A Decision Problem for Ultimately Periodic Sets in Non-Standard Numeration Systems

Emilie Charlier, Michel Rigo (University of Liège)

```
http://www.discmath.ulg.ac.be/
```

Journées Montoises, Mons, August 2008

BACKGROUND

Let's start with classical k-ary numeration system, $k \geq 2$:

$$
n=\sum_{i=0}^{\ell} d_{i} k^{i}, \quad \operatorname{rep}_{k}(n)=d_{\ell} \cdots d_{0} \in\{0, \ldots, k-1\}^{*}
$$

DEFINITION

A set $X \subseteq \mathbb{N}$ is k-recognizable, if the language

$$
\operatorname{rep}_{k}(X)=\left\{\operatorname{rep}_{k}(x) \mid x \in X\right\}
$$

is regular, i.e., accepted by a finite automaton.

BACKGROUND

EXAMPLES OF k-RECOGNIZABLE SETS

- In base 2, the set of even integers: $\operatorname{rep}_{2}(2 \mathbb{N})=\{0,1\}^{*} 0$.
- In base 2, the set of powers of $2: \operatorname{rep}_{2}(X)=10^{*}$.
- In base 2, the "Thue-Morse set" is 2-recognizable, i.e., $\left\{n \in \mathbb{N} \mid \mathbf{S}\left(\operatorname{rep}_{2}(n)\right) \equiv 0(\bmod 2)\right\}$.

- Given a k-automatic sequence $\left(x_{n}\right)_{n \geq 0}$ over an alphabet Σ, then for all $\sigma \in \Sigma$, the set $\left\{i \in \mathbb{N} \mid x_{i}=\sigma\right\}$ is k-recognizable.

BACKGROUND

SOME NATURAL QUESTIONS, WELL-KNOWN ANSWERS...

- Characterization(s) of the k-recognizable sets
- Does the property depend on the choice of the base k ?
- If so, are there (infinite) sets that are recognizable for all bases?
k, ℓ are multiplicatively independent if $k^{m}=\ell^{n} \Rightarrow m=n=0$, i.e., $\log k / \log \ell$ is irrational.

2	3	5	6	7	10	11	\cdots
4	9	25	36	49	100	121	\cdots
8	27	125	216	343	1000	1331	\cdots
\vdots							

BACKGROUND

PROPOSITION (EASY)

Let $k, \ell \geq 2$ be multiplicatively dependent.
$X \subset \mathbb{N}$ is k-recognizable IFF X is ℓ-recognizable.

COBHAM'S THEOREM (1969)

Let $k, \ell \geq 2$ be two multiplicatively independent integers.
If $X \subseteq \mathbb{N}$ is both k - and ℓ-recognizable, then X is ultimately periodic (finite union of A. P.).

Index: 3, Period: 3

Véronique Bruyère promoted Cobham's result...

Historique

Cobham 69
Eilemberg 74 "It is reasonable to find a more comprethensite proof of this fime theorem"
exposé sur le
σ

- bases non entières base de fibon

$$
X \subseteq \mathbb{N}^{m}
$$

Extensions

- plusians dimensions
- égalité des facteuns $X, Y \subseteq \mathbb{N}$
$\operatorname{Fact}(\underline{X})=\operatorname{Fact}(1$
Cobham ...
$\{$ années 90$\}$

BACKGROUND

DIVISIBILITY CRITERIA

If X is ultimately periodic, then X is k-recognizable $\forall k \geq 2$.

VARIOUS PROOF SIMPLIFICATIONS AND GENERALIZATIONS

G. Hansel, D. Perrin, F. Durand, V. Bruyère, F. Point, C. Michaux,
R. Villemaire, A. Bès, J. Bell, J. Honkala, S. Fabre,
C. Reutenauer, A.L. Semenov, L. Waxweiler, ...

- V. Bruyère, G. Hansel, C. Michaux, R. Villemaire, Logic and p-recognizable sets of integers, Bull. Belg. Math. Soc. 1 (1994).

MAIN QUESTION FOR THIS TALK

Consider a k-recognizable set X, given by a DFA \mathcal{A}_{X}, decide whether or not X is ultimately periodic ?

THE ANSWER IS YES

J. Honkala, A decision method for the recognizability of sets defined by number systems, Theoret. Inform. Appl. 20 (1986).

Sketch :

- The number of states of \mathcal{A}_{X} produces an upper bound on the possible maximal index and period for X.
- Consequently, there are finitely many candidates to check.
- For each pair (i, p) of candidates, produce a DFA for all possible corresponding ultimately periodic sets and compare it with \mathcal{A}_{X}.

OUR PROBLEM

The question we are considering here was initially raised by J. Sakarovitch for abstract numeration systems

Example (ApPETIZER)

Fibonacci system $F_{i+2}=F_{i+1}+F_{i}, F_{0}=1, F_{1}=2$ greedy expansion, ...,21, 13, 8, 5, 3, 2, 1

1	1	8	10000	15	100010
2	10	9	10001	16	100100
3	100	10	10010	17	100101
4	101	11	10100	18	101000
5	1000	12	10101	19	101001
6	1001	13	100000	20	10010
7	1010	14	100001	21	1000000

The "pattern" 11 is forbidden, $A_{F}=\{0,1\}$.

EXAMPLE (CONTINUED)

We can define a F-recognizable set X of integers: $\operatorname{rep}_{F}(X) \subset\{0,1\}^{*}$ is regular.

THE QUESTIONS BECOMES

\rightarrow Consider a F-recognizable set $X \subseteq \mathbb{N}$, given by a DFA \mathcal{A}_{X}, decide whether or not X is ultimately periodic?

First part (upper bound on the period) :

"PSEUDO-RESULT"

Let X be ult. periodic with period p_{X} (X is F-recognizable).
Any DFA accepting $\operatorname{rep}_{F}(X)$ has at least $f\left(p_{X}\right)$ states, where f is increasing.

"PSEUDO-COROLLARY"

Let $X \subseteq \mathbb{N}$ be a F-recognizable set of integers s.t. $\operatorname{rep}_{F}(X)$ is accepted by \mathcal{A}_{X} with k states.

If X is ultimately periodic with period p, then

$$
f(p) \leq k \quad \text { with }\left\{\begin{array}{l}
k \text { fixed } \\
f \text { increasing } .
\end{array}\right.
$$

\Rightarrow The number of candidates for p is bounded from above.

Proposition (Fibonacci)

Let X be ultimately periodic with period p_{X}.
Any DFA accepting $\operatorname{rep}_{F}(X)$ has at least p_{X} states.

- Idea of the proof. The sequence is purely periodic mod p_{X}. Indeed, $F_{n+2}=F_{n+1}+F_{n}$ and $F_{n}=F_{n+2}-F_{n+1}$

$X=(8 \mathbb{N}+3) \cup(8 \mathbb{N}+5) \cup\{0,1,16,20,88\}$			
$\cdots 101725505321$	101725505321	101725505321	
		000000010000	0
some	with	000000000001	1
special	enough	000000000010	2
words	leading	000000000100	3
		000000001000	4
complete		000000001001	6
residue	000000001010	7	
set			

Enough leading zeroes to :

- start a new period for $\left(F_{n} \bmod 8\right)_{n \geq 0}$
- ensure to keep greedy representation when concatenating with something: 10100101.000000000100
- be in the periodic part of X

$X=(8 \mathbb{N}+3) \cup(8 \mathbb{N}+5) \cup\{0,1,16,20,88\}$			
$\cdots 101725505321$	101725505321	101725505321	
		000000010000	0
some	with	000000000001	1
special	enough	000000000010	2
words	leading	00000000100	3
		000000001001	4
complete		000000001001	5
residue		000000001010	7
set			

$$
w^{-1} L=\{u \mid w u \in L\} \leftrightarrow \text { states of minimal automaton of } L
$$

$X=(8 \mathbb{N}+3) \cup(8 \mathbb{N}+5) \cup\{0,1,16,20,88\}$

$\cdots 101725505321$	101725505321	101725505321
	000000010000	
		000000000001
		000000000010
	000000000100	
	000000001000	
	000000001001	
		000000001010

$10000^{-1} \operatorname{rep}_{F}(X), 1^{-1} \operatorname{rep}_{F}(X), 10^{-1} \operatorname{rep}_{F}(X), 100^{-1} \operatorname{rep}_{F}(X)$, $101^{-1} \operatorname{rep}_{F}(X), 1000^{-1} \operatorname{rep}_{F}(X), 1001^{-1} \operatorname{rep}_{F}(X)$ and $1010^{-1} \operatorname{rep}_{F}(X)$ are pairwise distinct !

$$
w^{-1} L=\{u \mid w u \in L\} \leftrightarrow \text { states of minimal automaton of } L
$$

$X=(8 \mathbb{N}+3) \cup(8 \mathbb{N}+5) \cup\{0,1,16,20,88\}$

$\cdots 101725505321$	101725505321	101725505321
	000000010000	
		000000000001
		000000000010
	000000000100	
	000000001000	
	000000001001	
		000000001010

$10000^{-1} \operatorname{rep}_{F}(X), 1^{-1} \operatorname{rep}_{F}(X), 10^{-1} \operatorname{rep}_{F}(X), 100^{-1} \operatorname{rep}_{F}(X)$, $101^{-1} \operatorname{rep}_{F}(X), 1000^{-1} \operatorname{rep}_{F}(X), 1001^{-1} \operatorname{rep}_{F}(X)$ and $1010^{-1} \operatorname{rep}_{F}(X)$ are pairwise distinct !

OUR PROBLEM

$$
w^{-1} L=\{u \mid w u \in L\} \leftrightarrow \text { states of minimal automaton of } L
$$

$X=(8 \mathbb{N}+3) \cup(8 \mathbb{N}+5) \cup\{0,1,16,20,88\}$

$\cdots 101725505321$	101725505321	101725505321
		000000010000
	10000	000000000001
		000000000010
	10000	000000000100
		000000001000
		000000001001

$10000^{-1} \operatorname{rep}_{F}(X), 1^{-1} \operatorname{rep}_{F}(X), 10^{-1} \operatorname{rep}_{F}(X), 100^{-1} \operatorname{rep}_{F}(X)$, $101^{-1} \operatorname{rep}_{F}(X), 1000^{-1} \operatorname{rep}_{F}(X), 1001^{-1} \operatorname{rep}_{F}(X)$ and $1010^{-1} \operatorname{rep}_{F}(X)$ are pairwise distinct !

OUR PROBLEM

$$
w^{-1} L=\{u \mid w u \in L\} \leftrightarrow \text { states of minimal automaton of } L
$$

$X=(8 \mathbb{N}+3) \cup(8 \mathbb{N}+5) \cup\{0,1,16,20,88\}$

$\cdots 101725505321$	101725505321	101725505321
		000000010000
	10000	000000000001
		000000000010
	10000	000000000100
		000000001000
		000000001001

$10000^{-1} \operatorname{rep}_{F}(X), 1^{-1} \operatorname{rep}_{F}(X), 10^{-1} \operatorname{rep}_{F}(X), 100^{-1} \operatorname{rep}_{F}(X)$, $101^{-1} \operatorname{rep}_{F}(X), 1000^{-1} \operatorname{rep}_{F}(X), 1001^{-1} \operatorname{rep}_{F}(X)$ and $1010^{-1} \operatorname{rep}_{F}(X)$ are pairwise distinct !

$$
w^{-1} L=\{u \mid w u \in L\} \leftrightarrow \text { states of minimal automaton of } L
$$

$X=(8 \mathbb{N}+3) \cup(8 \mathbb{N}+5) \cup\{0,1,16,20,88\}$

$\cdots 101725505321$	101725505321	101725505321
	10	000000010000
		000000000001
	$10000 / 10$	000000000010
	10000	000000000100
		000000001000
		000000001001

$10000^{-1} \operatorname{rep}_{F}(X), 1^{-1} \operatorname{rep}_{F}(X), 10^{-1} \operatorname{rep}_{F}(X), 100^{-1} \operatorname{rep}_{F}(X)$, $101^{-1} \operatorname{rep}_{F}(X), 1000^{-1} \operatorname{rep}_{F}(X), 1001^{-1} \operatorname{rep}_{F}(X)$ and $1010^{-1} \operatorname{rep}_{F}(X)$ are pairwise distinct !

OUR PROBLEM

LEMMA - DEFINITION OF (MINIMAL) PERIOD
Let X be an ult. periodic set of period p_{X} and preperiod a_{X}.
Let $i, j \geq a_{X}$. If $i \not \equiv j \bmod p_{X}$ then $\exists t<p_{X}$ such that either

- $i+t \in X$ and $j+t \notin X$, or
- $i+t \notin X$ and $j+t \in X$.

More general setting

DEFINITION

A numeration system is an increasing sequence $U=\left(U_{i}\right)_{i \geq 0}$ of integers s.t. $U_{0}=1$ and $C_{U}:=\sup _{i \geq 0}\left\lceil U_{i+1} / U_{i}\right\rceil$ is finite.
$A_{U}=\left\{0, \ldots, C_{U}-1\right\}$.
The greedy U-representation of a positive integer n is the unique finite word $\operatorname{rep}_{U}(n)=w_{\ell} \cdots w_{0}$ over A_{U} satisfying

$$
\begin{gathered}
n=\sum_{i=0}^{\ell} w_{i} U_{i}, w_{\ell} \neq 0 \text { and } \sum_{i=0}^{t} w_{i} U_{i}<U_{t+1}, \forall t=0, \ldots, \ell \\
\operatorname{val}_{U}\left(x_{\ell} \cdots x_{0}\right)=\sum_{i=0}^{\ell} x_{i} U_{i}, \quad \forall x_{\ell} \cdots x_{0} \in A_{U}^{*}
\end{gathered}
$$

$\rightarrow U$-recognizable set X of integers: $\operatorname{rep}_{U}(X)$ is regular.

More general setting

DEFINITION

A numeration system $U=\left(U_{i}\right)_{i \geq 0}$ is said to be linear, if U satisfies a homogenous linear recurrence relation. For all $i \geq 0$,

$$
U_{i+k}=a_{1} U_{i+k-1}+\cdots+a_{k} U_{i}
$$

for some $k \geq 1, a_{1}, \ldots, a_{k} \in \mathbb{Z}$ and $a_{k} \neq 0$.

More general setting

What we need for making comparisons :

LEMMA

Let a, b be nonnegative integers and $U=\left(U_{i}\right)_{i \geq 0}$ be a linear numeration system. The language

$$
\operatorname{val}_{U}^{-1}(a \mathbb{N}+b)=\left\{w \in A_{U}^{*} \mid \operatorname{val}_{U}(w) \in a \mathbb{N}+b\right\} \subset A_{U}^{*}
$$

is regular.
In particular, if \mathbb{N} is U-recognizable then a DFA accepting $\operatorname{rep}_{u}(a \mathbb{N}+b)$ can be obtained efficiently and any ultimately periodic set is U-recognizable.

Remark (Shallit '94)

If \mathbb{N} is U-recognizable, then U is linear.

More general setting

A technical hypothesis :

$$
\begin{equation*}
\lim _{i \rightarrow+\infty} U_{i+1}-U_{i}=+\infty . \tag{1}
\end{equation*}
$$

Most systems are built on an exponential sequence $\left(U_{i}\right)_{i \geq 0}$

LEMMA

Let $U=\left(U_{i}\right)_{i \geq 0}$ be a numeration system satisfying (1).
For all j, there exists L such that for all $\ell \geq L$,

$$
10^{\ell-\left|\operatorname{rep}_{U}(t)\right|} \operatorname{rep}_{U}(t), t=0, \ldots, U_{j}-1
$$

are greedy U-representations. Otherwise stated, if w is a greedy U-representation, then for r large enough, $10^{r} w$ is also a greedy U-representation.

More general setting

$N_{U}(m) \in\{1, \ldots, m\}=$ the number of values that are taken infinitely often by $\left(U_{i} \bmod m\right)_{i \geq 0}$.

PROPOSITION

Let $U=\left(U_{i}\right)_{i \geq 0}$ be a numeration system satisfying (1). If $X \subseteq \mathbb{N}$ is an ult. periodic U-recognizable set of period p_{X}, then any DFA accepting $\operatorname{rep}_{U}(X)$ has at least $N_{U}\left(p_{X}\right)$ states.

More general setting

Upper bound on the period:

COROLLARY

Let $U=\left(U_{i}\right)_{i \geq 0}$ be a numeration system satisfying (1).
Assume that

$$
\lim _{m \rightarrow+\infty} N_{U}(m)=+\infty
$$

Then the period of an ultimately periodic set $X \subseteq \mathbb{N}$ such that $\operatorname{rep}_{U}(X)$ is accepted by a DFA with d states is bounded by the smallest integer s_{0} such that for all $m \geq s_{0}, N_{U}(m)>d$.

More general setting

LEMMA

If $U=\left(U_{i}\right)_{i \geq 0}$ is a linear numeration system satisfying a recurrence relation of order k like

$$
U_{i+k}=a_{1} U_{i+k-1}+\cdots+a_{k} U_{i}
$$

with $a_{k}= \pm 1$, then $\lim _{m \rightarrow+\infty} N_{U}(m)=+\infty$.
IDEA OF THE PROOF

1	2	3	5	8	13	21	34	\cdots
1	2	0						$N_{U}(3)=3$
1	2	3						$N_{U}(4) \geq 3$
1	2	3	5	8				$N_{U}(10) \geq 5$
1	2	3	5	8	13	21	$N_{U}(30) \geq 7$	
		$N_{U}(m) \geq \log _{\tau} m$						

More general setting

Upper bound on the index:
For a sequence $\left(U_{i}\right)_{i \geq 0}$ of integers, if $\left(U_{i} \bmod m\right)_{i \geq 0}$ is ultimately periodic, we denote its (minimal) index by $\iota \cup(m)$.

PROPOSITION

Let $U=\left(U_{i}\right)_{i \geq 0}$ be a linear numeration system.
Let $X \subseteq \mathbb{N}$ be an ult. periodic U-recognizable set of period p_{X} and index a_{x}.
Then any DFA accepting rep (X) has at least $\left|\operatorname{rep}_{U}\left(a_{X}-1\right)\right|-\iota\left(p_{X}\right)$ states.

If p_{x} is bounded and a_{x} is increasing, then the number of states is increasing.

More general setting

THEOREM

Let $U=\left(U_{i}\right)_{i>0}$ be a linear numeration system such that \mathbb{N} is U-recognizable and satisfying a recurrence relation of order k with $a_{k}= \pm 1$ and condition (1).
It is decidable whether or not a U-recognizable set is ultimately periodic.

More general setting

REMARK

If $\operatorname{gcd}\left(a_{1}, \ldots, a_{k}\right)=g \geq 2$, for all $n \geq 1$ and for all i large enough, we have $U_{i} \equiv 0 \bmod g^{n}$ and assumption about $N_{U}(m)$ does not hold!

EXAMPLES

- Honkala's integer bases: $U_{n+1}=k U_{n}$
- $U_{n+2}=2 U_{n+1}+2 U_{n}$

$$
a, b, 2(a+b), 2(2 a+3 b), 4(3 a+4 b), 4(8 a+11 b), \ldots
$$

Work in progress with Aviezri Fraenkel

Learn more about linear recurrent sequences mod $m \ldots$

- H.T. Engstrom, On sequences defined by linear recurrence relations, Trans. Amer. Math. Soc. 33 (1931).
- M. Ward, The characteristic number of a sequence of integers satisfying a linear recursion relation, Trans. Amer. Math. Soc. 33 (1931).
- M. Hall, An isomorphism between linear recurring sequences and algebraic rings, Trans. Amer. Math. Soc. 44 (1938).
- G. Rauzy, Relations de récurrence modulo m, Séminaire Delange-Pisot-Poitou, Th. Nombres 5, (1963-1964).
To solve the case where $\operatorname{gcd}\left(a_{1}, \ldots, a_{k}\right)=1$.

DEFINITION

An abstract numeration system $S=(L, \Sigma,<)$ is given by an infinite regular language L over a totally ordered alphabet $(\Sigma,<)$

EXAMPLE

Consider the language $L=\{\varepsilon\} \cup\{a, a b\}^{*} \cup\{c, c d\}^{*}$ and the ordering $a<b<c<d$ of the alphabet.

0	ε	5	$c c$	10	$c c c$	15	aaba	20	$c c d c$
1	a	6	$c d$	11	$c c d$	16	$a b a a$	21	$c d c c$
2	c	7	$a a a$	12	$c d c$	17	$a b a b$	22	$c d c d$
3	$a a$	8	$a a b$	13	aaaa	18	$c c c c$	23	aaaaa
4	$a b$	9	$a b a$	14	$a a a b$	19	$c c c d$	24	$a a a a b$

One can define S-recognizable sets of integers.

Proposition (P. LECOMTE, M.R. '01)

Let $S=(L, \Sigma,<)$ be an abstract numeration system built over an infinite regular language L over Σ.

Any ultimately periodic set X is S-recognizable and a DFA accepting $\operatorname{rep}_{S}(X)$ can be effectively obtained.

Upper bound on the period:

PROPOSITION

Let $S=(L, \Sigma,<)$ be an abstract numeration system such that for all states q of the trim minimal automaton
$\mathcal{M}_{L}=\left(Q_{L}, q_{0, L}, \Sigma, \delta_{L}, F_{L}\right)$ of L,

$$
\lim _{j \rightarrow+\infty} \mathbf{u}_{j}(q)=+\infty
$$

and $\mathbf{u}_{j}\left(q_{0, L}\right)>0$ for all $j \geq 0$.
If $X \subseteq \mathbb{N}$ is an ult. periodic set of period p_{X}, then any DFA accepting $\operatorname{rep}_{S}(X)$ has at least $\left\lceil N_{v}\left(p_{X}\right) / \# Q_{L}\right\rceil$ states where $\mathbf{v}=\left(\mathbf{v}_{j}\left(q_{0, L}\right)\right)_{j \geq 0}$.
$N_{\mathbf{v}}(m) \rightarrow \infty$?

Upper bound on the index:

PROPOSITION

Let $S=(L, \Sigma,<)$ be an abstract numeration system.
If $X \subseteq \mathbb{N}$ is an ult. periodic set of period p_{X} such that $\operatorname{rep}_{S}(X)$ is accepted by a DFA with d states,
then the index a_{X} of X is bounded by a constant depending only on d and p_{X}.

THEOREM

Let $S=(L, \Sigma,<)$ be an abstract numeration system such that for all states q of the trim minimal automaton $\mathcal{M}_{L}=\left(Q_{L}, q_{0, L}, \Sigma, \delta_{L}, F_{L}\right)$ of L

$$
\lim _{j \rightarrow \infty} \mathbf{u}_{j}(q)=+\infty
$$

and $\mathbf{u}_{j}\left(q_{0, L}\right)>0$ for all $j \geq 0$. Assume moreover that $\mathbf{v}=\left(\mathbf{v}_{i}\left(q_{0, L}\right)\right)_{i \geq 0}$ satisfies a linear recurrence relation with $a_{k}= \pm 1$.
It is decidable whether or not a S-recognizable set is ultimately periodic.

CONCLUSION

