Structural Properties of bounded Languages with Respect to Multiplication by a Constant

Emilie Charlier ${ }^{1}$ Michel Rigo ${ }^{1}$ Wolfgang Steiner ${ }^{2}$

${ }^{1}$ Department of Mathematics
University of Liège
${ }^{2}$ University Paris 7 / LIAFA / CNRS

Journées de Numération
Graz 2007

Outline of the talk

Abstract Numeration Systems

Motivation - Main Question

First Results

Bounded Languages
\mathcal{B}_{ℓ}-Representation of an Integer

Multiplication by $\lambda=\beta^{\ell}$

Abstract Numeration Systems

Definition (P. Lecomte, M. Rigo)

An abstract numeration system is a triple $S=(L, \Sigma,<)$ where L is a regular language over a totally ordered alphabet $(\Sigma,<)$.
Enumerating the words of L with respect to the genealogical ordering induced by $<$ gives a one-to-one correspondence

$$
\operatorname{rep}_{S}: \mathbb{N} \rightarrow L \quad \operatorname{val}_{S}=\operatorname{rep}_{S}^{-1}: L \rightarrow \mathbb{N}
$$

Example
$L=a^{*}, \Sigma=\{a\}$

n	0	1	2	3	4	\cdots
$\operatorname{rep}(n)$	ε	a	aa	aaa	aaaa	\cdots

Abstract Numeration Systems

Example

$$
\begin{aligned}
& L=\{a, b\}^{*}, \Sigma=\{a, b\}, a<b \\
& \begin{array}{r|ccccccccc}
n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \cdots \\
\hline \operatorname{rep}(n) & \varepsilon & a & b & \text { aa } & \text { ab } & b a & b b & \text { aaa } & \cdots
\end{array}
\end{aligned}
$$

Example

$$
L=a^{*} b^{*}, \Sigma=\{a, b\}, a<b
$$

$$
\begin{array}{r|cccccccc}
n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & \cdots \\
\hline \operatorname{rep}(n) & \varepsilon & a & b & a a & a b & b b & a a a & \cdots
\end{array}
$$

$$
\operatorname{val}\left(a^{p} b^{q}\right)=\frac{1}{2}(p+q)(p+q+1)+q
$$

Abstract Numeration Systems

Abstract Numeration Systems
\#b

\#a

Abstract Numeration Systems

Abstract Numeration Systems

Abstract Numeration Systems

Remark

This generalizes "classical" Pisot systems like integer base systems or Fibonacci system.

$$
L=\{\varepsilon\} \cup\{1, \ldots, k-1\}\{0, \ldots, k-1\}^{*} \text { or } L=\{\varepsilon\} \cup 1\{0,01\}^{*}
$$

Definition

A set $X \subseteq \mathbb{N}$ is S-recognizable if $\operatorname{rep}_{S}(X) \subseteq \Sigma^{*}$ is a regular language (accepted by a DFA).

Motivation - Main Question

How to compute in such a numeration system ?
More precisely, how act arithmetic operations like addition, multiplication by a constant, ... ?
\longrightarrow We focus on multiplication by a constant.
Question: Multiplication by a Constant
If $S=(L, \Sigma,<)$ is an abstract numeration system, can we find some necessary and sufficient condition on $\lambda \in \mathbb{N}$ such that for any S-recognizable set X, the set λX is still S-recognizable ?

$$
X S \text {-rec } \quad \xrightarrow{?} \quad \lambda X S \text {-rec }
$$

First Results

Theorem (Translation, P. Lecomte, M. Rigo)
Let $S=(L, \Sigma,<)$ be an abstract numeration system and $X \subseteq \mathbb{N}$. For each $t \in \mathbb{N}, X+t$ is S-recognizable if and only if X is S-recognizable.

Definition

We denote by $\mathbf{u}_{L}(n)$ the number of words of length n belonging to L.

Theorem (Polynomial Case, M. Rigo)
Let $L \subseteq \Sigma^{*}$ be a regular language such that $\mathbf{u}_{L}(n)$ is $\Theta\left(n^{k}\right)$ for some $k \in \mathbb{N}$ and $S=(L, \Sigma,<)$. Preservation of S-recognizability after multiplication by λ holds only if $\lambda=\beta^{k+1}$ for some $\beta \in \mathbb{N}$.

First Results

Definition

A language L is slender if $\mathbf{u}_{L}(n) \in O(1)$.
Theorem (Slender Case, E. C., M. Rigo)
Let $L \subset \Sigma^{*}$ be a slender regular language and $S=(L, \Sigma,<)$. A set $X \subseteq \mathbb{N}$ is S-recognizable if and only if X is a finite union of arithmetic progressions.

Corollary

Let S be a numeration system built on a slender language. If $X \subseteq \mathbb{N}$ is S-recognizable then λX is S-recognizable for all $\lambda \in \mathbb{N}$.

First Results

Theorem (P. Lecomte, M. Rigo)
Let $\beta \in \mathbb{N} \backslash\{0\}$. For the abstract numeration system

$$
S=\left(a^{*} b^{*},\{a, b\}, a<b\right),
$$

multiplication by β^{2} preserves S-recognizability if and only if β is an odd integer.
\longrightarrow We focus on abstract numeration systems built on bounded languages.

Bounded Languages

Notation

We denote by $\mathcal{B}_{\ell}=a_{1}^{*} \cdots a_{\ell}^{*}$ the bounded language over the totally ordered alphabet $\Sigma_{\ell}=\left\{a_{1}<\ldots<a_{\ell}\right\}$ of size $\ell \geq 1$.

We consider abstract numeration systems of the form $\left(\mathcal{B}_{\ell}, \Sigma_{\ell}\right)$ and we denote by rep_{ℓ} and val_{ℓ} the corresponding bijections.

A set $X \subseteq \mathbb{N}$ is said to be \mathcal{B}_{ℓ}-recognizable if $\operatorname{rep}_{\ell}(X)$ is a regular language over the alphabet Σ_{ℓ}.

If w is a word over $\Sigma_{\ell},|w|$ denotes its length and $|w|_{a_{j}}$ counts the number of letters a_{j} 's appearing in w. The Parikh mapping Ψ maps a word $w \in \Sigma_{\ell}^{*}$ onto the vector $\Psi(w):=\left(|w|_{a_{1}}, \ldots,|w|_{a_{\ell}}\right)$.

Bounded Languages

In this context, multiplication by a constant λ can be viewed as a transformation

$$
f_{\lambda}: \mathcal{B}_{\ell} \rightarrow \mathcal{B}_{\ell}
$$

The question becomes then :
Can we determine some necessary and sufficient condition under which this transformation preserves regular subsets of \mathcal{B}_{ℓ} ?

Example

Let $\ell=2, \Sigma_{2}=\{a, b\}$ and $\lambda=25$.

$$
\begin{array}{rllrll}
8 & \xrightarrow{\times 25} & 200 & \mathbb{N} & \xrightarrow{\times \lambda} & \mathbb{N} \\
\mathrm{rep}_{2} \downarrow & & \downarrow \mathrm{rep}_{2} & \mathrm{rep}_{\ell} \downarrow & & \downarrow \mathrm{rep}_{\ell} \\
a b^{2} & \xrightarrow{f_{25}} & a^{9} b^{10} & \mathcal{B}_{\ell} & \xrightarrow{f_{\lambda}} & \mathcal{B}_{\ell}
\end{array}
$$

Thus multiplication by $\lambda=25$ induces a mapping f_{λ} onto \mathcal{B}_{2} such that for $w, w^{\prime} \in \mathcal{B}_{2}, f_{\lambda}(w)=w^{\prime}$ if and only if $\operatorname{val}_{2}\left(w^{\prime}\right)=25 \operatorname{val}_{2}(w)$.

\mathcal{B}_{ℓ}-Representation of an Integer

We set
$\mathbf{u}_{\ell}(n):=\mathbf{u}_{\mathcal{B}_{\ell}}(n)=\#\left(\mathcal{B}_{\ell} \cap \Sigma_{\ell}^{n}\right) \quad$ and $\quad \mathbf{v}_{\ell}(n):=\#\left(\mathcal{B}_{\ell} \cap \Sigma_{\ell}^{\leq n}\right)=\sum_{i=0}^{n} \mathbf{u}_{\ell}(i)$.

Lemma
For all integers $\ell \geq 1$ and $n \geq 0$, we have

$$
\mathbf{u}_{\ell+1}(n)=\mathbf{v}_{\ell}(n) \quad \text { and } \quad \mathbf{u}_{\ell}(n)=\binom{n+\ell-1}{\ell-1}
$$

\mathcal{B}_{ℓ}-Representation of an Integer

Lemma
Let $\ell \in \mathbb{N} \backslash\{0\}$ and $S=\left(a_{1}^{*} \cdots a_{\ell}^{*},\left\{a_{1}<\cdots<a_{\ell}\right\}\right)$. We have

$$
\operatorname{val}_{\ell}\left(a_{1}^{n_{1}} \cdots a_{\ell}^{n_{\ell}}\right)=\sum_{i=1}^{\ell}\binom{n_{i}+\cdots+n_{\ell}+\ell-i}{\ell-i+1}
$$

Corollary (Lehmer 1964, Katona 1966, Fraenkel 1982)
Let $\ell \in \mathbb{N} \backslash\{0\}$. Any positive integer n can be uniquely written as

$$
\begin{equation*}
n=\binom{z_{\ell}}{\ell}+\binom{z_{\ell-1}}{\ell-1}+\cdots+\binom{z_{1}}{1} \tag{1}
\end{equation*}
$$

with $z_{\ell}>z_{\ell-1}>\cdots>z_{1} \geq 0$.

\mathcal{B}_{ℓ}-Representation of an Integer

Example

Consider the words of length 3 in the language $a^{*} b^{*} c^{*}$,

$$
a a a<a a b<a a c<a b b<a b c<a c c<b b b<b b c<b c c<c c c .
$$

We have $\operatorname{val}_{3}(a a a)=\binom{5}{3}=10$ and $\operatorname{val}_{3}(a c c)=15$. If we apply the erasing morphism $\varphi:\{a, b, c\} \rightarrow\{a, b, c\}^{*}$ defined by

$$
\varphi(a)=\varepsilon, \varphi(b)=b, \varphi(c)=c
$$

on the words of length 3 , we get

$$
\varepsilon<b<c<b b<b c<c c<b b b<b b c<b c c<c c c .
$$

So we have $\operatorname{val}_{3}(a c c)=\operatorname{val}_{3}(a a a)+\operatorname{val}_{2}(c c)$ where val_{2} is considered as a map defined on the language $b^{*} c^{*}$.

\mathcal{B}_{ℓ}-Representation of an Integer

Algorithm computing rep ${ }_{\ell}(n)$.
Let n be an integer and 1 be a positive integer.
For $i=1, l-1, \ldots, 1$ do
if $n>0$,
find t such that $\binom{\mathrm{t}}{\mathrm{i}} \leq \mathrm{n}<\binom{\mathrm{t}+1}{\mathrm{i}}$
$z(i) \leftarrow t$
$\mathrm{n} \leftarrow \mathrm{n}-\binom{\mathrm{t}}{\mathrm{i}}$
otherwise, $\mathrm{z}(\mathrm{i}) \leftarrow \mathrm{i}-1$
Consider now the triangular system having $\alpha_{1}, \ldots, \alpha_{\ell}$ as unknowns

$$
\alpha_{i}+\cdots+\alpha_{\ell}=z(\ell-i+1)-\ell+i, \quad i=1, \ldots, \ell .
$$

One has $\operatorname{rep}_{\ell}(\mathrm{n})=a_{1}^{\alpha_{1}} \cdots a_{\ell}^{\alpha_{\ell}}$.

Multiplication by $\lambda=\beta^{\ell}$

Remark
We have $\mathbf{u}_{\mathcal{B}_{\ell}}(n) \in \Theta\left(n^{\ell-1}\right)$.
So we have to focus only on multiplicators of the kind

$$
\lambda=\beta^{\ell} .
$$

Lemma
Let $\ell, \beta \in \mathbb{N} \backslash\{0\}$. For $n \in \mathbb{N}$ large enough, we have

$$
\left|\operatorname{rep}_{\ell}\left(\beta^{\ell} n\right)\right|=\beta\left|\operatorname{rep}_{\ell}(n)\right|+\left\lceil\frac{(\beta-1)(\ell+1)}{2}\right\rceil-i
$$

with $i \in\{0,1, \ldots, \beta\}$.

Multiplication by $\lambda=\beta^{\ell}$

Lemma

Let $\ell, \beta \in \mathbb{N} \backslash\{0\}$. Define $c_{\ell}, c_{\ell-1}, \ldots, c_{1}$ recursively by

$$
c_{k+1}=k!\left(\beta^{\ell-k}-1\right) \sum_{i=k}^{\ell} \frac{S_{1}(i, k)}{i!}-\sum_{i=k+2}^{\ell} \sum_{j=k+1}^{i} \frac{S_{1}(i, j) j!}{i!(j-k)!} c_{i}^{j-k}
$$

where $S_{1}(i, j)$ are the unsigned Stirling numbers of the first kind.
Then we have

$$
\begin{aligned}
& \beta^{\ell}\left(\binom{q+\ell}{\ell}+\binom{q+\ell-1}{\ell-1}+\cdots+\binom{q}{1}\right) \\
= & \binom{\beta q+c_{\ell}+\ell-1}{\ell}+\binom{\beta q+c_{\ell-1}+\ell-2}{\ell-1}+\cdots+\binom{\beta q+c_{1}}{1},
\end{aligned}
$$

for all $q \in \mathbb{R}$.

Multiplication by $\lambda=\beta^{\ell}$

Remark
If all $c_{k}, 1 \leq k \leq \ell$, are integers and $c_{\ell} \geq c_{\ell-1} \geq \cdots \geq c_{1}$, then

$$
\operatorname{rep}_{\ell}\left(\beta^{\ell} \operatorname{val}_{\ell}\left(a_{\ell}^{q}\right)\right)=a_{1}^{c_{\ell}-c_{\ell-1}} a_{2}^{c_{\ell-1}-c_{\ell-2}} \cdots a_{\ell-1}^{c_{2}-c_{1}} a_{\ell}^{\beta q+c_{1}}
$$

for all $q \geq-c_{1} / \beta$, hence $f_{\beta^{\ell}}\left(a_{\ell}^{*}\right)$ is regular.
Explicit forms for c_{ℓ} and $c_{\ell-1}$:

$$
\begin{gathered}
c_{\ell}=\frac{(\beta-1)(\ell+1)}{2} \quad \text { for } \ell \geq 2, \\
c_{\ell-1}=\frac{(\beta-1)(\ell+1)}{2}-\frac{\left(\beta^{2}-1\right)(\ell+1)}{24} \quad \text { for } \ell \geq 3
\end{gathered}
$$

Multiplication by $\lambda=\beta^{\ell}$

Lemma

Let A be a k-dimensional linear subset of \mathbb{N}^{ℓ} for some integer $1 \leq k<\ell$ and $B=\Psi^{-1}(A) \cap \mathcal{B}_{\ell}$ be the corresponding subset of \mathcal{B}_{ℓ}. If $\Psi\left(f_{\beta^{\ell}}(B)\right)$ contains a sequence $x^{(n)}=\left(x_{1}^{(n)}, \ldots, x_{\ell}^{(n)}\right)$ such that $\min \left(x_{j_{1}}^{(n)}, \ldots, x_{j_{k+1}}^{(n)}\right) \rightarrow \infty$ as $n \rightarrow \infty$ for some $j_{1}<\cdots<j_{k+1}$, then $f_{\beta^{\ell}}(B)$ is not regular.

Proposition

If $c_{\ell} \notin \mathbb{Z}$ or $c_{\ell-1} \notin \mathbb{Z}$ with $\ell \geq 3$, then $f_{\beta^{\ell}}\left(a_{\ell}^{*}\right)$ is not regular.
Proposition
If $c_{\ell}, c_{\ell-1} \in \mathbb{Z}$ with $\ell \geq 3, \beta \geq 2$, then $f_{\beta^{\ell}}\left(a_{1}^{*} a_{\ell}^{*}\right)$ is not regular.

Theorem (E. C., M. Rigo, W. Steiner)
Let $\ell, \beta \in \mathbb{N} \backslash\{0\}$. For the abstract numeration system

$$
S=\left(a_{1}^{*} \ldots a_{\ell}^{*},\left\{a_{1}<\ldots<a_{\ell}\right\}\right)
$$

multiplication by β^{ℓ} preserves S-recognizability if and only if one of the following condition is satisfied :

- $\ell=1$
- $\beta=1$
- $\ell=2$ and β is an odd integer.

