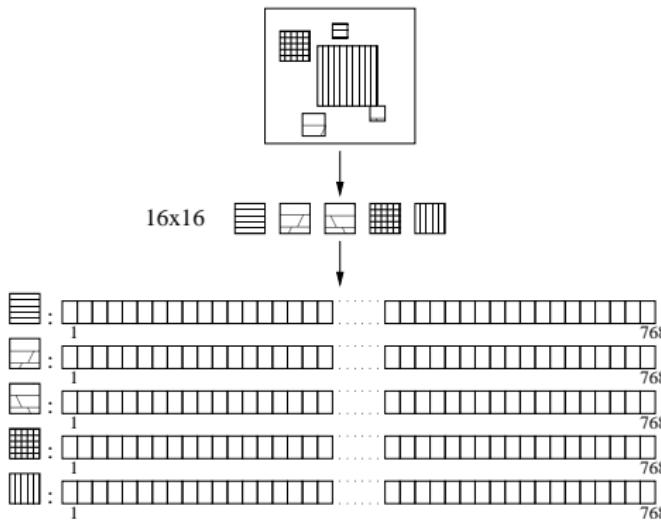
- General scheme [MO04]
 - Detection of “interesting” regions in images [MTS⁺05]
 - Harris, Hessian, MSER, edge-based, local variance, ...
 - Random extraction of square patches
 - Description by feature vectors [MS05]
 - SIFT, PCA, DCT, moment invariants, ...
 - Pixel-based normalized representation
 - Matching of feature vectors
 - Nearest neighbor with Euclidian, Mahalanobis distance, ...
 - Recent machine learning algorithms able to handle high-dimensional data, e.g.: Ensemble of Decision Trees, SVMs

Detector: Random Subwindows



- Extract Subwindows of random sizes, at random locations

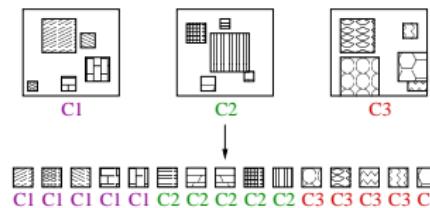
Descriptor: 16x16 Hue-Saturation-Value



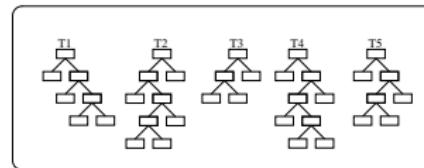
- Resize each subwindow to 16×16
- Describe each subwindow by its 768 pixel values (in HSV)

Learning: subwindow classification model

- Extract N_w ($>> N$) subwindows from training images
 - Random detector, 16x16 HSV descriptor
 - Label each subwindow with the class of its parent image

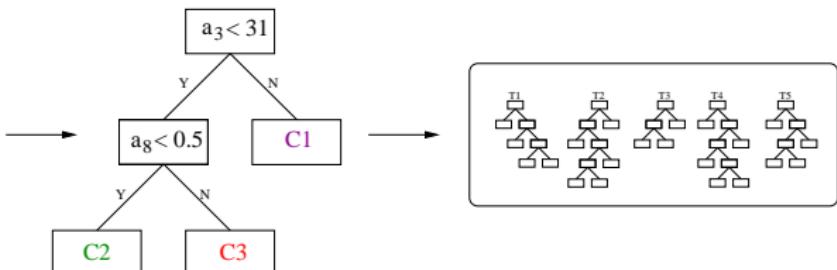


- Build a subwindow classification model by supervised learning



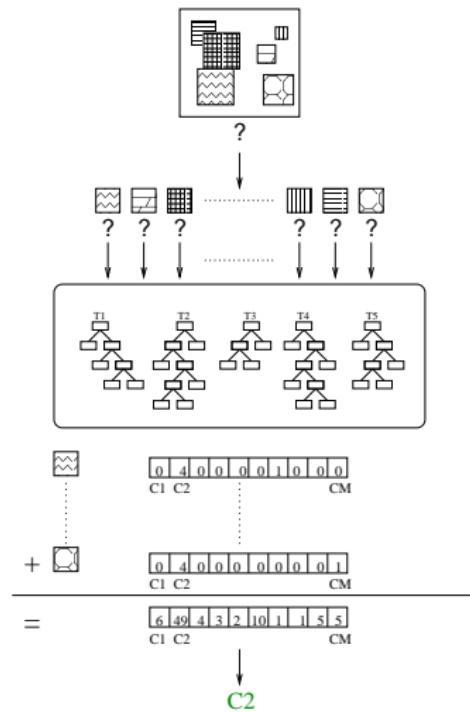
Learning: Extra-Trees [Gue02, GEW05]

	a_1	a_2	a_3	a_4	a_{764}	a_{765}	a_{766}	Class
	60	0.1	99	17	1	0.23	164	C1
	60	0.37	113	23	29	0.07	230	C1
	75	0.03	210	1	77	0.05	255	C1
	2	0.1	97	2	0	0.23	88	C2
	3	0.2	180	18	0	0.12	145	C2
	+
	2	0.06	55	10	10	0.54	100	C3



- Ensemble of T decision trees, generated independently
- Top-down growing by recursive partitioning
 - Internal *test nodes* compare a pixel-location-channel to a threshold ($a_i < v_i$), *terminal nodes* output class probability estimates
 - Choice of internal tests at random
 - Fully developed (perfect fit on LS)

Recognition: aggregation of subwindows and tree votes



Experiments

- Standard classification datasets (4 in the paper + 4)
 - Multi-class (up to 201 classes)
 - Illumination/scale/viewpoint changes, partial occlusions, cluttered backgrounds
- Standard protocols
 - Independent test set or leave-one-out validation
 - Directly comparable to other results in the literature
- Parameters
 - Number of learning subwindows: $N_w = 120000$ (total)
 - Number of trees built: $T = 10$
 - Number of test subwindows: $N_{w,test} = 100$ (per image)

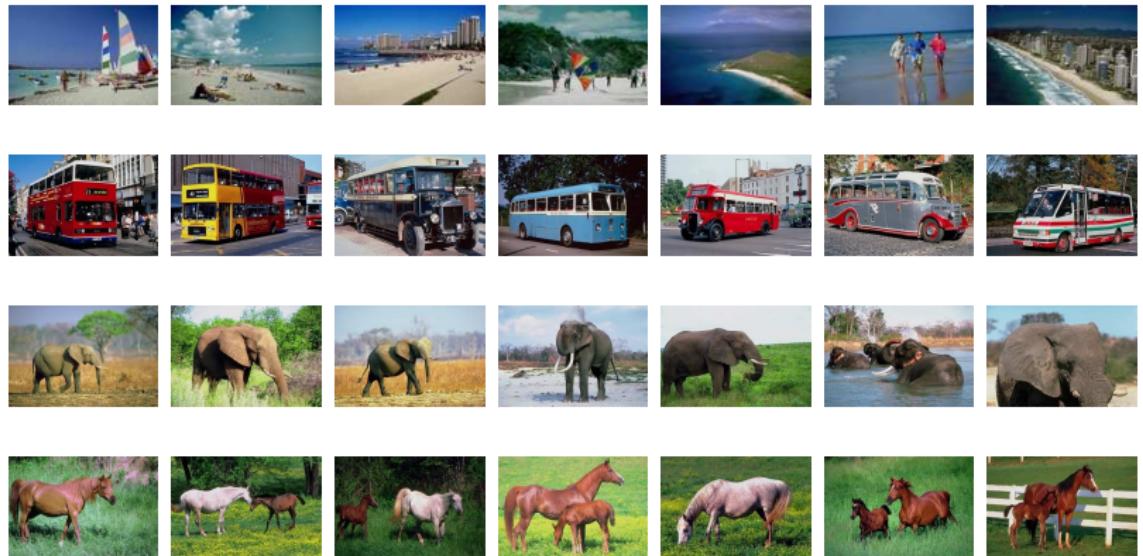
Datasets: COIL-100 [MN95] (100 classes)



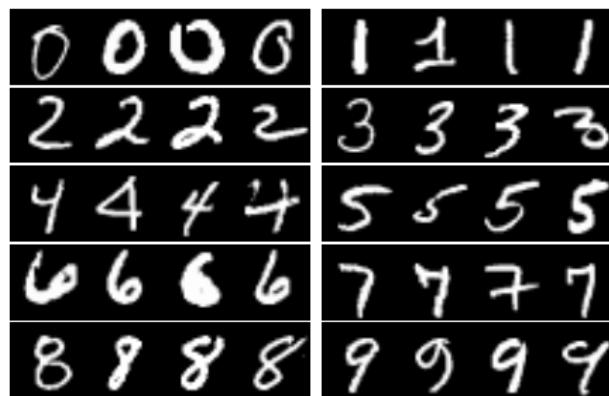
Datasets: ETH-80 [LS03] (8 classes)

Datasets: ZuBuD [SSV03] (201 classes)

Datasets: WANG [CW04] (10 classes)



Datasets: MNIST [LBBH98] (10 classes)



Datasets: AR Expression Variant Faces [MB98] (100 classes)

Learning:

Session 1:

Session 2:

Datasets: TSG-20 [FSPB05] (20 classes)



Datasets: IRMA [LGD⁺05] [iCS05] (57 classes)

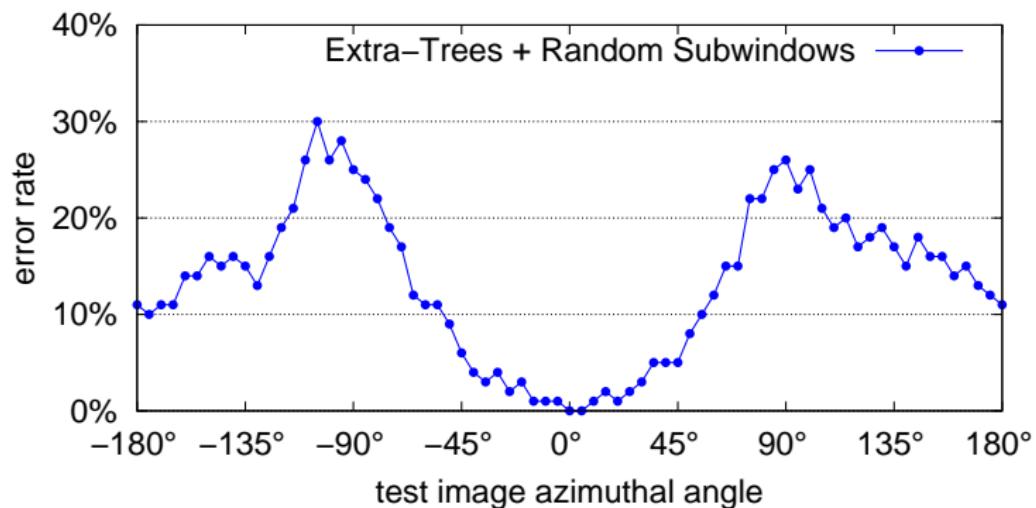
(ImageCLEF 2005 [iCS05])

(courtesy of TM Lehmann, Dept. of Medical Informatics, RWTH Aachen, Germany)

Results: Misclassification error rates

DB	ls/ts	class	us	worst	best
COIL-100	1800/5400	100	0.50%	12.50%	0.10% [MO04]
COIL-100	100/7100	100	13.58%	50%	24% [MO04]
ZuBuD	1005/115	201	4.35%	59%	0% [MO04]
ETH-80	3280/3280	8	25.49%	35.15%	13.60% [LS03]
WANG	1000/1000	10	15.90%	62.5%	15.90% [DKN04a]
MNIST	60000/10000	10	2.13%	12%	0.50% [DKN04b]
AR EVF	100/600	100	15.83%	29.83%	12% [TCZ ⁺ 05]
TSG-20	40/40	20	5.0%	2.5%	0% [FSPB05]
IRMA	9000/1000	57	14.7%	73.3%	12.6% [iCS05]

COIL-100: robustness to viewpoint changes



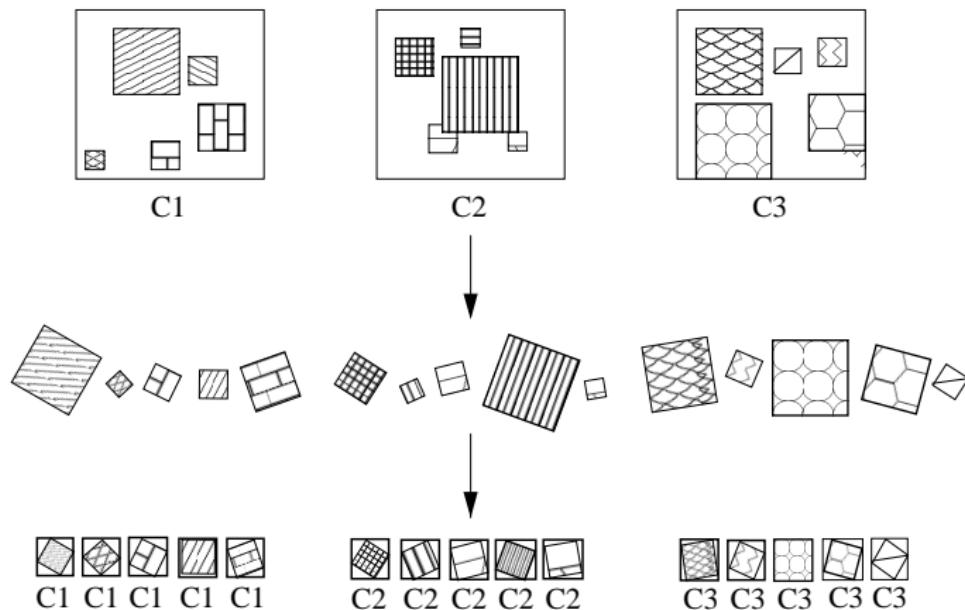
- COIL-100: error rate depending on azimuthal test angle, learning only from the frontal view (0°).

Some observations: subwindow classification

correct:

misclassified:

Robustness to orientation changes



Why does it work?

- Random Subwindows
 - Aggregation of a large amount of information
 - Use both local, global, (un)homogeneous regions, ...
 - Pixel-based normalized representation
 - Normalization to a fixed size
 - HSV limits the effect of illumination changes
 - Tolerance to partial occlusions and cluttered backgrounds
- Extra-trees
 - Accurate even with high-dimensional data (variance reduction)

Summary

- Novel image classification method that...
 - combines Random Subwindows and Extra-Trees
 - yields quite good results on a variety of tasks

- could be quickly evaluated on new classification problems
 - few parameters (the more trees/subwindows, the better)
 - fast learning ($\pm 6m30s$ on ZuBuD)
 - fast classification (tree depth ± 18.26 on ZuBuD)
- is now implemented in Java:
<http://www.montefiore.ulg.ac.be/~maree/>

Extensions and Future Work

- Method
 - Comparison with other detectors and other descriptors
 - Comparison with other machine learning algorithms
 - CART, Bagging, Boosting, Random Forests: [MGPW05]
 - KNN, SVM
 - Filtering Subwindows for heavily cluttered backgrounds?
- Evaluation
 - ALOI, Butterflies, Birds, Caltech 101, NORB, . . . , ?
 - Ongoing real-world applications: metal powders, marbles, flowers, license plates, . . .

Acknowledgments

- Raphaël Marée is supported by GIGA-Interdisciplinary Cluster for Applied Genoproteomics, hosted by the University of Liège
- Pierre Geurts is a Postdoctoral Researcher at the National Fund for Scientific Research (FNRS, Belgium)
- IRMA database courtesy of TM Lehmann, Dept. of Medical Informatics, RWTH Aachen, Germany
- PEPITe for the release of PiXiT, a Java implementation of the method, available for evaluation purpose at:
<http://www.montefiore.ulg.ac.be/~maree/>

- **Y. Chen and J. Z. Wang.**
Image categorization by learning and reasoning with regions.
Journal of Machine Learning Research, 5:913–939, August 2004.
- **T. Deselaers, D. Keysers, and H. Ney.**
Features for image retrieval: A quantitative comparison.
In *Proc. 26th DAGM Symposium on Pattern Recognition (DAGM 2004)*, volume LNCS 3175, pages 228–236, August/September 2004.
- **T. Deselaers, D. Keysers, and H. Ney.**
Classification error rate for quantitative evaluation of content-based image retrieval systems.
In *Proc. 17th International Conference on Pattern Recognition (ICPR)*, 2004.
- **G. Fritz, C. Seifert, L. Paletta, and H. Bischof.**
Learning informative sift descriptors for attentive object recognition.
In *Proc. 1st Austrian Cognitive Vision Workshop (ACVW 2005)*, 2005.
- **P. Geurts.**
Contributions to decision tree induction: bias/variance tradeoff and time series classification.
PhD thesis, Department of Electrical Engineering and Computer Science, University of Liège, May 2002.
- **P. Geurts, D. Ernst, and L. Wehenkel.**
Extremely randomized trees.
To appear in Machine Learning Journal, 2005.
- **S. L. N. in Computer Science, editor.**
Proc. of Cross Language Evaluation Forum (CLEF), to appear, 2005.
- **Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner.**
Gradient-based learning applied to document recognition.
Proc. of the IEEE, 86(11):2278–2324, 1998.

T. Lehmann, M. Güld, T. Deselaers, D. Keysers, H. Schubert, K. Spitzer, H. Ney, and B. Wein.

Automatic categorization of medical images for content-based retrieval and data mining.

Computerized Medical Imaging and Graphics, 29(2):143–155, 2005.

B. Leibe and B. Schiele.

Analyzing appearance and contour based methods for object categorization.

In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR'03)*, Madison, WI, June 2003.

A. Martinez and R. Benavente.

The ar face database.

Technical report, School of Electrical & Computer Engineering Purdue University, West Lafayette, Indiana, 1998.

R. Marée, P. Geurts, J. Piater, and L. Wehenkel.

Decision trees and random subwindows for object recognition.

In *ICML workshop on Machine Learning Techniques for Processing Multimedia Content (MLMM2005)*, 2005.

H. Murase and S. K. Nayar.

Visual learning and recognition of 3d objects from appearance.

International Journal of Computer Vision, 14(1):5–24, 1995.

J. Matas and S. Obdržálek.

Object recognition methods based on transformation covariant features.

In *Proc. 12th European Signal Processing Conference (EUSIPCO 2004)*, Vienna, Austria, September 2004.

K. Mikolajczyk and C. Schmid.

A performance evaluation of local descriptors.

PAMI, to appear, 2005.

K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky, T. Kadir, and L. V. Gool.

A comparison of affine region detectors.

International Journal of Computer Vision, to appear, 2005.

H. Shao, T. Svoboda, and L. Van Gool.

Zubud - Zurich building database for image based recognition.

Technical Report TR-260, Computer Vision Lab, Swiss Federal Institute of Technology, Switzerland, 2003.

X. Tan, S. Chen, Z.-H. Zhou, , and F. Zhang.

Recognizing partially occluded, expression variant faces from single training image per person with som and soft knn ensemble.

IEEE Transactions on Neural Networks, 2005.