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Abstract. Consider a non-standard numeration system like the one built

over the Fibonacci sequence where nonnegative integers are represented by

words over {0, 1} without two consecutive 1. Given a set X of integers such
that the language of their greedy representations in this system is accepted

by a finite automaton, we consider the problem of deciding whether or not X

is a finite union of arithmetic progressions. We obtain a decision procedure
under some hypothesis about the considered numeration system. In a second

part, we obtain an analogous decision result for a particular class of abstract

numeration systems built on an infinite regular language.

1. Introduction

Definition 1. A numeration system is given by a (strictly) increasing sequence
U = (Ui)i≥0 of integers such that U0 = 1 and CU := supi≥0dUi+1/Uie is finite. Let
AU = {0, . . . , CU − 1}. The greedy U -representation of a positive integer n is the
unique finite word repU (n) = w` · · ·w0 over AU satisfying

n =
∑̀
i=0

wi Ui, w` 6= 0 and
t∑

i=0

wi Ui < Ut+1, ∀t = 0, . . . , `.

We set repU (0) to be the empty word ε. A set X ⊆ N of integers is U -recognizable
if the language repU (X) over AU is regular (i.e., accepted by a finite automaton).
If x = x` · · ·x0 is a word over a finite alphabet of integers, then the U -numerical
value of x is

valU (x) =
∑̀
i=0

xi Ui.

Remark 2. As a consequence of the greediness of the representation, if xy is a
greedy U -representation and if the first letter of y is not 0, then y is also a greedy U -
representation. Notice that for m,n ∈ N, we have m < n if and only if repU (x) <gen

repU (y) where <gen is the genealogical ordering over A∗
U : words are ordered by

increasing length and for words of same length, one uses the lexicographical ordering
induced by the natural ordering of the digits in the alphabet AU . Recall that for
two words x, y ∈ A∗

U of same length, x is lexicographically smaller than y if there
exist w, x′, y′ ∈ A∗

U and a, b ∈ AU such that x = wax′, y = wby′ and a < b.

Definition 3. A numeration system U = (Ui)i≥0 is said to be linear, if the sequence
U satisfies a homogenous linear recurrence relation. For all i ≥ 0, we have

(1) Ui+k = a1Ui+k−1 + · · ·+ akUi

for some k ≥ 1, a1, . . . , ak ∈ Z and ak 6= 0.

Example 4. Consider the sequence defined by F0 = 1, F1 = 2 and for all n ≥ 0,
Fn+2 = Fn+1 + Fn. The Fibonacci (linear numeration) system is given by F =
(Fi)i≥0 = (1, 2, 3, 5, 8, 13, . . .). For instance, repF (15) = 100010 and valF (101001) =
13 + 5 + 1 = 19.
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In this paper, we address the following decidability question.

Problem 1. Given a linear numeration system U and a set X ⊆ N such that
repU (X) is recognized by a (deterministic) finite automaton. Is it decidable whether
or not X is ultimately periodic, i.e., whether or not X is a finite union of arithmetic
progressions ?

Ultimately periodic sets of integers play a special role. On the one hand such
infinite sets are coded thanks to a finite amount of information. On the other
hand the celebrated Cobham’s theorem asserts that these sets are the only sets
that are recognizable in all integer base systems [2]. It is the reason why they
are also referred in the literature as recognizable sets of integers (the recognizability
being in that case independent of the base). Moreover, Cobham’s theorem has been
extended to various situations and in particular, to numeration systems given by
substitutions [3].

J. Honkala showed in [6] that Problem 1 turns out to be decidable for the usual
integer base b ≥ 2 numeration system defined by Un = b Un−1 for n ≥ 1. Let us
also mention [1] where the number of states of the minimal automaton accepting
numbers written in base b and divisible by d is given explicitely.

The question under inspection in this paper was raised by J. Sakarovitch during
the “Journées de Numération” in Graz, May 2007. The question was initially asked
for a larger class of systems that the one treated here, namely for any abstract
numeration systems defined on an infinite regular language [7].

The structure of this paper is the same as [6]. First we give an upper bound on
the admissible periods of a U -recognizable set when it is assumed to be ultimately
periodic, then an upper bound on the admissible preperiods is obtained. Finally,
finitely many such periods and preperiods have to be checked. Even if the structure
is the same, our arguments and techniques are quite different from [6]. Actually
they cannot be applied to integer base systems (see Remark ??).

In the next section, Theorem ?? gives a decision procedure for Problem 1 when-
ever U is a linear numeration system such that N is U -recognizable and satisfying
a relation like (1) with ak = ±1 (the main reason for this assumption is that 1
and −1 are the only two integers invertible modulo n for all n ≥ 2). In the last
section, we consider the same decision problem but restated in the framework of
abstract numeration systems [7]. We apply successfully the same kind of techniques
to a large class of abstract numeration systems (for instance, an example consisting
of two copies of the Fibonacci system is considered). The corresponding decision
procedure is given by Theorem ??. All along the paper, we try whenever it is pos-
sible to state results in their most general form, even if later on we have to restrict
ourselves to particular cases. For instance, results about the admissible preperiods
do not require any extra assumption.

2. Decision procedure for linear numeration systems with ak = ±1

Lemma 5. Let U = (Ui)i≥0 be a numeration system such that

(2) lim
i→+∞

Ui+1 − Ui = +∞.

Then for all j, there exists L ≥ j such that for all n ≥ L− j,

10n0j−| repU (t)| repU (t), t = 0, . . . , Uj − 1

are greedy U -representations. Otherwise stated, if w is a greedy U -representation,
then for r large enough, 10rw is also a greedy U -representation.
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Proof. Notice that repU (Uj − 1) is the greatest word of length j in repU (N), since
repU (Uj) = 10j . By hypothesis, there exists L such that for all ` ≥ L, U`+1−U` >
Uj − 1. Therefore, for all ` ≥ L,

10`−j repU (Uj − 1)

is the greedy U -representation of U` +Uj−1 < U`+1 and the conclusion follows. �

Remark 6. Bertrand numeration systems associated with a real number β > 1
are defined as follows. Let Aβ = {0, . . . , dβe − 1}. Any x ∈ [0, 1] can be written as

x =
+∞∑
i=1

ci β−i, with ci ∈ Aβ

and the sequence (ci)i≥1 is said to be a β-representation of x. The maximal β-
representation of x for the lexicographical order is denoted dβ(x) and is called the
β-development of x (for details see [?, Chap. 8]). We say that a β-development
(ci)i≥1 is finite if there exists N such that ci = 0 for all i ≥ N . If there exists m ≥ 1
such that dβ(1) = t1 · · · tm with tm 6= 0, we set d∗β(1) := (t1 · · · tm−1(tm − 1))ω,
otherwise dβ(1) is infinite and we set d∗β(1) := dβ(1).

We can now define a numeration system Uβ = (Ui)i≥0 associated with β (see
[?]). If d∗β(1) = (ti)i≥1, then

U0 = 1 and ∀i ≥ 1, Ui = t1Ui−1 + · · ·+ tiU0 + 1.

If β is a Parry number (i.e., dβ(1) is finite or ultimately periodic) then the
sequence Uβ satisfies obviously a linear recurrence relation and as a consequence of
Bertrand’s theorem linking greedy Uβ-representations and finite factors occurring in
β-developments, the language repUβ

(N) of the greedy Uβ-representations is regular.
The automaton accepting these representations is well-known [?] and has a special
form (all states — except for a sink — are final and from all these states, an
edge of label 0 goes back to the initial state). We therefore have the following
property being much stronger than the previous lemma. If x and y are greedy
Uβ-representations then x0y is also a greedy Uβ-representation.

Example 7. The Fibonacci system is the Bertrand system associated with the
golden ratio (1 +

√
5)/2. Since greedy representations in the Fibonacci system are

the words not containing two consecutive ones [?], then for x, y ∈ repF (N), we have
x0y ∈ repF (N).

Definition 8. Let X ⊆ N be a set of integers. The characteristic word of X is an
infinite word x0x1x2 · · · over {0, 1} defined by xi = 1 if and only if i ∈ X.

Consider for now X ⊆ N to be an ultimately periodic set. The characteristic
word of X is therefore an infinite word over {0, 1} of the form

x0x1x2 · · · = uvω

where u and v are chosen of minimal length. We say that |u| (resp. |v|) is the
preperiod (resp. period) of X. Hence, for all n ≥ |u|, n ∈ X if and only if n+|v| ∈ X.

The following lemma is a simple consequence of the minimality of the period
chosen to represent an ultimately periodic set.

Lemma 9. Let X ⊆ N be an ultimately periodic set of period |v| and preperiod |u|.
Let i, j ≥ |u|. If i 6≡ j mod |v| then there exists t < |v| such that either i + t ∈ X
and j + t 6∈ X or i + t 6∈ X and j + t ∈ X.
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We assume that the reader is familiar with automata theory (see for instance
[?]) but let us recall some classical results. Let L ⊆ Σ∗ be a language over a finite
alphabet Σ and x be a finite word over Σ. We set

x−1.L = {z ∈ Σ∗ | xz ∈ L}.
We can now define the Myhill-Nerode congruence. Let x, y ∈ Σ∗. We have x ∼L y
if and only if x−1.L = y−1.L. Moreover L is regular if and only if ∼L has a finite
index being the number of states of the minimal automaton of L.

For a sequence (Ui)i≥0 of integers, NU (m) ∈ {1, . . . ,m} denotes the number of
values that are taken infinitely often by the sequence (Ui mod m)i≥0.

Proposition 10. Let U = (Ui)i≥0 be a numeration system satisfying condition (2)
of Lemma 1. If X ⊆ N is an ultimately periodic U -recognizable set of period |v|
and preperiod |u|, then any deterministic finite automaton accepting repU (X) has
at least NU (|v|) states.

Proof. By Lemma 1, there exists L such that for any h ≥ L, the words

10h−| repU (t)| repU (t), t = 0, . . . , |v| − 1

are greedy U -representations. The sequence (Ui mod |v|)i≥0 takes infinitely often
NU (|v|) =: N different values. Let h1, . . . , hN ≥ L be such that

i 6= j ⇒ Uhi 6≡ Uhj mod |v|
and h1, . . . , hN can be chosen such that Uhi

> |u| for all i ∈ {1, . . . , N}.
By Lemma 2, for all i, j ∈ {1, . . . , N} such that i 6= j, there exists ti,j < |v| such

that either Uhi + ti,j ∈ X and Uhj + ti,j 6∈ X, or Uhi + ti,j 6∈ X and Uhj + ti,j ∈ X.
Therefore,

wi,j = 0| repU (|v|−1)|−| repU (ti,j)| repU (ti,j)
is a word such that either

10hi−| repU (|v|−1)|wi,j ∈ repU (X) and 10hj−| repU (|v|−1)|wi,j 6∈ repU (X),

or

10hi−| repU (|v|−1)|wi,j 6∈ repU (X) and 10hj−| repU (|v|−1)|wi,j ∈ repU (X).

Therefore the words 10h1−| repU (|v|−1)|, . . . , 10hN−| repU (|v|−1)| are pairwise nonequiv-
alent for the relation ∼repU (X) and the minimal automaton of repU (X) has at least
N = NU (|v|) states. �

The previous proposition has an immediate consequence.

Corollary 11. Let U = (Ui)i≥0 be a numeration system satisfying condition (2)
of Lemma 1. Assume that

lim
m→+∞

NU (m) = +∞.

Then the period of an ultimately periodic set X ⊆ N such that repU (X) is accepted
by a DFA with d states is bounded by the smallest integer s0 such that for all m ≥ s0,
NU (m) > d.

For a sequence (Ui)i≥0 of integers, if (Ui mod m)i≥0 is ultimately periodic, we
denote its (minimal) preperiod by ιU (m) (we choose notation ι to remind the word
index which is equally used as preperiod) and its (minimal) period by πU (m). The
next lemma provides a special case where assumption about NU (m) in Corollary 2
is satisfied.

Lemma 12. If U = (Ui)i≥0 is a linear numeration system satisfying a recurrence
relation of order k of the kind (1) with ak = ±1, then limm→+∞ NU (m) = +∞.
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Proof. For all m ≥ 2, the sequence (Ui mod m)i≥0 is purely periodic. Indeed,
for all i ≥ 0, Ui+k is determined by the k previous terms Ui+k−1, . . . , Ui. But
since ak = ±1, for all i ≥ 0, Ui is also determined by the k following terms
Ui+1, . . . , Ui+k. So, by definition of NU (m), the sequence (Ui mod m)i≥0 takes
exactly NU (m) different values because any term appears infinitely often.

Since U is increasing, the function α mapping m onto the smallest index α(m)
such that Uα(m) ≥ m is nondecreasing and limm→+∞ α(m) = +∞. The conclusion
follows, as NU (m) ≥ α(m). �

Remark 13. If the sequence (Ui mod m)i≥0 is not purely periodic as in the pre-
vious proof but only ultimately periodic, then a similar argument can be applied
if it is assumed that limm→∞ πU (m) = +∞. By minimality of πU (m), for any
i, j ∈ {ιU (m), . . . , ιU (m) + πU (m)− 1} such that i 6= j, the k-tuples

(Ui mod m, . . . , Ui+k−1 mod m) and (Uj mod m, . . . , Uj+k−1 mod m)

are different. By definition of NU (m), the sequence (Ui mod m)i≥ιU (m) takes
exactly NU (m) different values, and the maximal number of different k-tuples is
(NU (m))k. Therefore, NU (m) ≥ k

√
πU (m) tends to infinity if m → +∞.

Remark 14. Let U = (Ui)i≥0 be a numeration system satisfying hypothesis of
Lemma ?? and let X be a U -recognizable set of integers. If repU (X) is accepted by
a DFA with d states, then the constant s0 (depending on d) given in the statement
of Corollary 2 can be estimated as follows.

By Lemma ??, limm→+∞ NU (m) = +∞. Define t0 to be the smallest integer
such that α(t0) > d, where α is defined as in the proof of Lemma ??. This integer
can be effectively computed by considering the first terms of the linear sequence
(Ui)i≥0. Notice that NU (t0) ≥ α(t0) > d. Consequently s0 ≤ t0.

Moreover, if U satisfies condition (2) of Lemma 1 and if X is an ultimately
periodic set, then, by Corollary 2, the period of X is bounded by t0. So t0 can be
used as an upper bound for the period and it can be effectively computed.

A result similar to the previous corollary (in the sense that it permits to give
an upper bound on the period) can be stated as follows. One has to notice that
ak = ±1 implies that 1 occurs infinitely often in (Ui mod m)i≥0 for all m ≥ 2.

Proposition 15. Let U = (Ui)i≥0 be a numeration system satisfying condition (2)
of Lemma 1 and X ⊆ N be an ultimately periodic U -recognizable set of period |v|
and preperiod |u|. If 1 occurs infinitely many times in (Ui mod |v|)i≥0 then any
deterministic finite automaton accepting repU (X) has at least |v| states.

Proof. Applying several times Lemma 1, there exist n1, . . . , n|v| such that

10n|v|10n|v|−1 · · · 10n10| repU (|v|−1)|−| repU (t)| repU (t), t = 0, . . . , |v| − 1

are greedy U -representations. Moreover, since 1 occurs infinitely many times in the
sequence (Ui mod |v|)i≥0, n1, . . . , n|v| can be chosen such that, for all j = 1, . . . , |v|,

valU (10nj · · · 10n1+| repU (|v|−1)|) ≡ j mod |v|
and

valU (10n1+| repU (|v|−1)|) > |u|.
For i, j ∈ {1, . . . , |v|}, i 6= j, by Lemma 2 the words

10ni · · · 10n1 and 10nj · · · 10n1

are nonequivalent for ∼repU (X). This can be shown by concatenating some word of
the kind 0| repU (|v|−1)|−| repU (t)| repU (t) with t < |v|, as in the proof of Proposition 1.
This concludes the proof. �
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Now we want to obtain an upper bound on the preperiod of any ultimately
periodic U -recognizable set.

Proposition 16. Let U = (Ui)i≥0 be a linear numeration system. Let X ⊆ N be
an ultimately periodic U -recognizable set of period |v| and preperiod |u| such that
| repU (|u| − 1)| − ιU (|v|) > 0. Then any deterministic finite automaton accepting
repU (X) has at least | repU (|u| − 1)| − ιU (|v|) states.

The arguments of the following proof are similar to the one found in [6].

Proof. The sequence (Ui mod |v|)i≥0 is ultimately periodic with preperiod ιU (|v|)
and period πU (|v|). Proceed by contradiction and assume that A is a deterministic
finite automaton with less than | repU (|u| − 1)| − ιU (|v|) states accepting repU (X).
The greedy U -representation of |u| − 1 can be factorized as

repU (|u| − 1) = ww4

with |w| = | repU (|u| − 1)| − ιU (|v|). By the pumping lemma, w can be written
w1w2w3 with w2 6= ε and for all i ≥ 0,

w1w
i
2w3w4 ∈ repU (X) ⇔ w1w2w3w4 ∈ repU (X).

By minimality of |u| and |v|, either |u|−1 ∈ X and for all n ≥ 1, |u|+n|v|−1 6∈ X,
or |u| − 1 6∈ X and for all n ≥ 1, |u|+ n|v| − 1 ∈ X. But notice that

valU (w1w
|v|πU (|v|)
2 w2w3w4) ≡ valU (w1w2w3w4) mod |v|,

leading to a contradiction. �

For the sake of completeness, we restate some well-known property of ultimately
periodic sets (see for instance [?] for a prologue on the Pascal’s machine for integer
base systems).

Lemma 17. Let a, b be nonnegative integers and U = (Ui)i≥0 be a linear numera-
tion system. The language

val−1
U (aN + b) = {w ∈ A∗

U | valU (w) ∈ aN + b} ⊂ A∗
U

is regular. In particular, if N is U -recognizable then a DFA accepting repU (aN + b)
can be obtained efficiently and any ultimately periodic set is U -recognizable.

Before giving the proof, notice that for any integer n ≥ 0, val−1
U (n) is a finite set

of words {x1, . . . , xtn
} over AU such that valU (xi) = n for all i = 1, . . . , tn. This

set contains in particular repU (n).

Proof. Since regular sets are stable under finite modification, we can assume that
0 ≤ b < a. The sequence (Ui mod a)i≥0 is ultimately periodic with preperiod
` = ιU (a) and period p = πU (a). It is an easy exercise to build a deterministic
finite automaton A accepting reversal of the words in {w ∈ A∗

U | valU (w) ∈ aN+b}.
The alphabet of the automaton is AU . States are pairs (r, s) where 0 ≤ r < a and
0 ≤ s < ` + p. The initial states is (0, 0). Final states are the ones with the first
component equal to b. Transitions are defined as follows

∀s < ` + p− 1 : (r, s)
j−→ (jUs + r mod a, s + 1)

(r, ` + p− 1)
j−→ (jUs + r mod a, `),

for all j ∈ AU . Notice that A does not check the greediness of the accepted words,
the construction only relies on the U -numerical value of the words modulo a.

For the particular case, one has to consider the intersection of two regular lan-
guages repU (N) ∩ val−1

U (aN + b). �
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Remark 18. In the previous statement, the assumption about the U -recognizability
of N is of particular interest. Indeed, it is well-known that for an arbitrary linear
numeration system, N is in general not U -recognizable. If N is U -recognizable, then
U satisfies a linear recurrence relation [8], but the converse does not hold. Sufficient
conditions on the recurrence relation that U satisfies for N to be U -recognizable are
given in [5].

Theorem 19. Let U = (Ui)i≥0 be a linear numeration system such that N is U -
recognizable and satisfying a recurrence relation of order k of the kind (1) with
ak = ±1 and condition (2) of Lemma 1. It is decidable whether or not a U -
recognizable set is ultimately periodic.

Proof. Let X be a U -recognizable set and d be the number of states of the minimal
automaton of repU (X).

As discussed in Remark 3, if X is ultimately periodic, then the admissible periods
are bounded by the constant t0, which is effectively computable (an alternative and
easier argument is provided by Proposition ??). Then, using Proposition 5, the
admissible preperiods are also bounded by a constant. Indeed, assume that X is
ultimately periodic with period |v| ≤ t0 and preperiod |u|. We have ιU (|v|) = 0 and
any DFA accepting repU (X) must have at least | repU (|u| − 1)| states. Therefore,
the only values that |u| can take satisfy | repU (|u| − 1)| ≤ d.

Consequently the sets of admissible preperiods and periods that we have to check
are finite. Thanks to Lemma 3, one can build an automaton for each pair (i, p) of
admissible preperiods and periods and then compare the language Li,p accepted by
this automaton with repU (X). (Recall that testing whether Li,p \ repU (X) = ∅ and
repU (X) \ Li,p = ∅ is decidable algorithmically). �

Remark 20. We have thus obtained a decision procedure for our Problem 1 when
the coefficient ak occurring in (1) is equal to ±1. On the other hand, whenever
gcd(a1, . . . , ak) = g ≥ 2, for all n ≥ 1 and for all i large enough, we have Ui ≡ 0
mod gn and assumption about NU (m) in Corollary 2 does not hold [4]. Indeed, the
only value taken infinitely often by the sequence (Ui mod gn)i≥0 is 0, so NU (m)
equals 1 for infinitely many values of m. Notice in particular, that the same obser-
vation can be made for the usual integer base b ≥ 2 numeration system where the
only value taken infinitely often by the sequence (bi mod bn)i≥0 is 0, for all n ≥ 1.

3. A decision procedure for a class of abstract numeration systems

Let S = (L, Σ, <) be an abstract numeration system [7] built over an infinite
regular language L having ML = (QL, q0,L,Σ, δL, FL) as minimal automaton. The
transition function δL : QL×Σ → QL is extended on QL×Σ∗. We denote by uj(q)
(resp. vj(q)) the number of words of length j (resp. ≤ j) accepted from q ∈ QL

in ML. By classical arguments, the sequences (uj(q))j≥0 (resp. (vj(q))j≥0) satisfy
the same homogenous linear recurrence relation for all q ∈ QL (for details, see
Remark ??).

To define an abstract numeration system, L is genealogically ordered (words are
ordered by increasing length and for words of same length, one uses the lexico-
graphical ordering induced by the total ordering < on the alphabet Σ), then we
get a one-to-one correspondence denoted repS between N and L. In particular, 0 is
represented by the first word in L. The reciprocal map associating a word w ∈ L
to its index in the genealogically ordered language L is denoted valS (the first word
in L having index 0). A set X ⊆ N of integers is S-recognizable if the language
repS(X) over Σ is regular (i.e., accepted by a finite automaton).

In this section, we consider, with some extra hypothesis on the abstract numer-
ation system, the following decidability question analogous to Problem 1.
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Problem 2. Given an abstract numeration system S and a set X ⊆ N such that
repS(X) is recognized by a (deterministic) finite automaton. Is it decidable whether
or not X is ultimately periodic, i.e., whether or not X is a finite union of arithmetic
progressions ?

Abstract numeration systems are a generalization of “positional” numeration
systems U = (Ui)i≥0 for which N is U -recognizable.

Example 21. Take the language L = {ε} ∪ 1{0, 01}∗ and assume 0 < 1. Ordering
the words of L in genealogical order: ε, 1, 10, 100, 101, 1000, 1001, . . . gives back the
Fibonacci system.

Example 22. Consider the language L = {ε}∪{a, ab}∗∪{c, cd}∗ and the ordering
a < b < c < d of the alphabet. If we order the first words in L we get

0 ε 5 cc 10 ccc 15 aaba 20 ccdc
1 a 6 cd 11 ccd 16 abaa 21 cdcc
2 c 7 aaa 12 cdc 17 abab 22 cdcd
3 aa 8 aab 13 aaaa 18 cccc 23 aaaaa
4 ab 9 aba 14 aaab 19 cccd 24 aaaab

Notice that there is no bijection between {a, b, c, d} and a set of integers leading
to a positional linear numeration system. For all n ≥ 1, we have un(q0,L) = 2Fn

Figure 1. A DFA accepting L.

and u0(q0,L) = 1. Consequently, for n ≥ 1,

vn(q0,L) = 1 +
n∑

i=1

ui(q0,L) = 1 + 2
n∑

i=1

Fi.

Notice that for n ≥ 1, vn(q0,L) − vn−1(q0,L) = un(q0,L) = 2Fn. Consequently, by
definition of the Fibonacci sequence, we get for all n ≥ 3,

vn(q0,L)− vn−1(q0,L) = (vn−1(q0,L)− vn−2(q0,L)) + (vn−2(q0,L)− vn−3(q0,L))

and

vn(q0,L) = 2vn−1(q0,L)−vn−3(q0,L), with v0(q0,L) = 1,v1(q0,L) = 3,v2(q0,L) = 7.

Remark 23. The computation given in the previous example to obtain a homoge-
nous linear recurrence relation for the sequence (vj(q0,L))j≥0 can be carried on
in general. Let q ∈ QL. The sequence (uj(q))j≥0 satisfies a homogenous linear
recurrence relation of order t whose characteristic polynomial is the characteristic
polynomial of the adjacency matrix of ML. There exist a1, . . . , at ∈ Z such that
for all j ≥ 0,

uj+t(q) = a1uj+t−1(q) + · · ·+ atuj(q).

Consequently, we have for all j ≥ 0

vj+t+1(q)−vj+t(q) = uj+t+1(q) = a1(vj+t(q)−vj+t−1(q))+· · ·+at(vj+1(q)−vj(q)).

Therefore the sequence (vj(q))j≥0 satisfies a homogenous linear recurrence relation
of order t + 1.

As shown by the following lemma, in an abstract numeration system, the different
sequences (uj(q))j≥0, for q ∈ QL, are replacing the single sequence (Uj)j≥0 defining
a “positional” numeration system as in Definition ??.
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Lemma 24. [7] Let w = σ1 · · ·σn ∈ L. We have

(3) valS(w) =
∑

q∈QL

|w|∑
i=1

βq,i(w)u|w|−i(q)

where

(4) βq,i(w) := #{σ < σi | δL(q0,L, σ1 · · ·σi−1σ) = q}+ 1q,q0,L

for i = 1, . . . , |w|.

Recall that 1q,q′ is equal to 1 if q = q′ and it is equal to 0 otherwise.

Proposition 25. [7] Let S = (L,Σ, <) be an abstract numeration system built over
an infinite regular language L. Any ultimately periodic set X is S-recognizable and
a DFA accepting repS(X) can be effectively obtained.

Recall that an automaton is trim if it is accessible and coaccessible (each state
can be reached from the initial state and from each state, one can reach a final
state).

Proposition 26. Let S = (L,Σ, <) be an abstract numeration system such that
for all states q of the trim minimal automaton ML = (QL, q0,L,Σ, δL, FL) of L,

lim
j→+∞

uj(q) = +∞

and uj(q0,L) > 0 for all j ≥ 0. If X ⊆ N is an ultimately periodic set of period |v|
and preperiod |u|, then any deterministic finite automaton accepting repS(X) has
at least dNv(|v|)/#QLe states where v = (vj(q0,L))j≥0.

Proof. Since for all states q of ML, we have limj→+∞ uj(q) = +∞, there exists a
minimal constant J > 0 such that uJ(q) ≥ |v| for all q ∈ QL. Consider for any
j ≥ 0, the word

wj = repS(vj(q0,L)),
corresponding to the first word of length j+1 in the genealogically ordered language
L. Consequently, for j ≥ J − 1, wj is factorized as wj = ajbj with |bj | = J and we
define qj := δL(q0,L, aj). Notice that bj is the smallest word of length J accepted
from qj . By definition of J , from each qj , there are at least |v| words of length J
leading to a final state. If we order them by genealogical ordering, we denote the
|v| first of them by

bj = bj,0 < bj,1 < · · · < bj,|v|−1.

Notice that for i ∈ {0, . . . , |v| − 1}, we have

valS(ajbj,i) = valS(ajbj) + i = vj(q0,L) + i.

The sequence (vj(q0,L) mod |v|)j≥0 is ultimately periodic and takes infinitely
often Nv(|v|) =: N different values. Let h1, . . . , hN ≥ J − 1 such that

i 6= j ⇒ vhi
(q0,L) 6≡ vhj

(q0,L) mod |v|
and for all j ∈ {1, . . . , N}, vhj

(q0,L) ≥ |u|. We have

repS(vhj (q0,L)) = whj = ahj bhj and qhj = δL(q0,L, ahj ).

The elements in the set {qh1 , . . . , qhN
} can take only #QL different values. So at

least σ := dN/#QLe of them are the same. For the sake of simplicity, assume that
they are qh1 , . . . , qhσ . Consequently, for i, j ∈ {1, . . . , σ} and for all k = 0, . . . , |v|−1,
we have bhi,k = bhj ,k. For all i, j ∈ {1, . . . , σ} such that i 6= j, by Lemma 2, there
exists ti,j < |v| such that either vhi

(q0,L) + ti,j ∈ X and vhj
(q0,L) + ti,j 6∈ X or,

vhi
(q0,L) + ti,j 6∈ X and vhj

(q0,L) + ti,j ∈ X. Therefore, the words ahi
and ahj

do not belong to the same equivalence class for the relation ∼repS(X). This can be
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shown by concatenating the word bhi,ti,j
= bhj ,ti,j

. Hence the minimal automaton
of repS(X) has at least σ states. �

Corollary 27. Let S = (L,Σ, <) be an abstract numeration system having the
same properties as in Proposition ??. Assume that the sequence v = (vj(q0,L))j≥0

is such that

lim
m→+∞

Nv(m) = +∞.

Then the period of an ultimately periodic set X ⊆ N such that repS(X) is accepted
by a DFA with d states is bounded by the smallest integer s0 such that for all m ≥ s0,
Nv(m) > d #QL, where QL is the set of states of the (trim) minimal automaton
of L.

Proposition 28. Let S = (L,Σ, <) be an abstract numeration system. If X ⊆ N
is an ultimately periodic set of period |v| such that repS(X) is accepted by a DFA
with d states, then the preperiod |u| of X is bounded by a constant C depending
only on d and |v|.

Proof. Let A = (Q, q0,Σ, δ, F ) be a DFA with d states accepting repS(X). As
usual, ML = (QL, q0,L,Σ, δL, FL) is the minimal automaton of L and for any state
q ∈ QL, uj(q) is the number of words of length j accepted from q in ML. Since
(uj(q))j≥0 satisfies a linear recurrence relation, the sequences (uj(q) mod |v|)j≥0

are ultimately periodic for all q ∈ QL. As usual, we denote by ιu(q)(|v|) (resp.
πu(q)(|v|)) the preperiod (resp. the period) of (uj(q) mod |v|)j≥0. We set

I(|v|) := max
q∈QL

ιu(q)(|v|)

and

P (|v|) := lcmq∈QL
πu(q)(|v|).

For |u| large enough, we have | repS(|u| − 1)| > d #QL. By the pumping lemma
applied to the product automaton1 A×ML, there exist x, y, z with y 6= ε, |xy| ≤
d #QL, δ(q0, x) = δ(q0, xy), δL(q0,L, x) = δL(q0,L, xy) and such that

repS(|u| − 1) = xyz

and for all n ≥ 0,

(5) xynz ∈ repS(X).

Since |xy| is bounded by a constant, we also have |z| > I(|v|) if |u| is chosen large
enough.

Since |z| > I(|v|), using (??), (??) and for all q ∈ QL the periodicity of the
sequences (uj(q) mod |v|)j≥0, we have for all ` ≥ 0 that

(6) valS(xy`|v|P (|v|)yz) ≡ valS(xyz) mod |v|.

Let us give some extra details on how we derive identity (??). Assume x = x1 · · ·xr,
y = y1 · · · ys and z = z1 · · · zt. For all n ≥ 1, using (??) for w = xynz, we get

1The automaton A × ML is defined as follows. For any state (q, q′) in the set of states
Q × QL, when reading a ∈ Σ, one reaches in A ×ML the state (δ(q, a), δL(q′, a)). The initial

state is (q0, q0,L) and the set of final states is F ×FL. Roughly speaking, the product automaton

mimics the behavior of both automata A and ML.
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|w| = r + ns + t and

valS(xynz) =
∑

q∈QL

(
r∑

i=1

βq,i(w)u|w|−i(q)

+
r+s∑

i=r+1

βq,i(w)u|w|−i(q) + · · ·+
r+ns∑

i=r+(n−1)s+1

βq,i(w)u|w|−i(q)

+
r+ns+t∑

i=r+ns+1

βq,i(w)u|w|−i(q)

)
,

where the first (resp. second, third) line corresponds, as explained below, to the con-
tribution of x (resp. yn, z). By definition (??) of the coefficients βq,i(w), we know
that βq,1(w) depends only on x1 but βq,2(w) depends only on x2 and on δL(q0,L, x1).
Continuing this way, βq,r(w) depends only on xr and on δL(q0,L, x1 · · ·xr−1) and for
1 ≤ j ≤ s, βq,r+j(w) depends on yj and on δL(q0,L, xy1 · · · yj−1). Now βq,r+s+1(w)
depends only on y1 and on δL(q0,L, xy1 · · · ys) = δL(q0,L, xy) = δL(q0,L, x). This
implies that βq,r+s+j(w) = βq,r+j(w) for all q ∈ QL and all j ∈ {1, . . . , s}. This
argument can be repeated with every copy of y appearing in w. Consequently, the
previous expansion become

valS(xynz) =
∑

q∈QL

( r∑
i=1

βq,i(w)u|w|−i(q) +
r+s∑

i=r+1

βq,i(w)
n−1∑
j=0

u|w|−i−js(q)︸ ︷︷ ︸
(∗)

+
r+ns+t∑

i=r+ns+1

βq,i(w)u|w|−i(q)
)

.

Assume now that n = 1+`|v|P (|v|), with ` ≥ 0. For q ∈ QL and i = r+1, . . . , r+s,
we have

(∗) =
n−1∑
j=0

u|w|−i−js(q) = u|w|−i(q) +
`|v|P (|v|)∑

j=1

u|w|−i−js(q)

and the second term is congruent to 0 modulo |v| due to the periodicity of the
sequences (uj(q) mod |v|)j≥0 (recall that in the case we are considering, |z| = t >
I(|v|)). Consequently, for n = 1 + `|v|P (|v|), we have

valS(xynz) ≡
∑

q∈QL

( r∑
i=1

βq,i(w)u|w|−i(q) +
r+s∑

i=r+1

βq,i(w)u|w|−i(q)

+
r+ns+t∑

i=r+ns+1

βq,i(w)u|w|−i(q)
)

mod |v|.

It is then easy to derive (??).

We now use the minimality of |u| to get a contradiction. Assume that |u| − 1 is
in X (the case not in X is similar). Therefore for all n ≥ 1, |u|+ n|v| − 1 is not in
X. From (??), for ` > 0 we get xy`|v|P (|v|)yz ∈ repS(X), but from (??) this word
represents a number of the kind |u| + n|v| − 1 with n > 0 which cannot belong to
X. �

Remark 29. The constant C of the previous result can be effectively computed.
Using notation of the previous proof, one has to choose a constant C such that
|u| > C implies | repS(|u| − 1)| − d #QL > I(|v|). Since the abstract numeration
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system S, the period |v| and the number d of states are given, I(|v|) and repS(n)
for all n ≥ 0 can be effectively computed.

Theorem 30. Let S = (L,Σ, <) be an abstract numeration system such that for
all states q of the trim minimal automaton ML = (QL, q0,L,Σ, δL, FL) of L

lim
j→∞

uj(q) = +∞

and uj(q0,L) > 0 for all j ≥ 0. Assume moreover that v = (vi(q0,L))i≥0 satisfies a
linear recurrence relation of the form (1) with ak = ±1. It is decidable whether or
not a S-recognizable set is ultimately periodic.

Proof. The proof is essentially the same as the one of Theorem ??. Let X be
a S-recognizable set and d be the number of states of the minimal automaton of
repS(X). With the same reasoning as in the proof of Lemma ??, limm→+∞ Nv(m) =
+∞. If X is ultimately periodic, then its period is bounded by a constant t0 that
can be effectively estimated.

If X is ultimately periodic with period |v| ≤ t0, then using proposition ??, its
preperiod is bounded by a constant (which can also be computed effectively thanks
to Remark ??).

Consequently, the sets of admissible periods and preperiods we have to check are
finite. Thanks to Proposition ??, one has to build an automaton for each pair of
admissible preperiods and periods and then compare the accepted language with
repS(X). �

Example 31. The abstract numeration system given in Example ?? satisfies all
the assumptions of the previous theorem.
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